KR100760333B1 - The method for synthesizing organic-inorganic hybrid materials - Google Patents

The method for synthesizing organic-inorganic hybrid materials Download PDF

Info

Publication number
KR100760333B1
KR100760333B1 KR1020060064836A KR20060064836A KR100760333B1 KR 100760333 B1 KR100760333 B1 KR 100760333B1 KR 1020060064836 A KR1020060064836 A KR 1020060064836A KR 20060064836 A KR20060064836 A KR 20060064836A KR 100760333 B1 KR100760333 B1 KR 100760333B1
Authority
KR
South Korea
Prior art keywords
organic
inorganic hybrid
inorganic
sol
catalyst
Prior art date
Application number
KR1020060064836A
Other languages
Korean (ko)
Inventor
권용구
한재국
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020060064836A priority Critical patent/KR100760333B1/en
Application granted granted Critical
Publication of KR100760333B1 publication Critical patent/KR100760333B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

A method for preparing an organic-inorganic hybrid material is provided to produce an organic-inorganic material for an optical waveguide device, which has good thermal and chemical safety and lower optical loss. A method for preparing an organic-inorganic hybrid material by the reaction of an inorganic non-metallic oxide and diol, comprises the steps of: sol-gel reacting (3-acryloxypropyl)trimethoxysilane, titanium methacrylate triisopropoxide and 4,4-(hexafluoroisopropylidene)diphenol in the presence of a catalyst for sol-gel reaction to prepare a precursor for an organic-inorganic hybrid; and adding a UV initiator to the precursor, spin-coating the admixture and irradiating the admixture with UV rays to be cross-linked. Preferably, the titanium methacrylate triisopropoxide is employed in an amount of 5mol%-20mol% based on the amount of 3-(acryloxypropyl)trimethoxysilane, and the catalyst is barium hydroxide monohydrate.

Description

유기-무기 하이브리드 재료의 제조방법{The method for Synthesizing organic-inorganic hybrid materials}The method for Synthesizing organic-inorganic hybrid materials}

도 1은 APTMS에 대한 TMTP의 몰비율(%)에 대한 무기-유기 하이브리드 재료의 굴절률의 변화를 그래프로 나타낸 것이다.1 graphically illustrates the change in refractive index of an inorganic-organic hybrid material versus the molar ratio (%) of TMTP to APTMS.

도 2는 본 발명에 따라 제조된 유기-무기 하이브리드 재료를 photo patterning하는 과정을 나타낸 것이다.Figure 2 shows the process of photo patterning the organic-inorganic hybrid material prepared according to the present invention.

본 발명은 낮은 가격으로 대량 생산이 가능한 광도파로 소자용 유기-무기 하이브리드 재료의 제조방법에 관한 것으로, 새로운 광 특성을 지닌 광도파로 소자용 유기-무기 하이브리드 재료를 합성하는 방법에 관한 것이다. The present invention relates to a method for producing an organic-inorganic hybrid material for an optical waveguide device which can be mass produced at a low price, and to a method for synthesizing an organic-inorganic hybrid material for an optical waveguide device having new optical properties.

현재 광도파로 소자는 통상적으로 반도체 제작 기술이나 MEMS(Micro Electro-Mechanical System)기술을 활용하여 제작되며, 평면 기판상에 광도파로 소자를 제작하는 경우에는 평면 도파로 기술이 이용되고 있다. 또한 이와 같이 제작된 광도파로 소자의 기능을 더욱 집적화하려는 연구가 계속 진행되고 있다.Currently, an optical waveguide device is typically manufactured using a semiconductor fabrication technology or a MEMS (Micro Electro-Mechanical System) technology. In the case of manufacturing an optical waveguide device on a flat substrate, a planar waveguide technology is used. In addition, the research to further integrate the function of the optical waveguide device manufactured as described above is ongoing.

일반적으로 광도파로 소자의 제조방법을 살펴보면 다음과 같다. 우선, 기판 위에 하부 클래드층을 형성한 다음, 이 하부 클래드층 상부에 코어층을 형성한다. 이어서, 상기 코어층 상부에 포토레지스트층을 형성한 다음, 이를 노광 및 현상하여 포토레지스트 패턴을 형성한다. 얻어진 포토레지스트 패턴을 이용하여 코어층을 식각하여 패터닝한다. 그 후, 패터닝된 코어층 상부에 상부 클래드층을 형성함으로써 광도파로가 완성된다.In general, the manufacturing method of the optical waveguide device is as follows. First, a lower clad layer is formed on a substrate, and then a core layer is formed on the lower clad layer. Subsequently, a photoresist layer is formed on the core layer, and the photoresist pattern is exposed and developed to form a photoresist pattern. The core layer is etched and patterned using the obtained photoresist pattern. Thereafter, the optical waveguide is completed by forming an upper cladding layer over the patterned core layer.

상기 클래드층이나 코어층은 통상적으로 스핀 코팅법에 의해 형성되며, 그 형성재료로는 굴절률이 상이한 실리카나 또는 폴리머가 이용되고 있다. 그러나 코어와 클래드층 형성재료로서 실리카가 이용되는 경우 코어와의 굴절율의 차이는 최대 75%까지 얻어진다. 따라서 이러한 재료를 이용하는 경우에는 광도파로의 규모가 제한되어 초소형 광통신용 수동 소자를 제작하기 어렵다는 문제점이 있다. The cladding layer and the core layer are usually formed by spin coating, and silica or polymers having different refractive indices are used as the forming material. However, when silica is used as the core and cladding layer forming material, the difference in refractive index with the core is obtained up to 75%. Therefore, in the case of using such a material, the size of the optical waveguide is limited, making it difficult to manufacture a passive device for micro optical communication.

본 발명과 관련된 종래기술로서 미국특허 제6,054,253호에서는 졸-겔 방법을 이용한 광 감응성 유기-무기 혼성 재료를 이용하여 광도파로를 제작하는데, 광을 조사한 부분과 조사하지 않은 부분의 용매에 대한 용해도의 차이를 이용해서 용매를 이용하여 필요 없는 부분을 식각하여 광도파로를 형성한다. 그리고 미국 특허 제6,144,795에서는 무기-유기 혼성재료를 몰드에 사용하여 광도파로를 형성하는 방법을 개시하고 있다. US Pat. No. 6,054,253 discloses an optical waveguide using a photosensitive organic-inorganic hybrid material using the sol-gel method, which is related to the present invention. Using the difference, the solvent is used to etch away the unnecessary portions to form the optical waveguide. And US Pat. No. 6,144,795 discloses a method of forming an optical waveguide using an inorganic-organic hybrid material in a mold.

본 발명의 목적은 새로운 광도파로 소자용 유기-무기 하이브리드 재료의 제조방법에 관한 것으로서 상세하게는 다이올과 무기비금속산화물의 졸-겔 반응을 이용하여 열적·화학적 안전성이 좋으며 광 손실이 낮은 새로운 광도파로 소자용 유 기-무기 하이브리드 재료의 제조방법을 제공하는 것이다.An object of the present invention relates to a method of manufacturing an organic-inorganic hybrid material for a new optical waveguide device, and more specifically, a new optical fiber having good thermal and chemical safety and low light loss using a sol-gel reaction of a diol and an inorganic nonmetal oxide. It is to provide a method for producing an organic-inorganic hybrid material for waveguide devices.

본 발명의 적절한 실시 형태에 따르면, 무기 비금속산화물과 다이올을 반응시켜 유기-무기 하이드리드를 제조하는 방법에 있어서, (3-아크릴록시프로필)트리메톡시실란, 티타늄 메타크릴레이트 트리이소프로폭시드 및 4,4-헥사플루오로이소프로필리딘 디페놀을 졸-겔 반응촉매 존재 하에 졸-겔 반응시켜 유기-무기 하이브리드의 전구체를 제조하는 단계; 유기-무기 하이브리드의 전구체에 UV 개시제를 첨가하여 스핀 코팅하고 그리고 UV를 조사하여 가교시키는 단계를 포함한다. 본 발명의 다른 적절한 실시 형태에 따르면, 티타늄 메타크릴레이트 트리이소프로폭시드의 양은 (3-아크릴록시프로필)트리메톡시실란 양에 대하여 5mol% 내지 20mol%이고, 촉매는 바륨 하이드록사이드 모노하이드레이트이다.According to a preferred embodiment of the present invention, in the process for preparing an organic-inorganic hydride by reacting an inorganic nonmetal oxide with a diol, (3-acryloxypropyl) trimethoxysilane, titanium methacrylate triisopropoxide Sol-gel reaction of a seed and 4,4-hexafluoroisopropylidine diphenol in the presence of a sol-gel reaction catalyst to prepare a precursor of an organic-inorganic hybrid; Spin coating by adding a UV initiator to the precursor of the organic-inorganic hybrid and crosslinking by irradiating UV. According to another suitable embodiment of the present invention, the amount of titanium methacrylate triisopropoxide is 5 mol% to 20 mol% with respect to the amount of (3-acryloxypropyl) trimethoxysilane, and the catalyst is barium hydroxide monohydrate. to be.

이하 본 발명을 더 상세히 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명에 따른 광도파로 소자용 유기-무기 하이브리드 재료는 다이올과 무기비금속산화물을 출발물질로 하여 촉매 존재 하에서 물을 사용하지 않는 졸-겔 반응을 이용하여 합성된다. The organic-inorganic hybrid material for an optical waveguide device according to the present invention is synthesized by using a sol-gel reaction without using water in the presence of a catalyst using a diol and an inorganic nonmetal oxide.

무기 비금속 산화물은 3-(트리메톡시실릴)프로필메타크릴레이트(3-[trimethoxysilyl] propylmethacrylate) 또는 (3-아크릴록시프로필) 트리메톡시실란 ([3-acryloxypropyl]trimethoxysilane) 을 포함할 수 있으며, 바람직하게는 3- 아크릴록시프로필 트리메톡시실란(이하 “APTMS"라 한다.)과 티타늄 메타크릴레이트 트리이소프로폭시드(Titanium methacrylate triisopropoxide, 이하 “TMTP"라 한다.)를 함께 사용할 수 있다. 이때 TMTP의 양은 APTMS의 양에 대하여 5~30mol%이며, 바람직하게는 5~20mol%를 사용할 수 있다.The inorganic nonmetal oxide may include 3- (trimethoxysilyl) propylmethacrylate or (3-acryloxypropyl) trimethoxysilane, Preferably, 3-acryloxypropyl trimethoxysilane (hereinafter referred to as "APTMS") and titanium methacrylate triisopropoxide (hereinafter referred to as "TMTP") may be used together. At this time, the amount of TMTP is 5 to 30 mol% with respect to the amount of APTMS, preferably 5 to 20 mol% can be used.

다이올은 비스페놀 에이(bisphenol A) 또는 4,4-(헥사플루오로이소프로필리딘) 디페놀(4,4-[hexafluoroisopropylidene]diphenol, 이하 “CF3-BPA”라 한다.)을 포함할 수 있으며, 바람직하게는 4,4-(헥사플루오로이소프로필리딘)디페놀을 사용할 수 있다. The diol may include bisphenol A or 4,4- (hexafluoroisopropylidene) diphenol (hereinafter referred to as “CF 3 -BPA”). , Preferably 4,4- (hexafluoroisopropylidine) diphenol can be used.

졸-겔 반응시 사용되는 촉매는 스트론튬하이드록사이드 모노하이드레이트(strontium hydroxide monohydrate), 칼슘하이드록사이드 모노하이드레이트(calcium hydroxide monohydrate) 또는 바륨하이드록사이드 모노하이드레이트(barium hydroxide monohydrate, Ba(OH)2·H2O)를 포함할 수 있으며, 바람직하게는 바륨하이드록사이드 모노하이드레이트를 사용할 수 있다.The catalyst used in the sol-gel reaction is strontium hydroxide monohydrate, calcium hydroxide monohydrate or barium hydroxide monohydrate (Ba (OH) 2. H 2 O), preferably barium hydroxide monohydrate can be used.

졸-겔 반응은 실리콘이나 금속 알콕사이드 단위 전구체(monomer precursor)로부터 다양한 종류의 무기질 망상 조직(network)을 만드는 것으로 알려져 있다. 일반적으로 졸-겔 반응 과정은 가수분해(hydrolysis), 물축합, 알코올축합의 과정 으로 나타나며 많은 양의 물을 필요로 한다. 그러나 본 발명에 따른 졸-겔 반응은 가수분해가 필요하지 않은 다이올을 반응물로 사용함으로 물을 사용하지 않는 졸-겔법을 이용하였다.Sol-gel reactions are known to produce various types of inorganic networks from silicon or metal alkoxide unit precursors. In general, the sol-gel reaction process is represented by hydrolysis, water condensation, and alcohol condensation, and requires a large amount of water. However, the sol-gel reaction according to the present invention uses a sol-gel method without using water by using a diol which does not require hydrolysis as a reactant.

반응식 1은 본 발명에 따른 졸-겔 반응에 의한 유기-무기 하이브리드 재료의 합성 반응식이다. Scheme 1 is a synthetic scheme of organic-inorganic hybrid materials by sol-gel reaction according to the present invention.

[반응식 1]Scheme 1

Figure 112006049472309-pat00001
Figure 112006049472309-pat00001

졸-겔 반응 후 생성물에 대해 진공 가열(vacuum heating)과 필터링(filtering)을 하여 반응 후 부산물인 알코올과 촉매를 제거한다.After the sol-gel reaction, vacuum heating and filtering of the product are performed to remove by-product alcohol and catalyst after the reaction.

생성된 투명한 용액 물질에 UV 개시제를 넣고 스핀코팅 한 후 UV를 조사하여 가교시킨다. UV 개시제는 2-벤질-2-(디메틸아미노)-4‘-모르폴리노부티로페논(2-benzyl-2-(dimethylamino)-4'-morpholinobutyrophenone) 또는 2,2-디메톡시-2-페닐 -아세토페논(2,2-Dimethoxy-2-phenyl-acetophenone)을 사용할 수 있으며, 바람직하게는 2,2-디메톡시-2-페닐-아세토페논을 사용할 수 있다. 이때 UV개시제의 양은 비금속 무기산화물의 0.5 내지 3mol/%이고 바람직하게는 1mol%이다. UV initiator is added to the resulting transparent solution material and spin-coated, followed by crosslinking by irradiation with UV. UV initiators are 2-benzyl-2- (dimethylamino) -4'-morpholinobutyrophenone (2-benzyl-2- (dimethylamino) -4'-morpholinobutyrophenone) or 2,2-dimethoxy-2-phenyl Acetophenone (2,2-Dimethoxy-2-phenyl-acetophenone) may be used, and preferably 2,2-dimethoxy-2-phenyl-acetophenone may be used. In this case, the amount of UV initiator is 0.5 to 3 mol /% of the nonmetal inorganic oxide, and preferably 1 mol%.

스핀 코팅 후 UV를 조사하여 가교시킨 생성물을 이용하여 전체적으로 일정한 두께와 고른 표면을 갖는 필름을 제조할 수 있다. 반응식 2는 UV 조사에 의한 가교 반응식이다.After spin coating, a product having a uniform thickness and a uniform surface as a whole may be manufactured using a crosslinked product by irradiating UV. Scheme 2 is a crosslinking scheme by UV irradiation.

[반응식 2]Scheme 2

Figure 112006049472309-pat00002
Figure 112006049472309-pat00002

가교된 유기-무기 하이브리드 재료를 이용하여 광도파로 소자를 만드는 방법은 다음과 같다.A method of making an optical waveguide device using a crosslinked organic-inorganic hybrid material is as follows.

졸 상태의 생성물을 원하는 기판 위에 떨어뜨린 다음, 원하는 모양을 가진 PDMS 몰드로 덮은 후 UV를 조사하여 경화시키므로 다양한 패턴을 가진 광학 필름을 제조할 수 있다.The product in a sol state is dropped on a desired substrate, and then covered with a PDMS mold having a desired shape and then cured by irradiating with UV, thereby producing an optical film having various patterns.

본 발명에 따른 포토 패터닝(photo patterning) 과정을 도 2에 나타내었다. The photo patterning process according to the present invention is shown in FIG. 2.

본 발명에 따른 유기-무기 하이브리드 재료의 굴절율은 프리즘 커플러를 이 용하여 측정하였다. 프리즘 커플러는 막(Film) 내부에서의 광도파 이론을 응용한 것으로 유전체나 고분자의 굴절률과 두께를 빠르고 정확하게 측정하는 장비이다. 본 발명에서는 실리콘 기판위에 가교시킨 각각의 코팅필름을 1550nm의 파장에서 측정하였다The refractive index of the organic-inorganic hybrid material according to the present invention was measured using a prism coupler. The prism coupler is an application of the optical waveguide theory inside a film, and is a device for quickly and accurately measuring the refractive index and thickness of a dielectric or a polymer. In the present invention, each coating film crosslinked on a silicon substrate was measured at a wavelength of 1550nm.

아래에서 실시예를 들어 본 발명을 더욱 상세히 설명하나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail with reference to Examples, but embodiments according to the present invention can be modified in many different forms, and the scope of the present invention is construed as being limited to the embodiments described below. Can not be done.

실시예Example

실시예 1Example 1

APTMS 3g과 졸-겔 반응의 촉매인 바륨하이드록사이드 모노하이드레이트 0.024g을 반응기에 넣고 80℃에서 10분간 먼저 교반한다. 교반 후 상분리와 자체 축합 반응을 막기 위해 TMTP 0.19g과 CF3-BPA 1.35g을 2시간 동안 연속하여 넣어 준 후 80℃에서 3시간 더 반응시켰다. 반응 후 부산물인 알코올과 촉매는 vacuum heating과 filtering을 하여 제거하였다. 3 g of APTMS and 0.024 g of barium hydroxide monohydrate, which is a catalyst for sol-gel reaction, are added to a reactor and stirred first at 80 ° C. for 10 minutes. After stirring, to prevent phase separation and self-condensation, TMTP 0.19g and CF 3 -BPA 1.35g were continuously added for 2 hours, followed by further reaction at 80 ° C for 3 hours. After the reaction, by-product alcohol and catalyst were removed by vacuum heating and filtering.

최종 용액에 UV 개시제로서 2,2-디메톡시-2-페닐-아세토페논을 0.0328g 넣고 스핀 코팅기를 이용하여 실리콘 기판 위에 코팅한 후 상온에서 UV를 15분간 조사하여 광가교시킨 후 150℃에서 3시간 동안 열처리하였다. 가교된 물질의 굴절율을 프 리즘 커플러를 이용하여 측정하였다. 그 결과를 도 1 및 표 1에 나타내었다. 0.0328 g of 2,2-dimethoxy-2-phenyl-acetophenone as a UV initiator was added to the final solution, coated on a silicon substrate using a spin coater, and irradiated with UV at room temperature for 15 minutes to photocrosslink. Heat treatment for a time. The refractive index of the crosslinked material was measured using a prism coupler. The results are shown in Figure 1 and Table 1.

실시예 2Example 2

TMTP 0.38g 및 CF3-BPA 1.42g 사용한 것 외에는 실시예 1과 동일한 방법으로 실시하였다. 굴절율을 측정하여 도 1 및 표 1에 나타내었다. The same procedure as in Example 1 was carried out except that 0.38 g of TMTP and 1.42 g of CF 3 -BPA were used. The refractive index was measured and shown in FIG. 1 and Table 1.

실시예 3Example 3

TMTP 0.57g 및 CF3-BPA 1.48g 사용한 것 외에는 실시예 1과 동일한 방법으로 실시하였다. 굴절율을 측정하여 도 1 및 표 1에 나타내었다. The same procedure as in Example 1 was carried out except that 0.57 g of TMTP and 1.48 g of CF 3 -BPA were used. The refractive index was measured and shown in FIG. 1 and Table 1.

실시예4Example 4

TMTP 0.76g 및 CF3-BPA 1.55g 사용한 것 외에는 실시예 1과 동일한 방법으로 실시하였다. 굴절율을 측정하여 도 1 및 표 1에 나타내었다. The same procedure as in Example 1 was carried out except that 0.76 g of TMTP and 1.55 g of CF 3 -BPA were used. The refractive index was measured and shown in FIG. 1 and Table 1.

도 1에 따르면 APTMS에 대한 TMTP의 몰비가 증가하면 굴절율이 1.482에서 1.530까지 증가하는 것을 알 수 있다. 따라서 비금속 무기 산화물의 양을 상대적으로 조절하여 굴절율의 조절이 가능함을 알 수 있다. According to Figure 1 it can be seen that the refractive index increases from 1.482 to 1.530 as the molar ratio of TMTP to APTMS increases. Therefore, it can be seen that the refractive index can be controlled by relatively adjusting the amount of the nonmetal inorganic oxide.

[표 1]TABLE 1

실시예 1(FB3)Example 1 (FB3) 실시예 2(FB4)Example 2 (FB4) 실시예 3(FB5)Example 3 (FB5) 실시예 4(FB6)Example 4 (FB6) APTMS(g)APTMS (g) 33 33 33 33 TMTP(g)TMTP (g) 0.190.19 0.380.38 0.570.57 0.760.76 CF3-BPA(g)CF 3 -BPA (g) 1.351.35 1.421.42 1.481.48 1.551.55 TMTP/APTMS(mol%)TMTP / APTMS (mol%) 55 1010 1515 2020 촉매(g)Catalyst (g) 0.00240.0024 0.00240.0024 0.00240.0024 0.00240.0024 굴절율Refractive index 1.4821.482 1.4911.491 1.5131.513 1.5301.530

※mol%는 비교물질의 몰비를 %로 나타낸 것이다.※ mol% shows molar ratio of comparative substance in%.

본 발명은 구체적인 예에 대해서만 상세하게 설명되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능한 것은 이 분야에서 통상의 지식을 가진 자에게 명백한 것이고, 본 발명은 이러한 수정 및 변형 발명에 의하여 제한되지 않는다. Although the present invention has been described in detail only with respect to specific examples, it will be apparent to those skilled in the art that various changes and modifications can be made within the technical spirit of the present invention, and the present invention is directed to such modifications and variations. It is not limited.

본 발명에 따른 유기-무기 하이브리드 재료는 열적·화학적 안정성이 좋으며 비금속무기산화물의 상대적인 양을 변화시켜 굴절률을 자유로이 조절할 수 있으므로 광도파로 제작시 코어와 클래드 재료로 사용할 수 있다.The organic-inorganic hybrid material according to the present invention has good thermal and chemical stability and can freely control the refractive index by changing the relative amounts of nonmetal inorganic oxides, so that it can be used as a core and clad material when manufacturing an optical waveguide.

Claims (4)

무기 비금속 산화물 및 다이올을 반응시켜 유기-무기 하이브리드를 제조하는 방법에 있어서,In the method for producing an organic-inorganic hybrid by reacting an inorganic nonmetal oxide and a diol, (3-아크릴록시프로필)트리메톡시실란, 티타늄 메타크릴레이트 트리이소프로폭사이드 및 4,4-(헥사플루오로이소프로필리딘)디페놀을 졸-겔 반응 촉매 존재 하에 졸-겔 반응시켜 유기-무기 하이브리드의 전구체를 제조하는 단계;(3-acryloxypropyl) trimethoxysilane, titanium methacrylate triisopropoxide and 4,4- (hexafluoroisopropylidine) diphenol were subjected to sol-gel reaction in the presence of a sol-gel reaction catalyst to Preparing a precursor of the inorganic hybrid; 유기-무기 하이브리드의 전구체에 UV 개시제를 첨가하여 스핀 코팅하고 그리고 UV를 조사하여 가교시키는 단계를 포함하는 유기-무기 하이브리드의 제조 방법.A method of making an organic-inorganic hybrid, comprising spin coating by adding a UV initiator to a precursor of the organic-inorganic hybrid and crosslinking by irradiating UV. 제1항에 있어서, 티타늄 메타크릴레이트 트리이소프로폭사이드의 양은 (3-아크릴록시프로필)트리메톡시실란의 양에 대하여 5mol% 내지 20mol%인 것을 특징으로 하는 유기-무기 하이브리드의 제조방법.The method according to claim 1, wherein the amount of titanium methacrylate triisopropoxide is 5 mol% to 20 mol% with respect to the amount of (3-acryloxypropyl) trimethoxysilane. 제1항에 있어서, 상기 촉매는 바륨 하이드록사이드 모노하이드레이트인 것을 특징으로 하는 유기-무기 하이브리드의 제조방법.The method of claim 1, wherein the catalyst is barium hydroxide monohydrate. 삭제delete
KR1020060064836A 2006-07-11 2006-07-11 The method for synthesizing organic-inorganic hybrid materials KR100760333B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060064836A KR100760333B1 (en) 2006-07-11 2006-07-11 The method for synthesizing organic-inorganic hybrid materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060064836A KR100760333B1 (en) 2006-07-11 2006-07-11 The method for synthesizing organic-inorganic hybrid materials

Publications (1)

Publication Number Publication Date
KR100760333B1 true KR100760333B1 (en) 2007-10-04

Family

ID=39420371

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060064836A KR100760333B1 (en) 2006-07-11 2006-07-11 The method for synthesizing organic-inorganic hybrid materials

Country Status (1)

Country Link
KR (1) KR100760333B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054253A (en) 1997-10-10 2000-04-25 Mcgill University-The Royal Institute For The Advancement Of Learning Solvent-assisted lithographic process using photosensitive sol-gel derived glass for depositing ridge waveguides on silicon
US20050022697A1 (en) 2003-07-31 2005-02-03 Ramazan Benrashid High performance sol-gel spin-on glass materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054253A (en) 1997-10-10 2000-04-25 Mcgill University-The Royal Institute For The Advancement Of Learning Solvent-assisted lithographic process using photosensitive sol-gel derived glass for depositing ridge waveguides on silicon
US20050022697A1 (en) 2003-07-31 2005-02-03 Ramazan Benrashid High performance sol-gel spin-on glass materials

Similar Documents

Publication Publication Date Title
Innocenzi et al. New synthetic route to (3-glycidoxypropyl) trimethoxysilane-based hybrid organic− inorganic materials
US6832036B2 (en) Siloxane optical waveguides
US6593392B2 (en) Curable halogenated compositions
JP6408488B2 (en) Layer or three-dimensional molded article having two regions having different primary structure and / or secondary structure, method for producing molded article, and material for carrying out this method
US6800724B2 (en) Materials for optical applications
KR100705758B1 (en) Flexible Film Optical Waveguide Using Organic and Inorganic Hybrid Materials and Fabrication Method thereof
KR100553327B1 (en) Siloxane monomers containing trifluorovinylether group, sol-gel hybrid polymers prepared by using the siloxane monomers
JP5027148B2 (en) Silicate condensation product and optical waveguide device using the same
JP2004010849A (en) Curing composition for optical material
US7396873B2 (en) Organometallic polymer material and process for preparing the same
KR100763936B1 (en) The method for synthesizing organic-inorganic hybrid materials
JPWO2015060190A1 (en) Manufacturing method of optical waveguide
US6965006B2 (en) Metal alkoxide polymers
KR100763933B1 (en) The method for synthesizing organic-inorganic hybrid materials
US6908723B2 (en) Photo-patternable mono-phase fluorinated organometallic sol-gels for integrated optics and methods of fabrication
KR100760333B1 (en) The method for synthesizing organic-inorganic hybrid materials
CN100419461C (en) Optical element
WO2011125532A1 (en) Molded oxide and process for producing same
KR101285701B1 (en) Process for preparing UV-curing organic-inorganic hybrid compound
US20010047665A1 (en) Application of deuterium oxide in producing silicon containing and metal containing materials
WO2006075849A1 (en) Method of producing planar multimode optical waveguide using direct photopatterning
US20070253668A1 (en) Method of Producing Germanosilicate with a High Refractive Index Change
JPH06256523A (en) Polysiloxane containing transition metal element and optical wave guide produced by using the polymer
JP2005298796A (en) Organic metal polymer material and its preparation process
US20050069637A1 (en) Method for manufacturing planar optical waveguide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130527

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140612

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160602

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee