KR100777565B1 - Wire tension method to the partial concrete poured tsc beam - Google Patents

Wire tension method to the partial concrete poured tsc beam

Info

Publication number
KR100777565B1
KR100777565B1 KR1020070001287A KR20070001287A KR100777565B1 KR 100777565 B1 KR100777565 B1 KR 100777565B1 KR 1020070001287 A KR1020070001287 A KR 1020070001287A KR 20070001287 A KR20070001287 A KR 20070001287A KR 100777565 B1 KR100777565 B1 KR 100777565B1
Authority
KR
South Korea
Prior art keywords
concrete
tsc
steel wire
tsc beam
bearing plate
Prior art date
Application number
KR1020070001287A
Other languages
Korean (ko)
Inventor
이창남
Original Assignee
이창남
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이창남 filed Critical 이창남
Priority to KR1020070001287A priority Critical patent/KR100777565B1/en
Application granted granted Critical
Publication of KR100777565B1 publication Critical patent/KR100777565B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/293Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/30Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • E04B5/26Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated with filling members between the beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • E04B5/29Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated the prefabricated parts of the beams consisting wholly of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/10Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal prestressed

Abstract

A method for reinforcing a wire strand of a TSC beam wherein a concrete is partially poured is provided to reduce thickness of the TSC beam and to obtain camber effect by tensioning a wire strand at an outer bearing plate of the TSC beam and mounting at a wire cone. A method for reinforcing a wire strand of a TSC beam(1) comprises the steps: tensioning two ends of the TSC beam by using a bearing plate(6) and an un-bonded wire strand(7) and pouring a concrete(9); vertically welding the bearing plate at predetermined end of the TSC beam; welding a stiffener at a lower flange of the TSC beam where the opposite side of the bearing plate, for reinforcing the bearing plate; aligning the un-bonded wire strand through a wire strand hole of the bearing plate and fitting a wire cone(8) at the end of the wire strand projected from the bearing plate; tensioning the wire strand by using a hydraulic jack primarily; pouring the concrete between a left and a right bearing plate in the TSC beam; and exerting predetermined tension to the un-bonded wire strand after securing strength of the concrete.

Description

콘크리트를 부분 타설한 TSC 보의 강선보강공법(이하 부분 타설 TSC 보){Wire Tension Method to the Partial Concrete Poured TSC Beam}Wire Tension Method to the Partial Concrete Poured TSC Beam}

1999년에 개발되어 건축 현장에 널리 알려진 TSC 보(1)는 TSC Ⅰ, TSC Ⅱ, TSC Ⅲ 로 구분하여 생산 적용되고 있으며, TSC 보는 H형강(단면 중앙에 수직으로 하나의 웨브가 있음)과는 달리 보 단면 좌우에 각각 웨브가 있으므로 전단 내력에는 충분한 여유가 있는 반면 단순보로 설계할 경우 상대적으로 중앙 하부 플랜지(2)의 극히 일부분(단순보의 휨모멘트 값은 보의 중앙부가 최대이므로) 단면이 부족하기 때문에 자재 목록표에서 상위 단면을 선정함으로 인하여 경제적으로 부담이 되는 경우가 있다. 또한 장스팬보를 단순보로 설계할 경우 TSC 보 위에 시공하는 바닥판 콘크리트와 TSC 보 내부에 콘크리트를 부어 넣는 과정에서 콘크리트의 자중과 시공하중에 의하여 TSC 보가 관리치 이상으로 처짐이 발생하는 것에 대비하여 가설 지주를 설치하는 번거로움을 감수하여야 한다(합성보는 상부의 슬래브 콘크리트가 양생된 후라야 합성보로의 기능을 발휘한다).Developed in 1999 and widely used in construction sites, TSC beams (1) are classified into TSC I, TSC II, and TSC III, and are produced and applied.TSC beams are different from H-beams (with one web perpendicular to the center of the cross section). Unlike the webs on the left and right sides of the beam section, there is sufficient margin of shear strength, while in simple beam design, a relatively small portion of the center lower flange (2) (since the bending moment value of the simple beam is the maximum in the center of the beam) Because of this lack, it is sometimes economically burdensome to select an upper section from the bill of materials. In addition, when the long span beam is designed as a simple beam, the slab concrete constructed on the TSC beam and the concrete in the TSC beam are poured into the TSC beam due to its own weight and construction load. Take the hassle of installing temporary struts (composite beams function as composite beams only after the slab concrete is cured).

한편 강선을 프리텐션 또는 포스트텐션으로 휨재를 보강하는 종래기술(PS 콘크리트 보)은 사전에 양생한 콘크리트에 압축력을 가했다가 적재하중 등 상재 하중이 작용할 때 사전 압축 응력을 받고 있던 콘크리트 단면 인장부위의 선행 압축응력이 점차 압축, 0(zero) 또는 인장응력 쪽으로 변하는 구조 원리를 활용하는 것이다.On the other hand, the conventional technique of reinforcing flexural materials by pretensioning or post-tensioning steel wires (PS concrete beams) applies a compressive force to pre-cured concrete and then pre-compresses the pre-stressed concrete section where the preloading stress is applied when the loading load is applied. It uses the structural principle that compressive stress gradually changes towards compression, zero or tensile stress.

최근 합성보에서 TSC 보(1) 내부에 콘크리트(9)를 부어넣기 전 인장응력이 유발될 강재 부위(주로 하부 플랜지)에 사전 압축력을 가하여 보강하는 방법을 개발하여 특허신청 하였다. 그러나 콘크리트에만 사전 압축력을 가하는 종래의 PS 콘크리트 기술은 거푸집을 마련하고 철근을 배근하여야 하며 콘크리트가 양생된 후라야 강선 긴장을 할 수 있어서 공사기간 단축에 한계가 있으며 앞의 최근 개발한 바와 같이 강재에만 사전 압축력을 가하는 방법은 강재가 압축력을 소화할 수 있는 정도 이내에서만 강선 긴장이 가능하므로 더 많은 강선을 배치하여 더 많은 긴장력을 가하기 위하여서는 인장(하부)플랜지의 단면을 증가시키는 경제적인 부담을 감수하여야 한다.Recently, in the composite beam, before applying concrete 9 to the inside of the TSC beam, the patent application was developed by applying a pre-compression force to the steel part (mainly the lower flange) where tensile stress would be induced. However, the conventional PS concrete technology, which pre-presses concrete only, has to provide formwork and reinforce the reinforcement, and it is possible to tension the steel wires after the concrete is cured, thus limiting the construction period and limiting the construction period. The pre-compression method allows steel wire tension only to the extent that the steel can digest the compressive force, so in order to place more wires and apply more tension, there is an economic burden of increasing the cross section of the tension (lower) flange. shall.

본 발명에서는 이들 두 가지 방법의 중간에 해당하는 강재+콘크리트에 동시 긴장력을 가하는 방법을 채택한다. 이렇게 하면 강재에만 사전 긴장력을 가했을 경우 후에 단면 하부 콘크리트 부분이 인장응력으로 변함에 따라 균열 발생을 감수할 수밖에 없었던 불편(안전성에는 이상이 없으나 정서상의 문제이기는 함)한 점이 해소되며 TSC Ⅰ의 하부 플랜지(2) 및 코일로 성형 제작하는 TSC Ⅱ, TSC Ⅲ일 경우 단면 전체의 두께를 줄이는 효과를 얻게 된다. 또한 본 발명에서는 일반 PS 콘크리트와 달리 사전에 TSC 보의 하단부에만 콘크리트를 부어넣고 강선 긴장을 하는 것이므로 단면 전체에 콘크리트를 타설하는 재래식 PC와 달리 운반, 조립시 중량이 가벼워서 효율적이다.The present invention adopts a method of applying simultaneous tension to steel + concrete corresponding to the middle of these two methods. This eliminates the inconvenience of having to induce cracks as the concrete part of the lower section of the cross section changes to tensile stress after pre-tension only to the steel (the safety is no problem, but it is an emotional problem) and the lower flange of TSC I (2) In the case of TSC Ⅱ and TSC Ⅲ molded into a coil, the effect of reducing the thickness of the entire cross section is obtained. In addition, in the present invention, unlike the conventional PS concrete, in order to pour the concrete only in the lower portion of the TSC beam in advance and the tension of the wire, unlike the conventional PC that casts concrete throughout the cross-section, the weight is light and efficient during assembly.

TSC 보를 기둥 또는 다른 큰 보에 접합할 때에 대비하여 TSC 보 최단부에서 얼마나 떨어진 위치에 지압판(6)을 부착(용접)할 것인가를 정하는 것(강선긴장의 편의성 및 공사 현장에서 보의 단부 정착을 위한 볼트 조임 등의 작업공간 확보)과 유압잭으로 긴장한 강선이 강선콘(8)을 통하여 지압판에 전달되면 TSC 보의 하부 플랜지(2)와 콘크리트(9)에 하중을 고르게 전달할 수 있도록 지압판 후면(콘크리트를 채우는 내부)에 용접할 스티프너의 규격과 간격 설정(구조계산으로 확인), 강선 몇 가닥을 배열할 것이며 한 가닥 당 얼마의 긴장력을 가하면 될 것인가를 정하는 것(구조계산) 등이 기술적 과제이다.Determining how far away from the TSC beam end point the acupressure plate 6 should be attached (welded) in preparation for joining the TSC beam to columns or other large beams. To secure the working space such as bolt tightening) and the tensioned wire with the hydraulic jack is transmitted to the pressure plate through the steel wire cone (8) so that the load can be evenly transmitted to the lower flange (2) and concrete (9) of the TSC beam (concrete). The technical challenges include the size and spacing of the stiffeners to be welded (confirmed by structural calculation), the number of strands of steel wire to be arranged, and how much tension should be applied per strand (structural calculation).

강선긴장을 위하여 TSC 보(1)의 단부 적당한 위치(강선긴장의 편의성 및 공사 현장에서 보의 단부 정착을 위한 볼트 조임 등의 작업공간 확보)에서 하부 플랜지(2)와 웨브(4) 하부에 다수개의 강선 구멍을 뚫은 지압판(6)을 수직으로 용접하고 그 후면(좌우 지압판이 마주보는 면)과 하부 플랜지에 스티프너(10)를 용접하여 지압판을 보강한다. 지압판의 강선구멍을 통해 언본디드 강선(7)을 배열하고 지압판 외부에 돌출된 강선 끝에 강선콘을 끼운 후 유압잭으로 강선이 팽팽하게 될 정도로 1차 긴장하여 강선콘(8)에 정착한 후 TSC 보 내부 하단 좌우 지압판 사이에 콘크리트를 부어넣는다. 콘크리트가 양생되면 유압잭으로 구조계산으로 정한 소정의 긴장력을 강선에 가하여 강선콘에 최종 정착한 후 이를 현장에 반입하여 기둥 또는 큰 보에 부착하고 나머지 공정은 다른 보와 마찬가지로 데크플레이트를 깔고 바닥 TSC 보(1) 내부 나머지 공간과 슬래브 콘트리트(9)를 타설하는 방법으로 강콘크리트 합성보를 제작한다.Many of the lower flange (2) and web (4) at the lower end of the TSC beam (suitable for the tension of the wire and securing a working space such as bolt tightening for fixing the end of the beam at the construction site) for the tension of the wire The pressure plate 6, which has drilled two steel wire holes, is vertically welded, and the stiffener 10 is welded to its rear surface (the surface facing the left and right pressure plates) and the bottom flange to reinforce the pressure plate. Arrange the unbonded steel wire (7) through the steel wire hole of the pressure plate, insert the steel wire cone at the end of the steel wire protruding from the pressure plate, and settle the steel wire cone (8) by first tensioning so that the steel wire becomes taut with the hydraulic jack. Pour the concrete between the lower left and right pressure plate inside. When the concrete is cured, the hydraulic jack applies the predetermined tension determined by the structural calculation to the steel wire and finally settles it in the steel wire cone. Then, it is brought to the site and attached to the column or the large beam, and the rest of the process is laid with a deck plate like other beams. (1) A steel concrete composite beam is manufactured by pouring the remaining space and slab concrete (9).

콘크리트를 부분 타설한 TSC 보의 지압판(6) 외부에 강선을 긴장하여 강선콘(8)에 정착하면 TSC 보의 하부 플랜지(2)와 콘크리트에 사전 압축력이 작용하여 단순보일 경우 TSC 보 단면의 강판 두께를 줄일 수 있고, 장스팬일 때 부담되는 가설 지주를 생략할 수 있는 치올림(camber) 효과를 얻을 수 있어서 경제적이다.When the steel wire is tensioned on the outside of the pressure plate (6) of the TSC beam in which concrete is partially poured, and the steel wire is fixed to the steel cone (8), the pre-compression force acts on the lower flange (2) of the TSC beam and the concrete. It is economical because the thickness can be reduced and a camber effect can be obtained, which can omit the temporary struts burdened in the long span.

PS 콘크리트보는 공장에서 생산한 콘크리트 보를 강선 긴장 방법으로 보강한 것이므로 중량과 부피가 커서 운반 조립비가 부담이 되며 현장에서 콘크리트를 타설하여 양생시킨 후 현장에서 강선을 긴장하는 포스트텐션(Post Tension) 공법은 콘크리트 양생기간 대기 및 현장 작업으로 번거롭지만 본 발명의 방법은 공장에서 강선의 긴장력을 활용하여 TSC 보의 하부 플랜지와 부분 타설한 콘크리트에 사전 압축력을 가하는 것이므로 위 어려움이 해소되고 중량도 비교적 가볍고 공사비가 절감되는 효과가 있다.PS concrete beams are reinforced by steel wire tensioning method of concrete beams produced at the factory, so the weight and volume are large, and the transportation assembly cost is burdened. Post-tensioning method of tensioning steel wires on site after casting concrete Although it is cumbersome to wait for the concrete curing period and on-site work, the method of the present invention utilizes the tension of steel wire in the factory to apply the pre-compression force to the lower flange of the TSC beam and the partially poured concrete, thus eliminating the above difficulty and the weight is relatively light and the construction cost is low. There is a saving effect.

도 1은 부분타설 TSC 보※ 2를 강선 보강한 사시도,1 is a perspective view of a steel cast reinforced partial casting TSC beam * 2 ,

도 2 부분타설 TSC 보를 강선 보강한 횡단면도, 종단면도 이다. ,Fig. 2 A cross-sectional and longitudinal cross-sectional view of a steel cast reinforced TSC beam. ,

〈 도면의 부호와 용어에 대한 간단한 설명〉<Brief Description of Symbols and Terms in Drawings>

1 : TSC 보※ 1 2 : 하부 플랜지(bottom flange)1: TSC beam ※ 1 2: Bottom flange

3 : 상부 플랜지(top flange) 4 ; 웨브(web)3: top flange 4; Web

5 : 시어코넥터(shear connector) 6 : 지압판(bearing plate)5: shear connector 6: bearing plate

7 : 언본디드 강선(unbonded wire strand)※ 3 8 : 강선콘(wire cone)7: unbonded wire strand ※ 3 8: wire cone

9 : 콘크리트 10 : 스티프너9: concrete 10: stiffener

※ 1. TSC 보; 개략적인 외형은 철근콘크리트 T형 보와 같으며 보의 몸체 부분은 강판으로 영구거푸집을 짜서 그 내부와 강판 영구거푸집 상부 플랜지의 슬래브에 콘크리트를 부어 일체화시킨 강콘크리트 합성보이다. TSC 보의 표피에 해당하는 강판은 철근콘크리트 보일 경우의 철근 역할을 하여 구조 내력을 발휘하기 때문에 거푸집 목공, 철근공의 도움이 불필요하여 시공이 간편해진다. 또한 위 영구거푸집은 두꺼운 강판을 절단하여 용접 제작하는 대형 TSC Ⅰ과, 강판을 신문원지처럼 원주형으로 감은 상태로 공급하는 얇은 코일(두께 10mm 이하)을 공장에서 대략 J형으로 반 조각씩 냉간성형(cold roll forming)하여 이들을 서로 맞대어 자동용접 부착하여 제작하는 TSC Ⅱ 및 TSC Ⅲ로 구분되며, 본 발명에서는 TSC Ⅰ 보를 기준하여 특허를 청구한다.※ 1. TSC Bo; The outline is the same as that of reinforced concrete T-beam, and the body part of the beam is a steel concrete composite beam integrated by squeezing the permanent formwork with steel sheet and pouring concrete into the slab of the upper flange of the steel sheet permanent formwork. The steel sheet corresponding to the skin of TSC beams acts as a reinforcing steel when it is seen as reinforced concrete. Therefore, it is easy to construct because it does not require the help of formwork woodworking and reinforcing steel. In addition, the above permanent formwork is cold-formed by a large piece of TSC I, which is made by cutting thick steel sheets, and a thin coil (10 mm or less in thickness) that supplies steel sheets in the form of a column like a newspaper paper. (Cold roll forming) is divided into TSC II and TSC III which are produced by auto-welding them against each other, and the present invention claims a patent on the basis of TSC I beam.

TSC 강콘크리트 합성보 : 위 TSC 보와 그 내부에 채우는 콘크리트 및 상부에 타설하는 콘크리트 슬래브가 하나의 보로 역할을 하는 합성보.TSC steel concrete composite beam: Composite beam where the upper TSC beam, concrete filled inside and concrete slab poured on the top serve as one beam.

※ 2. 부분타설 TSC 보 : TSC보의 하부 일부에만 콘크리트를 타설한 것.※ 2. Partial TSC beam: Concrete is placed only on the lower part of TSC beam.

※ 3. 언본디드 강선 : 그리스를 칠한 강선 표면을 합성수지 파이프로 감싼 것으로 콘크리트 속에 파묻힌 상태에서도 유압잭으로 강선을 긴장하면 강선과 콘크리트가 마찰 저항 없이 쉽게 미끄러져서 강선 전 길이를 통하여 고른 값의 인장력을 나타냄.※ 3. Unbonded steel wire: The surface of grease-coated steel wire is wrapped with synthetic pipe. Even if it is buried in concrete, when the steel wire is tensioned with a hydraulic jack, the steel wire and concrete slide easily without friction, resulting in an even tensile force throughout the length of the steel wire. .

Claims (1)

TSC 보(1) 양단부에 지압판(6)과 언본디드 강선(7)으로 긴장 후 콘크리트(9)를 타설하여 제작함에,TSC beams (1) on both ends of the pressure plate (6) and unbonded steel wire (7) after tensioning the concrete (9) to be cast, (a) TSC 보의 단부 적당한 위치에 하부 플랜지(2)와 웨브(4) 하부에 다수개의 강선 구멍을 뚫은 지압판을 수직으로 용접하는 단계 ;(a) vertically welding a pressure plate with a plurality of steel wire holes beneath the lower flange 2 and the web 4 at an appropriate position at the end of the TSC beam; (b) 지압판(6)을 설치한 반대편 TSC 보(1) 하부 플랜지에 스티프너(10)를 용접하여 지압판을 보강하는 단계 ;(b) reinforcing the pressure plate by welding the stiffener 10 to the lower flange of the opposite TSC beam 1 on which the pressure plate 6 is installed; (c) 지압판의 강선구멍을 통하여 언본디드 강선(7)을 배열하고 지압판 외부에 돌출된 강선 끝에 강선콘(8)을 끼운 후 유압잭으로 강선을 1차 긴장 하는 단계 ;(c) arranging the unbonded steel wire 7 through the steel wire hole of the pressure plate, inserting the steel wire cone 8 at the end of the steel wire projecting outside the pressure plate, and tensioning the steel wire with a hydraulic jack; (d) TSC 보 내부 하단 좌우 지압판 사이에 콘크리트를 부어 넣는 단계 ;(d) pouring concrete between the lower left and right bearing plates inside the TSC beams; (e) 콘크리트(9) 강도 확보 후 구조계산으로 정한 소정의 긴장력을 언본디드 강선에 가하여 최종 정착하는 단계 ;(e) applying the predetermined tension to the unbonded steel wire to final settlement after securing the strength of concrete (9); 를 포함하여 이루어지는 것을 특징으로 하는 콘크리트를 부분 타설한 TSC 보의 강선보강공법.Steel wire reinforcement method of the TSC beam partially poured concrete, characterized in that comprises a.
KR1020070001287A 2007-01-05 2007-01-05 Wire tension method to the partial concrete poured tsc beam KR100777565B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070001287A KR100777565B1 (en) 2007-01-05 2007-01-05 Wire tension method to the partial concrete poured tsc beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070001287A KR100777565B1 (en) 2007-01-05 2007-01-05 Wire tension method to the partial concrete poured tsc beam

Publications (1)

Publication Number Publication Date
KR100777565B1 true KR100777565B1 (en) 2007-11-16

Family

ID=39080137

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070001287A KR100777565B1 (en) 2007-01-05 2007-01-05 Wire tension method to the partial concrete poured tsc beam

Country Status (1)

Country Link
KR (1) KR100777565B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918983B1 (en) * 2007-10-26 2009-09-30 주식회사 에이스스틸 The Steel Concrete beam and it's manufacturing method
KR101203654B1 (en) 2010-12-27 2012-11-23 재단법인 포항산업과학연구원 Tubular steel girder bridge modules and prefabricated construction methods using the same
KR101320571B1 (en) * 2011-03-16 2013-10-28 재단법인 포항산업과학연구원 Steel composite girder module and method of constructing the same
KR20190066210A (en) * 2017-12-05 2019-06-13 (주)씨지스플랜 Composite beam having partial prestressed structured and method for constructing the beam

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571913A (en) * 1983-04-25 1986-02-25 Arbed S.A. Prefabricated fireproof steel and concrete beam
KR100416217B1 (en) * 2001-10-12 2004-01-31 (주)이가종합건축사사무소 Composite structural material
KR100504266B1 (en) * 2002-12-27 2005-08-04 노윤근 Prestressed steel reinforced concrete beam and manufacturing method thereof
KR100541609B1 (en) * 2003-09-04 2006-01-11 삼연 피씨이 주식회사 Structure for debonding of prestressed concrete beam member with prestressing tendon and manufacturing method of prestressed concrete beam member thereby
KR20060030834A (en) * 2004-10-06 2006-04-11 이창남 Tsc beam formed with bottle neck top flange
KR20060090406A (en) * 2005-02-05 2006-08-11 유성근 Steel beam with u-shaped connector and steel composite beam using the steel beam
KR20060090405A (en) * 2005-02-05 2006-08-11 유성근 Steel beam with plate type shear connector and steel composite beam using the steel beam

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571913A (en) * 1983-04-25 1986-02-25 Arbed S.A. Prefabricated fireproof steel and concrete beam
KR100416217B1 (en) * 2001-10-12 2004-01-31 (주)이가종합건축사사무소 Composite structural material
KR100504266B1 (en) * 2002-12-27 2005-08-04 노윤근 Prestressed steel reinforced concrete beam and manufacturing method thereof
KR100541609B1 (en) * 2003-09-04 2006-01-11 삼연 피씨이 주식회사 Structure for debonding of prestressed concrete beam member with prestressing tendon and manufacturing method of prestressed concrete beam member thereby
KR20060030834A (en) * 2004-10-06 2006-04-11 이창남 Tsc beam formed with bottle neck top flange
KR20060090406A (en) * 2005-02-05 2006-08-11 유성근 Steel beam with u-shaped connector and steel composite beam using the steel beam
KR20060090405A (en) * 2005-02-05 2006-08-11 유성근 Steel beam with plate type shear connector and steel composite beam using the steel beam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918983B1 (en) * 2007-10-26 2009-09-30 주식회사 에이스스틸 The Steel Concrete beam and it's manufacturing method
KR101203654B1 (en) 2010-12-27 2012-11-23 재단법인 포항산업과학연구원 Tubular steel girder bridge modules and prefabricated construction methods using the same
KR101320571B1 (en) * 2011-03-16 2013-10-28 재단법인 포항산업과학연구원 Steel composite girder module and method of constructing the same
KR20190066210A (en) * 2017-12-05 2019-06-13 (주)씨지스플랜 Composite beam having partial prestressed structured and method for constructing the beam
KR102035201B1 (en) * 2017-12-05 2019-10-22 (주)씨지스플랜 Composite beam having partial prestressed structured and method for constructing the beam

Similar Documents

Publication Publication Date Title
KR100888941B1 (en) Concrete-composite crossbeam and construction methods using the same
CN108677685B (en) Ultra-high-performance concrete-part steel beam combined bent cap and construction method thereof
KR100952207B1 (en) Connection Structure and Connecting Method between Precast Pier and Foundation
KR102183909B1 (en) The composite box girder bridge structure with a support block and a tensile member, the construction method thereof
WO2010021428A1 (en) Opening steel composite girder and method for manufacturing the same
KR100777565B1 (en) Wire tension method to the partial concrete poured tsc beam
CN109235222B (en) Light full-assembly type large cantilever ultrahigh-performance concrete finned beam and construction method thereof
CN103912133B (en) Vierendeel girder transverse stretching pre-stressed carbon fiber sheet material reinforcement means
KR101045929B1 (en) Pro-environment prestressed long span light-weight precast concrete panel and this construction technique
CN105544415A (en) Concrete bridge reinforcing method and structure
CN205630974U (en) Pre -tensioning system precast beam pedestal
KR100777566B1 (en) Reinforcing of tsc beam with wire tension method
KR20080111686A (en) Bridge using phc girder and slab-phc complex girder
KR101374701B1 (en) Concrete beam construction method with anchorage apparatus for bi-pressing compression member
KR20190094644A (en) Prestressed Steel-Concrete Composite Girder
CN113356428B (en) Prestress superposed integral floor system applied to fabricated building and construction method
KR101843904B1 (en) Post-Tensioned Anchor
CN210857692U (en) Splicing structure of prestressed bidirectional stress laminated slab
KR100694824B1 (en) Deck plate for reinforced concrete structure and structure construction method thereof
KR101754301B1 (en) Sequential binding type composite truss beam construction method
KR101342894B1 (en) Trust type prestressed concrete girder, manufacturing method for the same and constructing method of continuation bridge using the same
KR101381974B1 (en) Concrete deck slab assembly, Method for making the same and Temporary bridge using the same
KR20170040022A (en) Hybrid beam with wide PSC lower flange and enlarged section upper flange and structure frame using the same
KR101621657B1 (en) Rahmen system advanced efficiency by plastic hinge/additional prestressing strand and precast girder unit manufacturing thereof and method constructing Rahmen bridge thereof
JP3798371B2 (en) Steel plate web bridge and its erection method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131105

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141105

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151102

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee