KR100772893B1 - 향상된 잡음률과 검출 강도를 나타내는 올리고머 프로브어레이 및 그 제조 방법 - Google Patents

향상된 잡음률과 검출 강도를 나타내는 올리고머 프로브어레이 및 그 제조 방법 Download PDF

Info

Publication number
KR100772893B1
KR100772893B1 KR1020060039713A KR20060039713A KR100772893B1 KR 100772893 B1 KR100772893 B1 KR 100772893B1 KR 1020060039713 A KR1020060039713 A KR 1020060039713A KR 20060039713 A KR20060039713 A KR 20060039713A KR 100772893 B1 KR100772893 B1 KR 100772893B1
Authority
KR
South Korea
Prior art keywords
probe
oligomer
cell active
probe cell
substrate
Prior art date
Application number
KR1020060039713A
Other languages
English (en)
Inventor
하정환
지성민
김경선
김원선
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020060039713A priority Critical patent/KR100772893B1/ko
Priority to US11/686,492 priority patent/US20080038712A1/en
Priority to JP2007121188A priority patent/JP2007298520A/ja
Priority to CNA2007101009982A priority patent/CN101067606A/zh
Application granted granted Critical
Publication of KR100772893B1 publication Critical patent/KR100772893B1/ko
Priority to US13/424,890 priority patent/US20120208723A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • B01J2219/00662Two-dimensional arrays within two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

향상된 잡음률을 나타내고 적은 디자인룰에서도 원하는 검출 강도를 나타내는 올리고머 프로브 어레이가 제공된다. 올리고머 프로브 어레이는 기판, 표면에 올리고머 프로브와 커플링되는 작용기를 포함하지 않는 프로브 셀 분리 영역, 프로브 셀 분리 영역에 의해 분리되며 기판 상 또는 기판 내에 형성된 다수의 프로브 셀 액티브 영역으로 각 프로브 셀 액티브의 표면에는 하나 이상의 홈이 형성된 다수의 프로브 셀 액티브 영역, 각 프로브 셀 액티브 영역 별로 커플링되고 서로 다른 서열을 가지는 다수의 올리고머 프로브를 포함한다.
올리고머, 프로브, 잡음률, 검출 강도, 액티브 영역

Description

향상된 잡음률과 검출 강도를 나타내는 올리고머 프로브 어레이 및 그 제조 방법{Oligomer probe array with improved signal to noise ratio and assay intensity and fabrication method thereof}
도 1a 및 도 1b는 본 발명의 실시예들에 따른 올리고머 프로브 어레이의 프로브 셀 액티브(probe cell active) 영역의 레이아웃들이다.
도 2 내지 도 5는 기판 상에 패터닝되어 형성된 3차원 표면의 프로브 셀 액티브 영역을 포함하는 올리고머 프로브 어레이의 실시예들을 나타내는 단면도들이다.
도 6 내지 도 9는 기판을 국부적으로 산화하여 형성한 LOCOS(LOCal Oxidation of Silicon) 산화막으로 이루어진 3차원 표면의 프로브 셀 액티브 영역을 포함하는 올리고머 프로브 어레이의 실시예들을 나타내는 단면도들이다.
도 10 내지 도 13은 기판 내에 형성한 3차원 표면의 트렌치형 프로브 셀 액티브 영역을 포함하는 올리고머 프로브 어레이의 실시예들을 나타내는 단면도들이다.
도 14 내지 도 17은 도 2에 예시되어 있는 본 발명의 일 실시예에 따른 올리고머 프로브 어레이의 제조 방법을 설명하기 위한 공정 중간 단계 구조물들의 단면도들이다.
도 18 및 도 19는 도 2에 예시되어 있는 본 발명의 일 실시예에 따른 올리고머 프로브 어레이의 다른 제조 방법을 설명하기 위한 공정 중간 단계 구조물들의 단면도들이다.
도 20 내지 도 23은 도 3에 예시되어 있는 본 발명의 다른 실시예에 따른 올리고머 프로브 어레이의 제조 방법을 설명하기 위한 공정 중간 단계 구조물들의 단면도들이다.
도 24는 도 4에 예시되어 있는 본 발명의 다른 실시예에 따른 올리고머 프로브 어레이의 제조 방법을 설명하기 위한 공정 중간 단계 구조물의 단면도이다.
도 25는 도 5에 예시되어 있는 본 발명의 또 다른 실시예에 따른 올리고머 프로브 어레이의 제조 방법을 설명하기 위한 공정 중간 단계 구조물의 단면도이다.
도 26 및 도 27은 도 6에 예시되어 있는 본 발명의 또 다른 실시예에 따른 올리고머 프로브 어레이의 제조 방법을 설명하기 위한 공정 중간 단계 구조물들의 단면도들이다.
도 28 및 도 29는 도 10에 예시되어 있는 본 발명의 또 다른 실시예에 따른 올리고머 프로브 어레이의 제조 방법을 설명하기 위한 공정 중간 단계 구조물들의 단면도들이다.
(도면의 주요 부분에 대한 부호의 설명)
100: 기판 120, 220, 320: 프로브 셀 액티브 영역
130: 프로브 셀 분리 영역 140: 링커
150: 작용기 160: 올리고머 프로브
본 발명은 올리고머 프로브 어레이에 관한 것으로, 특히 잡음률(Signal to Noise Ratio, 이하 SNR) 및 검출 강도가 증가한 올리고머 프로브 어레이 및 그 제조 방법에 관한 것이다.
올리고머 프로브 어레이는 유전자 발현 분석(expression profiling), 유전자형 분석(genotyping), SNP와 같은 돌연 변이(mutation) 및 다형(polymorphism)의 검출, 단백질 및 펩티드 분석, 잠재적인 약의 스크리닝, 신약 개발과 제조 등에 널리 사용되는 도구이다.
현재 널리 사용되는 올리고머 프로브 어레이는 광(예., UV) 조사를 통해 기판 상의 특정 영역을 광활성화시킨 후 광활성 영역 상에 올리고머 프로브를 인-시츄(in-situ) 합성하여 다수의 프로브 셀 어레이를 형성한다.
그런데, 인-시츄 합성을 위하여 수회에 걸쳐 반복 실시되는 포토리소그래피 공정 동안 마스크의 오정렬 또는 회절광에 기인한 빗나간 광(stray light)으로 인해 비활성화 영역 일부가 원치않게 활성화될 수 있다. 따라서, 비활성화 영역에도 올리고머 부산물이 형성될 수 있다. 그 결과 타겟 샘플과의 혼성화(hybridization) 데이터 분석시 잡음률이 낮아서 정확한 데이터 분석에 장애가 된다.
한편, 올리고머 프로브 어레이를 사용하여 분석하고자 하는 유전 정보의 형태가 유전자에서 DNA의 최소 구성 단위인 뉴클레오타이드 수준까지 다양화됨에 따라 프로브 셀의 설계 규칙이 수십 ㎛ 에서 수 ㎛ 이하로 감소함에 따라 잡음률이 데이터 분석의 정확도에 미치는 악영향이 더 커지고 있다.
또한, 현재의 올리고뉴클레오타이드 프로브 어레이의 경우 10 내지 100㎛의 광활성 영역에 0.01~1 펨토 몰(femto moles)에 해당하는 올리고머 프로브를 커플링함으로써 필요한 정도의 검출 강도를 확보하고 있다. 그러나, 설계 규칙이 1㎛ 이하로 감소될 경우 올리고머 프로브 사이의 간격이 약 4 nm 정도이므로 하나의 광활성 영역에는 약 0.1 아토 몰(atto moles) 에 해당하는 소량의 올리고뉴클레오타이드 프로브(약 7000 개 이하)가 존재하게 된다. 이와 같은 소량의 올리고뉴클레오타이드 프로브의 양으로는 분석에 요구되는 절대적인 검출 강도를 확보활 수 없다.
본 발명이 이루고자 하는 기술적 과제는 잡음률 및 검출 강도가 향상된 올리고머 프로브 어레이를 제공하고자 하는 것이다.
본 발명이 이루고자 하는 다른 기술적 과제는 잡음률 및 검출 강도가 향상된 올리고머 프로브 어레이의 제조 방법을 제공하고자 하는 것이다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 예시적인 실시예들은 올리고머 프로브와 커플링되는 작용기를 포함하지 않으며 다수의 프로브 셀 액티브 영역을 정의하는 프로브 셀 분리 영역과 3차원 표면을 가지는 프로브 셀 액티브 영역을 사용하여 종래의 올리고머 프로브 어레이의 문제점들을 제거한다.
본 발명의 몇몇 실시예들에 따른 올리고머 프로브 어레이는 기판, 상기 기판 상 또는 상기 기판 내에 형성되고 3차원 표면을 가지는 다수의 프로브 셀 액티브 영역으로, 상기 각 프로브 셀 액티브 영역 별로 서로 다른 서열의 올리고머 프로브가 커플링된 다수의 프로브 셀 액티브 영역, 및 상기 다수의 프로브 셀 액티브 영역을 분리하는 프로브 셀 분리 영역으로 표면이 상기 올리고머 프로브와 커플링되는 작용기를 포함하지 않는 프로브 셀 분리 영역을 포함한다.
본 발명의 몇몇 실시예들에 따른 올리고머 프로브 어레이의 제조 방법은 기판을 제공하고, 상기 기판 상 또는 상기 기판 내에 프로브 셀 분리 영역에 의해 분리되는 다수의 프로브 셀 액티브 영역을 형성하되, 상기 다수의 프로브 셀 액티브 영역의 표면은 3차원 표면을 가지도록 하고 상기 프로브 셀 분리 영역의 표면은 올리고머 프로브와 커플링되는 작용기를 포함하지 않도록 형성하고, 상기 다수의 프로브 셀 액티브 영역 별로 서로 다른 서열의 올리고머 프로브를 커플링하는 것을 포함한다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
따라서, 몇몇 실시예에서, 잘 알려진 공정 단계들, 잘 알려진 구조 및 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하기 위하여 구체적으로 설명되지 않는다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는한 복수형도 포함한다. 명세서에서 사용되는 포함한다(comprises) 및/또는 포함하는(comprising)은 언급된 구성요소, 단계, 동작 및/또는 소자 이외의 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는 의미로 사용한다. 그리고, ″및/또는″은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다. 또, 이하 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
또한, 본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 예시도인 단면도 및/또는 개략도들을 참고하여 설명될 것이다. 따라서, 제조 기술 및/또는 허용 오차등에 의해 예시도의 형태가 변형될 수 있다. 따라서, 본 발명의 실시예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. 또한 본 발명에 도시된 각 도면에 있어서 각 구성 요소들은 설명의 편의를 고려하여 다소 확대 또는 축소되어 도시된 것일 수 있다.
도 1a 및 도 1b는 본 발명의 다양한 실시예들에 따른 올리고머 프로브 어레이의 프로브 셀 액티브 영역의 레이아웃들이다.
도 1a를 참고하면, 다수의 프로브 셀 액티브 영역 패턴(1)이 행 방향 및 열 방향으로 매트릭스 형태로 배열된다. 구체적으로, X축 방향과 Y축 방향을 따라 각각 제1 피치(Px) 및 제2 피치(Py)로 배열된다. 도 1a에서는 제1 피치(Px)와 제2 피치(Py)가 동일하게 도시되어 있으나, 레이아웃의 필요에 따라 달라질 수 있음은 물론이다. 셀 액티브 패턴(1) 내에는 셀 액티브 패턴(1)의 표면을 3차원이 되도록 하기 위한 다수의 홈 패턴(2)이 배열된다. 도면에서는 홈 패턴(2)이 정사각형 형태로 예시되어 있으나, 직사각형, 원형, 반원형 등 다양한 형태로 대체될 수 있음은 물론이다. 또, 홈 패턴(2)은 셀 액티브 패턴(1)을 일 방향으로 가로지는 라인 패턴 또는 x축 방향과 y축 방향으로 각각 연장된 교차 라인 패턴일 수도 있다.
도 1b를 참고하면, 다수의 프로브 셀 액티브 영역 패턴(1)이 소정 피치(Px)로 이격 배열되어 있는 홀수행과 행 방향으로 쉬프트되어 홀수행의 프로브 셀 액티브 영역 패턴(1)과 일부만이 오버랩되도록 소정 피치(Px)로 배열된 다수의 프로브 셀 액티브 영역으로 구성된 짝수행이 서로 교대로 배열되어 대칭적인 배열을 이룰 수 있다. 셀 액티브 패턴(1) 내에는 셀 액티브 패턴(1)의 표면을 3차원이 되도록 하기 위한 다수의 홈 패턴(2)이 배열된다.
도 2 내지 도 13은 도 1a 또는 도 1b의 레이아웃을 사용하여 제조된 프로브 셀 액티브 영역을 포함하는 올리고머 프로브 어레이의 실시예들을 나타내는 단면도들이다.
도 2 내지 도 5는 기판(100) 상에 패터닝되어 형성된 프로브 셀 액티브 영역(120)을 포함하는 올리고머 어레이의 실시예들을 예시한다. 도 6 내지 도 9는 기판(100)을 국부적으로 산화하여 형성한 LOCOS(LOCal Oxidation of Silicon) 산화막으로 이루어진 프로브 셀 액티브 영역(220)을 포함하는 올리고머 어레이의 실시예들을 예시한다. 도 10 내지 도 13은 기판(100) 내에 형성한 트렌치에 형성된 프로브 셀 액티브 영역(320)을 포함하는 올리고머 어레이의 실시예들을 예시한다.
도 2 내지 도 13을 참조하면, 본 발명의 실시예들에 따른 올리고머 프로브 어레이는 기판(100), 기판(100) 상 또는 기판(100) 내에 형성되고 3차원 표면을 가지는 다수의 프로브 셀 액티브 영역(120, 220, 320), 프로브 셀 액티브 영역(120, 220, 320) 별로 커플링된 서로 다른 서열의 올리고머 프로브(160), 다수의 프로브 셀 액티브 영역(120, 220, 320)을 분리하되 표면에 상기 올리고머 프로브(160)와 커플링되는 작용기(150)를 포함하지 않는 프로브 셀 분리 영역(130)을 포함한다.
올리고머란 공유 결합된 두개 이상의 모노머(monmer)로 이루어진 폴리머(polymer) 중 분자량이 대략 1000 이하의 것을 지칭하나 이 수치에 한정되는 것은 아니다. 올리고머는 약 2-500개의 모노머, 바람직하기로는 5-30개의 모노머를 포함할 것이다. 모노머는 프로브의 종류에 따라 뉴클레오사이드, 뉴클레오타이드, 아미노산, 펩티드 등이 될 수 있다. 올리고머 프로브는 미리 합성된 것일 수도 있고 액티브 상에 인-시츄 포토리소그래피 공정을 통해 합성된 것일 수도 있다.
뉴클레오사이드 및 뉴클레오타이드는 공지의 퓨린 및 피리미딘 염기를 포함할 뿐만 아니라 메틸화된 퓨린 또는 피리미딘, 아실화된 퓨린 또는 피리미딘 등을 포함할 수 있다. 또, 뉴클레오사이드 및 뉴클레오타이드는 종래의 리보스 및 디옥시리보스 당을 포함할 뿐만 아니라 하나 이상의 하이드록실기가 할로겐 원자 또는 지방족으로 치환되거나 에테르, 아민 등의 작용기가 결합한 변형된 당을 포함할 수 있다.
아미노산은 자연에서 발견되는 아미노산의 L-, D-, 및 비키랄성(nonchiral) 형 아미노산뿐만 아니라 변형 아미노산(modified amino acid), 또는 아미노산 유사체(analog) 등일 수 있다.
펩티드란 아미노산의 카르복실기와 다른 아미노산의 아미노기 사이의 아미드 결합에 의해 생성된 화합물을 지칭한다.
기판(100)은 혼성화(hybridization) 과정 동안 원하지 않는 비특이적 결합을 최소화 나아가 실질적으로 0으로 할 수 있는 물질로 이루어질 수 있다. 나아가, 기판(100)은 가시광 및/또는 UV 등에 투명한 물질로 이루어질 수 있다. 기판은 가요성(flexible) 또는 강성(rigid) 기판일 수 있다. 가요성 기판은 나일론, 니트로셀룰로오스 등의 멤브레인 또는 플라스틱 필름 등일 수 있다. 강성 기판은 실리콘 기판, 소다 석회 유리와 같은 투명 유리 기판 등일 수 있다. 실리콘 기판 또는 투명 유리 기판의 경우에는 혼성화 과정 동안 비특이적 결합이 거의 일어나지 않는 장점이 있다. 또, 투명 유리 기판의 경우에는 가시광 및/또는 UV 등에 투명해서 형광 물질의 검출에 유리하다. 실리콘 기판 또는 투명 유리 기판은 반도체 소자의 제조 공정 또는 LCD 패널의 제조 공정에서 이미 안정적으로 확립되어 적용되는 다양한 박막의 제조 공정 및 사진 식각 공정 등을 그대로 적용할 수 있다는 장점이 있다.
프로브 셀 액티브 영역(120, 220, 320)은 혼성화 분석 조건, 예컨대 pH6-9의 인산(phosphate) 또는 TRIS 버퍼와 접촉시 가수분해되지 않고 실질적으로 안정한 물질로 형성되는 것이 바람직하다. 따라서, 프로브 셀 액티브 영역(120)은 PE-TEOS막, HDP 산화막 또는 P-SiH4 산화막, 열산화막 등의 실리콘 산화막, 하프늄 실리케이트, 지르코늄 실리케이트 등의 실리케이트, 실리콘 질화막, 실리콘 산질화막, 하프늄 산질화막, 지르코늄 산질화막 등의 금속 산질화막, 티타늄 산화막, 탄탈륨 산화막, 알루미늄 산화막, 하프늄 산화막, 지르코늄 산화막, ITO 등의 금속 산화막, 폴리이미드, 폴리아민, 금, 은, 구리, 팔라듐 등의 금속, 또는 폴리스티렌, 폴리아크릴산, 폴리비닐 등의 폴리머로 형성될 수 있다. 바람직하기로는 프로브 셀 액티브 영역(120)은 반도체 제조 공정 또는 LCD 제조 공정에서 안정적으로 적용되고 있는 물질로 형성되는 것이 제조 공정 측면에서 적합할 수 있다.
도 2 내지 도 13에 도시되어 있는 본 발명의 실시예들에 따른 올리고머 프로브 어레이는 프로브 셀 액티브 영역(120, 220, 320)의 표면에는 올리고머 프로브(160) 또는 올리고머 프로브(160)의 인-시츄 합성을 위한 모노머와 커플링할 수 있는 작용기(150)(이하 올리고머 프로브(160)와 커플링할 수 있는 작용기로 약하여 부른다)를 포함하는 반면 프로브 셀 분리 영역(130)의 표면은 작용기(150)를 포함하지 않는다.
작용기(150)란 유기 합성 공정의 시발점(starting point)으로 사용될 수 있는 기를 지칭한다. 즉 미리 합성된(synthetic) 올리고머 프로브(160) 또는 인-시츄 합성을 위한 모노머, 예컨대 뉴클레오사이드, 뉴클레오타이드, 아미노산, 펩티드 등의 모노머가 커플링될 수 있는 기, 예컨대 공유 또는 비공유 결합할 수 있는 기를 지칭하며 커플링될 수 있는 한 특정한 제한이 없다. 이하에서는 작용기(140)로는 하이드록실기, 알데히드기, 카르복실기, 아미노기, 아미드기, 티올기, 할로기 또는 술포네이트기 등을 예로 들 수 있다. 따라서, 올리고머 프로브(160)가 프로브 셀 액티브 영역(120, 220, 320)에만 커플링되고 프로브 셀 액티브 영역(120, 220, 320)을 둘러싸는 프로브 셀 분리 영역(130)에는 커플링되지 않는다. 따라서, 올리고머 프로브(160) 어레이를 이용한 분석시 잡음률을 증대시킬 수 있으므로 분석의 정확도를 높일 수 있다.
도 2 내지 도 13에서는 프로브 셀 액티브 영역(120, 220, 320)의 표면에 올리고머 프로브(160)와 커플링, 예컨대 공유 결합할 수 있는 작용기(150)가 링커(140)와 함께 제공된 것으로 예시되어 있다.
그러나, 프로브 셀 액티브 영역(120, 220, 320)을 구성하는 물질 자체에 작용기(150)를 포함하는 경우에는 링커(140)가 생략될 수도 있다. 또, 프로브 셀 액티브 영역(120, 220, 320)을 구성하는 물질 자체가 작용기(150)를 포함하지 않는 경우라 할지라도 표면 처리에 의해 프로브 셀 액티브 영역(120, 220, 320)의 표면에 작용기(150)가 직접 제공될 수도 있다. 표면 처리의 예로는 오존처리(ozonolysis), 산 처리, 염기 처리 등 다양할 수 있다. 즉, 링커(140)의 형성은 선택적(optional)일 수 있다.
링커(140)를 사용할 경우에는 올리고머 프로브 어레이의 프로브가 타겟 샘플과 자유롭게 상호작용, 예컨대 혼성화가 일어나도록 할 수 있는 장점이 있다. 따라서, 링커(140)는 프로브와 타겟 샘플간의 자유로운 상호작용이 가능하도록 하기에 충분한 길이를 갖는 것이 바람직하다. 따라서, 링커 분자의 길이는 6 내지 50atoms일 수 있으나, 이에 제한되는 것은 아니다. 또, 링커는 2개 이상의 링커를 연결하여 사용할 수도 있다.
링커(140)는 프로브 셀 액티브 영역(120, 220, 320)과 커플링할 수 있는 커플링기와 올리고머 프로브의 인-시츄 포토리소그래피 합성시 모노머와 커플링할 수 있는 작용기(150)를 포함하는 물질로 형성될 수 있다. 작용기는 보호기에 의해 보호되어 있을 수 있다. 또, 올리고머 프로브(160)의 인-시츄 합성 전 프로브 셀 액티브 영역(120, 220, 320)에 제공되어 있는 링커(140)에는 저장 목적을 위한 보호기가 부착되어 있을 수 있다. 보호기는 부착되어 있는 위치가 화학 반응에 참여하는 것을 차단하는 기를 지칭하며, 탈보호는 보호기가 부착 위치로부터 분리되어 상기 위치가 화학 반응에 참여할 수 있도록 하는 것을 지칭한다. 예를 들면 링커(140)에 결합되어 있는 작용기(150)에 산분해(acid labile)성 또는 광분해(photo labile)성 보호기가 부착되어 있어서 작용기(150)를 보호하고 있다가 인-시츄 포토리소그래피 합성을 위한 모노머의 커플링 또는 합성 올리고머 프로브(160)의 커플링 전에 제거되어 작용기(150)를 노출시킬 수 있다.
프로브 셀 액티브 영역(120, 220, 320)이 실리콘 산화막, 실리케이트 또는 실리콘산질화막으로 이루어진 경우 링커(140)의 커플링기는 프로브 셀 액티브 영역(120, 220, 320) 표면의 Si(OH)기와 반응하여 실록산(Si-O) 결합을 생성할 수 있는 실리콘기를 포함할 수 있다. 예를 들면 -Si(OMe)3, -SiMe(OMe)2, -SiMeCl2, -SiMe(OEt)2, -SiCl3, -Si(OEt)3일 수 있다. 작용기(150)를 포함하며 실록산 결합을 생성할 수 있는 실리콘기를 포함하는 물질로는 N-(3-(트리에톡시실릴)-프로필)-4-하이드록시부티르아미드(N-(3-(triethoxysilyl)-propyl)-4-hydroxybutyramide), N,N-비스(하이드록시에틸)아미노프로필-트리에톡시실란(N,N-bis(hydroxyethyl) aminopropyl-triethoxysilane), 아세톡시프로필-트리에톡시실란(acetoxypropyl-triethoxysilane), 3-글리시독시 프로필트리메톡시실란(3-Glycidoxy propyltrimethoxysilane), 국제 공개 특허 WO 00/21967호에 개신된 실리콘 화합물 등을 예로 들수 있으며, 상기 공개 특허의 내용은 본 명세서에 충분히 개시된 것처럼 원용되어 통합된다.
프로브 셀 액티브 영역(120, 220, 320)이 금속산화막으로 이루어진 경우 링커(140)의 커플링기는 금속 알콕사이드(metal alkoxide) 또는 금속 카르복시산염기(metal carboxylate)기를 포함할 수 있다.
프로브 셀 액티브 영역(120, 220, 320)이 실리콘 질화막, 실리콘산질화막, 금속산질화막, 폴리이미드 또는 폴리아민 등으로 이루어진 경우 링커(140)의 커플링기는 무수물(anhydride), 염산(acid chloride), 알킬 할로겐화물(alkyl halides) 또는 염화 탄산염(chlorocarbonates) 기를 포함할 수 있다.
프로브 셀 액티브 영역(120, 220, 320)이 금속으로 이루어진 경우 링커(140)의 커플링기는 황화물(sulfides), 셀레늄화물(selenides), 비소화물(arsenides), 텔루르화물(tellurides), 안티몬화물(antimonides)기를 포함할 수 있다.
프로브 셀 액티브 영역(120, 220, 320)이 폴리머로 이루어진 경우 링커(140)의 커플링기는 아크릴기(acrylic), 스티릴기(styryl), 비닐기(vinyl)기를 포함할 수 있다.
프로브 셀 액티브 영역(120, 220, 320)은 3차원 표면을 가짐으로써 동일 설계 규칙이 적용되는 프로브 셀 어레이에 비해 올리고머 프로브(160)가 커플링될 수 있는 면적을 증대시킬 수 있다. 따라서, 동일 설계 규칙이 적용되는 프로브 셀 어레이에 비해 각 프로브 셀 액티브 영역(120, 220, 320)에 커플링되는 올리고머 프로브(160)의 숫자를 증가시킬 수 있다. 이로써 설계 규칙이 감소하더라도 원하는 검출 강도를 확보할 수 있다.
본 명세서에서 3차원 표면이란 프로브 셀 액티브 영역(120, 220, 320) 내에 형성된 하나 이상의 홈(G) 등에 의해 프로브 셀 액티브 영역(120, 220, 320)의 표면이 3차원 구조를 나타내는 것을 지칭한다. 따라서, 3차원 표면을 나타낼 수 있는 구조라면 홈(G)에 한정되는 것은 아님은 물론이다.
프로브 셀 분리 영역(130)은 표면이 올리고머 프로브(160)와 커플링되는 작용기(150)를 포함하지 않는 영역이다. 구체적으로, 본 발명의 몇몇 실시예들에서, 프로브 셀 분리 영역(130)은 노출된 실리콘 기판 표면 또는 노출된 투명 기판 표면(도 2, 도 6 및 도 10)일 수 있다. 본 발명의 몇몇 다른 실시예들에서, 프로브 셀 분리 영역(130)은 기판(100) 전면에 형성되고 프로브 셀 액티브 영역(120)에 의해 노출된 올리고머 프로브(160) 커플링 블록킹막(도 3의 132) 또는 프로브 셀 액티브 영역(220, 320)사이에 노출된 기판(100) 영역 상에 형성된 커플링 블록킹막(도 7 및 도 11의 132)일 수 있다. 커플링 블록킹막(132)은 플루오르 실란막과 같이 불소기를 포함하는 불화물일 수 있다. 또, 커플링 블록킹막(132)은 실리사이드막, 폴리실리콘막 또는 Si, SiGe 등의 에피택셜막일 수 있다.
또, 본 발명의 몇몇 또 다른 실시예들에서, 프로브 셀 분리 영역(130)은 올리고머 프로브(160) 커플링 블록킹 특성을 가지며 프로브 셀 액티브 영역(120, 220, 320) 사이를 충진하는 올리고머 프로브(160) 커플링 블록킹 충진재(filler)(도 4, 8, 및 12의 134)일 수 있다. 커플링 블록킹 충진재 또한 불소기를 포함하는 불화물, 폴리실리콘막 등일 수 있다.
또, 본 발명의 몇몇 다른 실시예들에서, 프로브 셀 분리 영역(130)은 프로브 셀 액티브 영역(120, 220, 320) 사이를 충진하는 충진재(filler)(도 5, 9 및 13의 136)와 그 상면의 커플링 블록막(도 5, 9 및 13의 138)일 수 있다. 이 경우 충진재(도 5, 9 및 13의 136)는 반드시 올리고머 프로브(160) 커플링 블록킹 특성을 가지는 물질로 형성될 필요는 없다.
이하 도 14 내지 도 29를 참조하여 본 발명의 실시예들에 따른 올리고머 프로브 어레이의 제조 방법에 대하여 설명한다.
도 14 내지 도 18은 도 2에 예시되어 있는 본 발명의 일 실시예에 따른 올리고머 프로브 어레이의 제조 방법을 설명하기 위한 공정 중간 단계 구조물들의 단면도들이다.
도 14를 참조하면, 먼저 기판(100) 상에 프로브 셀 액티브 영역 형성용 막(120a)을 형성한다. 프로브 셀 액티브 영역 형성용 막(120a)은 PE-TEOS막, HDP 산화막 또는 P-SiH4 산화막, 열산화막 등의 실리콘 산화막, 하프늄 실리케이트, 지르코늄 실리케이트 등의 실리케이트, 실리콘 질화막, Z늄산질화막 등의 금속 산질화막, 티타늄 산화막, 탄탈륨 산화막, 알루미늄 산화막, 하프늄 산화막, 지르코늄 산화막, ITO 등의 금속 산화막, 폴리이미드, 폴리아민, 금, 은, 구리, 팔라듐 등의 금속, 또는 폴리스티렌, 폴리아크릴산, 폴리비닐 등의 폴리머로 형성할 수 있다. 바람직하기로는 반도체 제조 공정 또는 LCD 제조 공정에서 안정적으로 적용되고 있는 증착 방법, 예컨대, CVD(Chemical Vapor Deposition), SACVD(Sub-Atmospheric CVD), LPCVD(Low Pressure CVD), PECVD(Plasma Enhanced CVD), 스퍼터링(Sputtering), 스핀 코팅(Spin Coating) 등의 방법을 적용할 수 있으며 기판(100) 상에 안정적으로 형성할 수 있는 물질을 사용한다. 프로브 셀 액티브 영역 형성용 막(120a) 상에 포토레지스트막(PRa)을 형성한 후, 도 1a 또는 도 1b의 레이아웃에 도시되어 있는 액티브 패턴(1)에 따라 제조된 마스크(400)를 사용하는 투영(projection) 노광기에서 포토레지스트막(PRa)을 노광한다. 마스크(400)로는 투명 기판(410) 상에 프로브 셀 액티브 영역을 정의하는 차광 패턴(420)이 형성되어 바둑판 형태의 노광 영역을 가지는 마스크가 예시되어 있으나 차광 패턴(420)의 형태는 사용하는 포토레지스트막(PRa)의 종류에 따라 변화될 수 있음은 물론이다.
도 15를 참고하면, 노광된 포토레지스트막(PRa)을 현상하여 포토레지스트 패턴(PR)을 형성한 후, 이를 식각마스크로 사용하여 프로브 셀 액티브 영역 형성용 막(120a)을 식각하여 소정 패턴(120b)을 형성한다.
도 16을 참고하면, 포토레지스트 패턴(PR)을 제거한 후, 다시 포토레지스트막(PRb)을 도포하고, 도 1a 및 도 1b의 레이아웃에 도시되어 있는 홈 패턴(2)에 따라 제조된 마스크(500)를 사용하는 투영 노광기에서 포토레지스트막(PRb)을 노광한다.
도 17을 참고하면, 노광된 포토레지스트막(PRb)을 현상하여 홈 패턴을 정의하는 포토레지스트 패턴(PR)을 형성한 후, 이를 식각마스크로 사용하여 식각 공정을 진행하여 내부에 형성된 홈(G)에 의해 3차원 표면을 구비하는 프로브 셀 액티브 영역(120)를 완성한다.
도면에는 예시되어 있지 않으나, 작용기(150)를 구비하는 링커(140)를 형성하는 공정을 프로브 셀 액티브 영역(120)이 실리콘 산화막으로 이루어진 경우를 예로 들어 설명한다. 실리콘 산화막으로 이루어진 프로브 셀 액티브 영역(120)의 표면에는 올리고머 프로브와 커플링이 가능한 SiOH기가 노출되어 있다. 프로브 셀 액티브 영역(120) 자체가 가지고 있는 작용기인 SiOH기보다 올리고머 프로브와의 커플링 반응성이 큰 작용기를 도입할 필요성이 있는 경우 프로브 셀 액티브 영역(120)에만 커플링되고 기판(100) 표면과는 커플링되지 않는 제1 링커를 프로브 셀 액티브 영역(120)의 표면에 형성한다. 예를 들면 SiOH기보다 올리고머 프로브와 커플링 반응성이 큰 COH기를 가지는 제1 링커를 형성할 수 있다.
계속해서, 광분해성 보호기가 결합되어 있는 제2 링커를 링커막 표면의 COH기에 커플링시킨다. 제2 링커는 타겟 샘플과의 자유로운 상호작용이 가능하도록 하기에 충분한 길이를 제공할 수 있는 물질로 형성하는 것이 바람직하다. 제2 링커로는 광분해성 보호기가 결합되어 포스포아미디트(phosphoramidite)가 사용될 수 있다. 광분해성 보호기는 o-니트로벤질 유도체 또는 벤질설포닐과 같은 니트로 방향쪽 화합물을 포함하는 다양한 포지티브 광 분해성기 중에서 선택할 수 있다. 바람직하기로는 광분해성 보호기(144)로는 6-니트로베라트릴록시카보닐(NVOC), 2-니트로 벤질록시카보닐(NBOC), α,α-메틸-디메톡시벤질록시카보닐(DDZ) 등이 사용될 수 있다.
이어서, 표면에 노출되어 있으며 제2 링커와 결합하지 않은 다수의 작용기인 SiOH 및 COH기 등을 비활성 캡핑시켜 올리고머 프로브(160)의 노이즈로 작용하지 않도록 한다. 비활성 캡핑은 SiOH 및 COH기를 아세틸화시킬 수 있는 캡핑기(도 2의 155 참고)를 사용하여 수행할 수 있다. 그 결과 올리고머 프로브(160)와 커플링 가능한 작용기가 광분해성 보호기에 의해 보호되어 있으며 제1 링커와 제2 링커로 이루어진 링커(도 2의 140 참고)가 완성된다.
계속해서, 올리고머 프로브(160)의 인-시츄 합성을 위하여 원하는 프로브 셀 액티브 영역(120)을 노출시키는 마스크를 사용하여 제2 링커 말단의 광분해성 보호기를 탈보호시킨다. 그 결과 작용기(도 2의 150참고)가 노출된다.
이어서, 노출된 작용기(150)에 원하는 올리고머 프로브(도 2의 160 참고)를 커플링시킬 수 있다. 인-시츄 포토리소그래피에 의해 올리고뉴클레오타이드 프로브를 합성할 경우에는 노출된 작용기(150)에 광분해성 보호기가 결합된 뉴클레오타이드 포스포아미디트 모노머를 커플링시키고(coupling), 커플링에 참여하지 않은 작용기를 비활성 캡핑하고(capping), 포스포아미디트와 5'-히드록시기 사이의 결합에 의해 생성된 포스파이트 트리에스터(phosphite triester) 구조를 포스페이트(phosphate) 구조로 변환시키기 위해 산화(oxidation)시킨다. 이와 같이, 원하는 프로브 셀 액티브 영역(120)을 탈보호하고(deprotection), 원하는 서열의 모노머를 커플링시키고(coupling), 커플링에 참여하지 않은 작용기를 비활성 캡핑하고(capping), 포스페이트 구조로 변환시키기 위한 산화(oxidation) 공정을 순차적으로 반복 진행하여 원하는 서열의 올리고뉴클레오타이드 프로브(160)를 각 프로브 셀 액티브 영역(120) 별로 합성할 수 있다.
도 18 및 도 19는 도 2에 예시되어 있는 본 발명의 일 실시예에 따른 올리고머 프로브 어레이의 다른 제조 방법을 설명하기 위한 공정 중간 단계 구조물들의 단면도들이다.
도 18을 참조하면, 먼저 기판(100) 상에 프로브 셀 액티브 영역 형성용 막(120a)과 포토레지스트막(PRa)을 차례대로 형성한다. 이어서, 도 1a 또는 도 1b의 레이아웃에 따라 투명 기판(610) 상에 프로브 셀 액티브 영역 패턴(1)과 홈 패턴(2)이 동시에 반영된 반투과 패턴(620)이 형성된 반투과 마스크(600)를 사용하여 포토레지스트막(PRa)을 노광한다.
도 19를 참고하면, 노광된 포토레지스트막(PRa)을 현상하여 3차원 표면을 가지는 포토레지스트 패턴(PR)을 형성한다.
이후, 도면에는 도시되어 있지 않으나, 3차원 표면을 가지는 포토레지스트 패턴(PR)을 식각마스크로 사용하여 프로브 셀 액티브 영역 형성용 막(120a)를 식각하여 홈(G)에 의해 제공된 3차원 표면을 가지는 프로브 셀 액티브 영역(도 2의 120 참고)을 형성한다.
도 20 내지 및 도 23은 도 3에 예시되어 있는 본 발명의 다른 실시예에 따른 올리고머 프로브 어레이의 제조 방법을 설명하기 위한 공정 중간 단계 구조물들의 단면도들이다.
도 20을 참고하면, 기판(100) 상에 커플링 블록킹막(132)과 프로브 셀 액티브 영역 형성용 막(120a)과 포토레지스트막(PRa)을 차례대로 형성한다. 커플링 블록킹막(132)은 플루오르실란막과 같이 불소기를 포함하는 불화물, 실리사이드막, 폴리실리콘막 또는 Si, SiGe 등의 에피택셜막일 수 있다.
이어서, 도 1a 또는 도 1b의 레이아웃에 도시되어 있는 액티브 패턴(1)에 따라 제조된 마스크(400)를 사용하는 투영(projection) 노광기에서 포토레지스트막(PRa)을 노광한다. 마스크(400)로는 투명 기판(410) 상에 프로브 셀 액티브 영역을 정의하는 차광 패턴(420)이 형성되어 바둑판 형태의 노광 영역을 가지는 마스크가 예시되어 있으나 차광 패턴(420)의 형태는 사용하는 포토레지스트막(PRa)의 종류에 따라 변화될 수 있음은 물론이다.
도 21을 참고하면, 노광된 포토레지스트막(PRa)을 현상하여 포토레지스트 패턴(PR)을 형성한 후, 이를 식각마스크로 사용하여 프로브 셀 액티브 영역 형성용 막(120a)을 식각하여 소정 패턴(120b)을 형성하고, 소정 패턴(120b) 사이의 노출된 영역에는 커플링 블록킹막(132)이 노출되어 프로브 셀 분리 영역(도 3의 130 참고)을 정의하도록 한다.
도 22를 참고하면, 기판 전면에 다시 포토레지스트막(PRb)을 형성한 후, 도 1a 및 도 1b의 레이아웃에 도시되어 있는 홈 패턴(2)에 따라 제조된 마스크(500)를 사용하는 투영 노광기에서 포토레지스트막(PRb)을 노광한다.
도 23을 참고하면, 노광된 포토레지스트막(PRb)을 현상하여 홈 패턴을 정의하는 포토레지스트 패턴(PR)을 형성한다.
도면에는 도시되어 있지 않으나, 이후 포토레지스트 패턴(PR)을 식각마스크로 사용하여 소정 패턴(120b)의 표면을 일부 식각하여 내부에 형성된 홈(G)에 의해 3차원 표면을 구비하는 프로브 셀 액티브 영역(도 3의 120참고)을 완성한다.
도 24는 도 4에 예시되어 있는 본 발명의 다른 실시예에 따른 올리고머 프로브 어레이의 제조 방법을 설명하기 위한 공정 중간 단계 구조물의 단면도이다.
도 24를 참고하면, 도 14 및 도 15를 참조하여 설명한 바와 같이 소정 패턴(120b)를 형성한 후, 소정 패턴(120b) 사이를 매립하는 충진막을 형성한다. 충진막은 올리고머 커플링의 블록킹 특성을 가지며, 갭필 특성이 좋은 막, 예컨대 플루오르 실란(fluorosilane), 폴리실리콘 등으로 형성할 수 있다.
이어서, 충진막을 화학기계적폴리싱 또는 에치백 등으로 평탄화하여 소정 패턴(120b)의 표면이 노출되도록 하고 이들 사이를 충진하는 올리고머 프로브(160) 커플링 블록킹 충진재(filler)(134)를 완성한다.
계속해서, 도 16 및 도 17을 참고하여 설명한 공정과 실질적으로 동일한 공정을 수행하여 홈 패턴을 정의하는 포토레지스트 패턴(PR)을 형성한다. 이어서, 도면에는 도시되어 있지 않으나 포토레지스트 패턴(PR)을 식각마스크로 사용하여 소정 패턴(120b)을 식각하여 내부에 형성된 홈(G)에 의해 3차원 표면을 구비하는 프로브 셀 액티브 영역(도 4의 120 참고)을 완성한다.
도 25는 도 5에 예시되어 있는 본 발명의 또 다른 실시예에 따른 올리고머 프로브 어레이의 제조 방법을 설명하기 위한 공정 중간 단계 구조물의 단면도이다.
도 25를 참고하면, 도 24을 참고하여 설명한 공정과 실질적으로 동일한 공정을 수행하여 3차원 표면을 구비하는 프로브 셀 액티브 영역(120)과 액티브(120) 사이를 매립하는 충진재(136)를 형성한다. 이어서, 기판(100) 전면에 커플링 블록킹막(138a)을 형성하고, 프로브 셀 액티브 영역(120) 상면에 형성되어 있는 커플링 블록킹막(138a)을 선택적으로 제거하여 충진재(136)와 그 상면의 커플링 블록킹막(138)을 완성한다. 앞에서도 설명한 바와 같이, 상면에 커플링 블록킹막(138)이 형성되므로 충진재(136)는 반드시 올리고머 프로브 커플링 블록킹 특성을 가지는 물질로 형성될 필요는 없으며 갭 필 특성이 좋은 물질이면 충분하다.
충진재(136)를 폴리실리콘막 또는 Si, SiGe 등의 에피택셜막으로 형성한 후, Co, Ni, Ti 등의 금속막으로 커플링 블록킹막(138a)을 형성한 후 실리사이드화 공정을 거친후 미반응 금속막을 제거함으로써 충진재(136) 상면에만 커플링 블록킹막(138)이 잔류하도록 할 수 있다.
도 26 및 도 27은 도 6에 예시되어 있는 본 발명의 또 다른 실시예에 따른 올리고머 프로브 어레이의 제조 방법을 설명하기 위한 공정 중간 단계 구조물들의 단면도들이다.
도 26을 참고하면, 기판(100) 상에 패드 산화막 패턴(210)과 산화방지용 질화막 패턴(215)으로 이루어진 산화방지 패턴(216)을 형성한다. 이어서, 산화 공정을 실시하여 산화방지 패턴(216)에 의해 노출된 기판(100)을 산화하여 LOCOS(LOCal Oxidation of Silicon)산화막(220a)을 형성한다.
도 27을 참고하면, 도 16 및 도 17을 참고하여 설명한 공정과 실질적으로 동일한 공정을 수행하여 홈 패턴을 정의하는 포토레지스트 패턴(PR)을 형성한다.
이어서, 도면에는 도시되어 있지 않으나 포토레지스트 패턴(PR)을 식각마스크로 사용하여 LOCOS 산화막(220a)를 식각하여 내부에 형성된 홈(G)에 의해 3차원 표면을 구비하는 프로브 셀 액티브 영역(도 6의 220 참고)을 완성한다.
도면에는 도시되어 있지 않으나 패드 산화막 패턴(210)을 올리고머 커플링 블록킹 특성을 가지는 패턴(132)으로 형성할 경우, LOCOS 산화막(220a) 형성후, 산화방지용 질화막 패턴(215)만을 제거함으로써 올리고머 커플링 블록킹막(도 7의 132)으로 이루어진 셀 분리 영역(도 7의 130)을 간단한 공정으로 형성할 수 있다.
또, LOCOS 산화막(220a) 형성 후, 도 25에 도시되어 있는 공정과 실질적으로 동일한 공정을 적용하여, 액티브(220) 사이를 매립하는 충진막을 형성한 후, 화학기계적폴리싱 또는 에치백 등으로 평탄화하여 LOCOS 산화막(220a)의 표면이 노출되도록 하고 LOCOS 산화막(220a) 사이를 충진하는 올리고머 프로브(160) 커플링 블록킹 충진재(filler)(도 8의 134 참고)를 완성할 수 있다. 이어서, 도 16 및 도 17을 참고하여 설명한 공정과 실질적으로 동일한 공정을 수행하여 홈 패턴을 정의하는 포토레지스트 패턴(PR)을 형성하고, 포토레지스트 패턴(PR)을 식각마스크로 사용하여 LOCOS 산화막(220a)을 식각하여 내부에 형성된 홈(G)에 의해 3차원 표면을 구비하는 프로브 셀 액티브 영역(도 8의 220 참고)을 완성한다.
마찬가지로, LOCOS 산화막 (220a) 형성 후, 도 25를 참고하여 설명한 공정과 실질적으로 동일한 공정을 적용하여 프로브 셀 액티브 영역(220) 사이를 매립하는 충진재(136) 및 그 상면의 커플링 블록킹막(138)을 형성한다.
도 28 및 도 29는 도 10에 예시되어 있는 본 발명의 다른 실시예에 따른 올 리고머 프로브 어레이의 제조 방법을 설명하기 위한 공정 중간 단계 구조물의 단면도들이다.
도 28을 참고하면, 도 1a 또는 도 1b의 레이아웃에 도시되어 있는 액티브 패턴(1)에 대응하는 트렌치(T)를 정의하는 패드산화막(310)과 하드마스크(315)로 이루어진 트렌치 형성 마스크(316)을 형성한 후, 기판(100)을 식각하여 트렌치(T)를 형성한다.
도 29를 참고하면, 트렌치(T)를 앞에서 언급한 프로브 셀 액티브 영역(320) 형성용 물질로 매립한 후 화학기계적 폴리싱 또는 에치백 등으로 평탄화한 후, 트렌치 매립부(320a)를 형성한다.
이어서, 도 16 및 도 17을 참고하여 설명한 공정과 실질적으로 동일한 공정을 수행하여 홈 패턴을 정의하는 포토레지스트 패턴(PR)을 형성하고, 포토레지스트 패턴(PR)을 식각마스크로 사용하여 트렌치 매립부(320a)를 식각하여 내부에 형성된 홈(G)에 의해 3차원 표면을 구비하는 프로브 셀 액티브 영역(도 10의 320 참고)을 완성한다.
도면에는 도시되어 있지 않으나 패드 산화막(310) 대신 올리고머 프로브 커플링 블록킹막(132)을 형성할 경우, 트렌치 매립부(320a) 형성 후, 하드마스크(315)만을 제거함으로써 올리고머 커플링 블록킹막(도 11의 132 참고)으로 이루어진 셀 분리 영역(도 11의 130 참고)을 간단한 공정으로 형성할 수 있다.
또, 트렌치 형성 마스크(316)를 올리고머 프로브 커플링 블록킹 특성을 가지는 물질로 형성하고, 트렌치를 매립하는 물질의 평탄화 종료점을 트렌치 형성 마스크(316)의 상면으로 할 경우에는 트렌치형 프로브 셀 액티브 영역(320) 사이를 충진하는 올리고머 프로브(160) 커플링 블록킹 충진재(filler)(도 12의 134 참고)를 간단한 공정으로 완성할 수 있다.
마찬가지로, 트렌치 매립부(320a) 형성 후, 도 25를 참고하여 설명한 공정과 실질적으로 동일한 공정을 적용하여 트렌치형 프로브 셀 액티브 영역(320) 사이를 매립하는 충진재(136) 및 그 상면의 커플링 블록킹막(138)을 형성할 수도 있다.
본 발명에 관한 보다 상세한 내용은 다음의 구체적인 실험예들을 통하여 설명하며, 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 설명을 생략한다.
<실험예 1: 올리고머 프로브 셀 액티브 영역의 제조>
실리콘 기판 상에 CVD 방법을 사용하여 PE-TEOS막을 500nm 두께로 형성하였다. 상기 기판위에 포토레지스트막 3.0㎛를 스핀 코팅법에 의해 형성한 후, 100℃에서 60초간 베이크하였다. 1.0㎛ 피치의 바둑판 형태의(checkerboard type) 마스크를 사용하여 365nm 파장의 투영 노광 장비에서 포토레지스트막을 노광한 후, 2.38% 테트라메틸암모늄 하이드록사이드(TetraMethylAmmonium Hydroxide) 수용액으로 현상하여 바둑판 형태의 가로 세로 교차되는 직선 영역을 노출시키는 포토레지스트 패턴을 형성하였다. 포토레지스트 패턴을 식각 마스크로 사용하여 PE-TEOS막을 식각하여 PE-TEOS막 패턴을 형성하였다.
이어서, 기판 전면에 포토레지스트막 0.7 ㎛를 스핀 코팅법에 의해 형성한 후, 100℃에서 60초간 베이크하였다. 계속해서, 1.0㎛ 피치의 바둑판 형태의 그리드마다 300㎚ 피치의 3×3 바둑판 형태의 오픈 영역을 갖는 마스크를 사용하여 248nm 파장의 투영 노광 장비에서 포토레지스트막을 노광한 후, 2.38% 테트라메틸암모늄 하이드록사이드(TetraMethylAmmonium Hydroxide) 수용액으로 현상한 다음, 이를 식각마스크로 사용하여 하부 PE-TEOS막을 300㎚ 두께로 식각하여 3차원 표면을 구비하며 PE-TEOS 패턴으로 이루어진 올리고머 프로브 셀 액티브 영역을 완성하였다.
이어서, 올리고머 프로브 셀 액티브 영역 상에 비스(하이드록에틸)아미노프로필 트리에톡시실란을 코팅한 후, NNPOC-테트라에틸렌글리콜(tetraethyleneglycol)과 테트라아졸(tetrazole)의 1:1 아세토니트릴(acetonitrile) 용액을 처리하여 광분해성기로 보호된 포스포아미디트를 커플링하고, 아세틸 캡핑하여 보호된 링커 구조를 완성하였다.
<실험예 2: 올리고머 프로브 셀 액티브 영역의 제조>
실리콘 기판 전면에 CVD 방법을 사용하여 3,-(1,1-디하이드로퍼플루오르옥틸옥시)프로필트리에톡시실란을 스핀코팅하고, 형성된 플루오르실란 막 상에 PE-TEOS막을 500nm 두께로 형성하였다. 상기 기판위에 포토레지스트막 3.0㎛를 스핀 코팅법에 의해 형성한 후, 100℃에서 60초간 베이크하였다. 1.0㎛ 피치의 바둑판 형태의(checkerboard type) 마스크를 사용하여 365nm 파장의 투영 노광 장비에서 포토레지스트막을 노광한 후, 2.38% 테트라메틸암모늄 하이드록사이드(TetraMethylAmmonium Hydroxide) 수용액으로 현상하여 바둑판 형태의 가로 세로 교차되는 직선 영역을 노출시키는 포토레지스트 패턴을 형성하였다. 포토레지스트 패턴을 식각 마스크로 사용하여 PE-TEOS막을 식각하여 하부의 플로우르실란막을 노출시키는 PE-TEOS막 패턴을 형성하였다.
이어서, 기판 전면에 포토레지스트막 0.7 ㎛ 를 스핀 코팅법에 의해 형성한 후, 100℃에서 60초간 베이크하였다. 계속해서, 1.0㎛ 피치의 바둑판 형태의 그리드마다 300㎚ 피치의 3×3 바둑판 형태의 오픈 영역을 갖는 마스크를 사용하여 248nm 파장의 투영 노광 장비에서 포토레지스트막을 노광한 후, 2.38% TMAH 수용액으로 현상한 다음, 이를 식각마스크로 사용하여 하부 PE-TEOS 패턴을 300㎚ 두께로 식각하여 3차원 표면을 구비하며 PE-TEOS 패턴으로 이루어진 올리고머 프로브 셀 액티브 영역을 완성하였다. 계속하여 올리고머 프로브 셀 액티브 영역 상에 비스(하이드록에틸)아미노프로필 트리에톡시실란을 코팅한 후, NNPOC-테트라에틸렌글리콜과 테트라아졸의 1:1 아세토니트릴(acetonitrile) 용액을 처리하여 광분해성기로 보호된 포스포아미디트를 커플링하고, 아세틸 캡핑하여 보호된 링커 구조를 완성하였다.
<실험예 3: 올리고머 프로브 셀 액티브 영역의 제조>
실리콘 기판 상에 CVD 방법을 사용하여 PE-TEOS막을 500nm 두께로 형성하였다. 상기 기판위에 포토레지스트막 3.0㎛를 스핀 코팅법에 의해 형성한 후, 100℃에서 60초간 베이크하였다. 1.0㎛ 피치의 바둑판 형태의 마스크를 사용하여 365nm 파장의 투영 노광 장비로 포토레지스트막을 노광한 후, 2.38% 테트라메틸암모늄 하이드록사이드(TetraMethylAmmonium Hydroxid) 수용액으로 현상하여 바둑판 형태의 가로 세로 교차되는 직선 영역을 노출시키는 포토레지스트 패턴을 형성하였다. 포토레지스트 패턴을 식각 마스크로 사용하여 PE-TEOS막을 식각하여 PE-TEOS막 패턴을 형성하였다. CVD 방법을 사용하여 폴리실리콘을 기판 전면에 형성한 후 CMP를 진행하여 올리고머 프로브 커플링 블록킹 특성을 가지며 PE-TEOS막 패턴 사이를 충진하는 충진재를 형성하였다. 이어서, 기판 전면에 포토레지스트막 0.7 ㎛ 를 스핀 코팅법에 의해 형성한 후, 100℃에서 60초간 베이크하였다. 계속해서, 1.0㎛ 피치의 바둑판 형태의 그리드마다 300㎚ 피치의 3×3 바둑판 형태의 오픈 영역을 갖는 마스크를 사용하여 248nm 파장의 투영 노광 장비에서 포토레지스트막을 노광한 후, 2.38% TMAH 수용액으로 현상한 다음, 이를 식각마스크로 사용하여 하부 PE-TEOS 패턴을 300㎚ 두께로 식각하였다.
게속해서, 3차원 표면을 구비하며 PE-TEOS 패턴으로 이루어진 올리고머 프로브 셀 액티브 영역 상에 비스(하이드록에틸)아미노프로필 트리에톡시실란을 코팅한 후, 아미디트 활성화된 NNPOC-테트라에틸렌글리콜과 테트라아졸의 1:1 아세토니트릴(acetonitrile) 용액을 처리하여 광분해성기로 보호된 포스포아미디트를 커플링하고, 아세틸 캡핑하여 보호된 링커 구조를 완성하였다.
<올리고뉴클레오타이드 프로브의 인-시츄 합성>
실험예 1 내지 3에서 제조된 올리고머 프로브 셀 액티브 영역과 셀 분리 영역을 포함하는 기판 상에 올리고뉴클레오타이드 프로브의 인-시츄 합성을 포토리소그래피에 방식으로 진행하였다.
원하는 프로브 셀 액티브 영역을 노출시키는 바이너리 마스크를 사용하고 365nm 파장의 투영 노광 장비로 1000mJ/㎠ 의 에너지로 1분간 노광하여 링커 구조의 말단을 탈보호하였다. 이어서, 아미디트 활성화된 뉴클레오타이드와 테트라아졸의 1:1 아세토니트릴 용액을 처리하여 보호된 뉴클레오타이 모노머를 커플링하고, 아세트산무수물(Ac20)/피리딘(py)/메틸이미다졸(methylimidazole)=1:1:1의 THF 용액 및 0.02M의 요오드 THF 용액을 처리하여 캡핑 및 산화 공정을 진행하였다.
이와 같은 탈보호, 커플링, 캡핑, 산화 공정을 반복하여 각 프로브 셀 액티브 영역별로 서로 다른 서열의 올리고뉴클레오타이드 프로브를 합성하였다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명의 실시예들에 따른 올리고머 프로브 어레이는 프로브 셀 액티브 영역의 표면에는 올리고머 프로브와 커플링할 수 있는 작용기를 포함하는 반면 프로브 셀 분리 영역의 표면은 작용기를 포함하지 않는다. 따라서, 올리고머 프로브가 프로브 셀 액티브 영역에만 커플링되고 프로브 셀 액티브 영역을 둘러싸는 프로브 셀 분리 영역에는 커플링되지 않는다. 따라서, 올리고머 프로브 어레이를 이용한 분석시 잡음률을 증대시킬 수 있으므로 분석의 정확도를 높일 수 있다.
또한, 프로브 셀 액티브 영역이 3차원 표면을 가짐으로써 동일 설계 규칙이 적용되는 프로브 셀 어레이에 비해 올리고머 프로브가 커플링될 수 있는 면적을 증대시킬 수 있다. 따라서, 동일 설계 규칙이 적용되는 프로브 셀 어레이에 비해 각 프로브 셀 액티브 영역에 커플링되는 올리고머 프로브의 숫자를 증가시킬 수 있다. 이로써 설계 규칙이 감소하더라도 원하는 검출 강도를 확보할 수 있다.

Claims (20)

  1. 기판;
    표면에 올리고머 프로브와 커플링되는 작용기를 포함하지 않는 프로브 셀 분리 영역;
    상기 프로브 셀 분리 영역에 의해 분리되며 상기 기판 상 또는 내에 형성된 다수의 프로브 셀 액티브 영역으로, 상기 각 프로브 셀 액티브 영역의 표면에는 하나 이상의 홈이 형성된 다수의 프로브 셀 액티브 영역; 및
    상기 각 프로브 셀 액티브 영역 별로 커플링되고 서로 다른 서열을 가지는 다수의 올리고머 프로브를 포함하는 올리고머 프로브 어레이.
  2. 제1 항에 있어서, 상기 프로브 셀 액티브 영역의 표면은 상기 올리고머 프로브와 커플링되는 작용기를 포함하되, 상기 작용기의 일부는 상기 올리고머 프로브와 커플링되고 나머지 작용기는 비활성 캡핑되어 있는 올리고머 프로브 어레이.
  3. 제2 항에 있어서, 상기 작용기는 하이드록실기, 알데히드기, 카르복실기, 아미노기, 아미드기, 티올기, 할로기 또는 술포네이트기인 올리고머 프로브 어레이.
  4. 제1 항에 있어서, 상기 프로브 셀 액티브 영역은 상기 기판 상에 형성된 막의 패턴, 상기 기판을 국부적으로 산화하여 형성한 LOCOS산화막 또는 기판내에 형성된 트렌치를 매립하는 트렌치형 액티브인 올리고머 프로브 어레이.
  5. 제4 항에 있어서, 상기 프로브 셀 분리 영역의 표면은 노출된 실리콘 기판 표면 또는 투명 유리 기판 표면인 올리고머 프로브 어레이.
  6. 제4 항에 있어서, 상기 프로브 셀 분리 영역의 표면은 상기 기판 상면에 형성된 올리고머 프로브 커플링 블록킹막 표면인 올리고머 프로브 어레이.
  7. 제4 항에 있어서, 상기 프로브 셀 분리 영역의 표면은 상기 프로브 셀 액티브 영역 사이를 매립하며 올리고머 프로브 커플링 블록킹 특성을 가지는 충진재 표면인 올리고머 프로브 어레이.
  8. 제4 항에 있어서, 상기 프로브 셀 분리 영역의 표면은 상기 프로브 셀 액티브 영역 사이를 매립하는 충진재 상면에 형성된 올리고머 프로브 커플링 블록킹막 표면인 올리고머 프로브 어레이.
  9. 제1 항에 있어서, 상기 올리고머 프로브는 링커를 개재하여 상기 프로브 셀 액티브 영역에 커플링된 올리고머 프로브 어레이.
  10. 삭제
  11. 기판을 제공하고,
    상기 기판 상 또는 상기 기판 내에 표면에 올리고머 프로브와 커플링되는 작용기를 포함하지 않는 프로브 셀 분리 영역에 의해 분리되는 다수의 프로브 셀 액티브 영역을 형성하되, 상기 각 프로브 셀 액티브 영역의 표면에는 하나 이상의 홈을 형성하고,
    상기 다수의 프로브 셀 액티브 영역 별로 서로 다른 서열의 올리고머 프로브를 커플링하는 것을 포함하는 올리고머 프로브 어레이의 제조 방법.
  12. 제11 항에 있어서, 상기 프로브 셀 액티브 영역을 형성하는 것은, 상기 프로브 셀 액티브 영역의 표면이 상기 올리고머 프로브와 커플링되는 작용기를 포함하되, 상기 작용기의 일부는 상기 올리고머 프로브와 커플링되고 나머지 작용기는 비활성 캡핑되도록 형성하는 올리고머 프로브 어레이의 제조 방법.
  13. 제12 항에 있어서, 상기 작용기는 하이드록실기, 알데히드기, 카르복실기, 아미노기, 아미드기, 티올기, 할로기 또는 술포네이트기인 올리고머 프로브 어레이의 제조 방법.
  14. 제11 항에 있어서, 상기 프로브 셀 액티브 영역을 형성하는 것은 상기 기판 상에 형성된 막을 패터닝하여 형성하거나, 상기 기판을 국부적으로 산화하여 형성한 LOCOS산화막으로 형성하거나, 기판내에 형성된 트렌치를 매립하는 트렌치형 액티브로 형성하는 것을 포함하는 올리고머 프로브 어레이의 제조 방법.
  15. 제14 항에 있어서, 상기 프로브 셀 분리 영역의 표면은 노출된 실리콘 기판 표면 또는 투명 유리 기판 표면인 올리고머 프로브 어레이의 제조 방법.
  16. 제14 항에 있어서, 상기 프로브 셀 분리 영역의 표면은 상기 기판 상면에 형성된 올리고머 프로브 커플링 블록킹막 표면인 올리고머 프로브 어레이의 제조 방법.
  17. 제14 항에 있어서, 상기 프로브 셀 분리 영역의 표면은 상기 프로브 셀 액티브 영역 사이를 매립하며 올리고머 프로브 커플링 블록킹 특성을 가지는 충진재 표면인 올리고머 프로브 어레이의 제조 방법.
  18. 제14 항에 있어서, 상기 프로브 셀 분리 영역의 표면은 상기 프로브 셀 액티브 영역 사이를 매립하는 충진재 상면에 형성된 올리고머 프로브 커플링 블록킹막 표면인 올리고머 프로브 어레이의 제조 방법.
  19. 제11 항에 있어서, 상기 커플링하는 것은 링커를 개재하여 상기 프로브 셀 액티브 영역에 상기 올리고머 프로브를 커플링하는 것인 올리고머 프로브 어레이의 제조 방법.
  20. 삭제
KR1020060039713A 2006-05-02 2006-05-02 향상된 잡음률과 검출 강도를 나타내는 올리고머 프로브어레이 및 그 제조 방법 KR100772893B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020060039713A KR100772893B1 (ko) 2006-05-02 2006-05-02 향상된 잡음률과 검출 강도를 나타내는 올리고머 프로브어레이 및 그 제조 방법
US11/686,492 US20080038712A1 (en) 2006-05-02 2007-03-15 Oligomer Probe Array with Improved Signal-to-Noise Ratio and Detection Sensitivity and Method of Manufacturing the Same
JP2007121188A JP2007298520A (ja) 2006-05-02 2007-05-01 向上した信号対雑音比と検出強度を示すオリゴマープローブアレイ及びその製造方法
CNA2007101009982A CN101067606A (zh) 2006-05-02 2007-05-08 具有提高的信噪比和探测灵敏度的低聚物探针阵列及其制造方法
US13/424,890 US20120208723A1 (en) 2006-05-02 2012-03-20 Oligomer probe array with improved signal-to-noise ratio and detection sensitivity and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060039713A KR100772893B1 (ko) 2006-05-02 2006-05-02 향상된 잡음률과 검출 강도를 나타내는 올리고머 프로브어레이 및 그 제조 방법

Publications (1)

Publication Number Publication Date
KR100772893B1 true KR100772893B1 (ko) 2007-11-05

Family

ID=38768100

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060039713A KR100772893B1 (ko) 2006-05-02 2006-05-02 향상된 잡음률과 검출 강도를 나타내는 올리고머 프로브어레이 및 그 제조 방법

Country Status (4)

Country Link
US (2) US20080038712A1 (ko)
JP (1) JP2007298520A (ko)
KR (1) KR100772893B1 (ko)
CN (1) CN101067606A (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060246576A1 (en) * 2005-04-06 2006-11-02 Affymetrix, Inc. Fluidic system and method for processing biological microarrays in personal instrumentation
KR100772893B1 (ko) * 2006-05-02 2007-11-05 삼성전자주식회사 향상된 잡음률과 검출 강도를 나타내는 올리고머 프로브어레이 및 그 제조 방법
KR20080015339A (ko) * 2006-08-14 2008-02-19 삼성전자주식회사 가장자리 측벽이 비활성화된 프로브 셀 액티브를 포함하는올리고머 프로브 어레이 및 그 제조 방법
JP4869210B2 (ja) 2006-11-22 2012-02-08 日本特殊陶業株式会社 スパークプラグの製造装置及び製造方法
EP2535086B1 (en) 2011-06-15 2014-08-20 Imris Inc. Integration of MRI into radiation therapy treatment
EP2774537A1 (en) 2013-03-08 2014-09-10 Imris Inc. Patient alignment in MRI guided radiation therapy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545531A (en) * 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays
JPH1199000A (ja) 1997-08-01 1999-04-13 Canon Inc 反応場アレー、反応場アレーの製造方法、反応場アレーを用いた反応方法及び反応場アレーを用いた試料溶液中の物質の定量方法
KR20050048899A (ko) * 2003-11-20 2005-05-25 삼성전자주식회사 2차원적 격자가 형성되는 있는 기판을 포함하는 마이크로어레이 및 그를 이용하는 표적 분자의 검출방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605662A (en) * 1993-11-01 1997-02-25 Nanogen, Inc. Active programmable electronic devices for molecular biological analysis and diagnostics
US5965719A (en) * 1996-11-15 1999-10-12 Sunsorb Biotech, Inc. Combinatorial synthesis of carbohydrate libraries
US6881538B1 (en) * 2000-03-05 2005-04-19 3M Innovative Properties Company Array comprising diamond-like glass film
AU2002360361A1 (en) * 2001-11-09 2003-06-10 Biomicroarrays, Inc. High surface area substrates for microarrays and methods to make same
US20040185473A1 (en) * 2002-12-17 2004-09-23 Affymetrix, Inc. Releasable polymer arrays
KR100772893B1 (ko) * 2006-05-02 2007-11-05 삼성전자주식회사 향상된 잡음률과 검출 강도를 나타내는 올리고머 프로브어레이 및 그 제조 방법
KR100801079B1 (ko) * 2006-07-31 2008-02-05 삼성전자주식회사 올리고머 프로브 어레이 및 이의 제조 방법
KR100755672B1 (ko) * 2006-08-24 2007-09-05 삼성전자주식회사 기판 내에 형성된 프로브 셀 액티브를 포함하는 올리고머프로브 어레이 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545531A (en) * 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays
JPH1199000A (ja) 1997-08-01 1999-04-13 Canon Inc 反応場アレー、反応場アレーの製造方法、反応場アレーを用いた反応方法及び反応場アレーを用いた試料溶液中の物質の定量方法
KR20050048899A (ko) * 2003-11-20 2005-05-25 삼성전자주식회사 2차원적 격자가 형성되는 있는 기판을 포함하는 마이크로어레이 및 그를 이용하는 표적 분자의 검출방법

Also Published As

Publication number Publication date
US20120208723A1 (en) 2012-08-16
JP2007298520A (ja) 2007-11-15
US20080038712A1 (en) 2008-02-14
CN101067606A (zh) 2007-11-07

Similar Documents

Publication Publication Date Title
KR100891096B1 (ko) 올리고머 프로브 어레이 및 이의 제조 방법
KR100772893B1 (ko) 향상된 잡음률과 검출 강도를 나타내는 올리고머 프로브어레이 및 그 제조 방법
KR100745990B1 (ko) 마이크로 어레이의 제조 방법
KR100772894B1 (ko) 다기능 올리고머 프로브 어레이 및 그 제조 방법
US7994097B2 (en) Microarray, substrate for microarray and methods of fabricating the same
KR100772897B1 (ko) 향상된 잡음률을 나타내는 올리고머 프로브 어레이 및 그제조 방법
KR100801079B1 (ko) 올리고머 프로브 어레이 및 이의 제조 방법
KR100791335B1 (ko) 마이크로 어레이 및 이의 제조 방법
US20090186777A1 (en) Biochip having increased probe density
US20090111168A1 (en) Biochip and method of fabrication
KR100755672B1 (ko) 기판 내에 형성된 프로브 셀 액티브를 포함하는 올리고머프로브 어레이 및 그 제조 방법
KR100891097B1 (ko) 바이오칩 및 그 제조 방법
US20080113876A1 (en) Probe array and associated methods
JP4837689B2 (ja) 基板構造とオリゴマープローブアレイおよびその製造方法
KR101387633B1 (ko) 양면 고정형 프로브 어레이, 바이오칩 및 이들의 제조 방법
KR20110111720A (ko) 프로브 어레이의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120914

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130924

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140922

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee