KR100763936B1 - Process for preparing organic-inorganic hybrid material - Google Patents
Process for preparing organic-inorganic hybrid material Download PDFInfo
- Publication number
- KR100763936B1 KR100763936B1 KR1020060064835A KR20060064835A KR100763936B1 KR 100763936 B1 KR100763936 B1 KR 100763936B1 KR 1020060064835 A KR1020060064835 A KR 1020060064835A KR 20060064835 A KR20060064835 A KR 20060064835A KR 100763936 B1 KR100763936 B1 KR 100763936B1
- Authority
- KR
- South Korea
- Prior art keywords
- organic
- inorganic hybrid
- sol
- hybrid material
- gel reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000463 material Substances 0.000 title abstract description 29
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- 150000002009 diols Chemical class 0.000 claims abstract description 13
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000003999 initiator Substances 0.000 claims abstract description 7
- 239000002243 precursor Substances 0.000 claims abstract description 7
- XKZQKPRCPNGNFR-UHFFFAOYSA-N 2-(3-hydroxyphenyl)phenol Chemical compound OC1=CC=CC(C=2C(=CC=CC=2)O)=C1 XKZQKPRCPNGNFR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000004132 cross linking Methods 0.000 claims abstract description 5
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- 238000004528 spin coating Methods 0.000 claims abstract description 5
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000007809 chemical reaction catalyst Substances 0.000 claims abstract description 4
- 230000003287 optical effect Effects 0.000 claims description 20
- AROOONRTAWQUQN-UHFFFAOYSA-N barium;hydrogen peroxide Chemical compound [Ba].OO AROOONRTAWQUQN-UHFFFAOYSA-N 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 11
- ZLDHYRXZZNDOKU-UHFFFAOYSA-N n,n-diethyl-3-trimethoxysilylpropan-1-amine Chemical compound CCN(CC)CCC[Si](OC)(OC)OC ZLDHYRXZZNDOKU-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- NJSVDVPGINTNGX-UHFFFAOYSA-N [dimethoxy(propyl)silyl]oxymethanamine Chemical compound CCC[Si](OC)(OC)OCN NJSVDVPGINTNGX-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 239000012792 core layer Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- BYCNMZYQCQZYLG-UHFFFAOYSA-N 2,2-dimethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1.C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 BYCNMZYQCQZYLG-UHFFFAOYSA-N 0.000 description 1
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- 150000004703 alkoxides Chemical group 0.000 description 1
- CQVAWTWGTHPABZ-UHFFFAOYSA-L calcium;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Ca+2] CQVAWTWGTHPABZ-UHFFFAOYSA-L 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000011243 crosslinked material Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910010276 inorganic hydride Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- WYIXXSYDQFHKFE-UHFFFAOYSA-L strontium;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Sr+2] WYIXXSYDQFHKFE-UHFFFAOYSA-L 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/14—Polysiloxanes containing silicon bound to oxygen-containing groups
- C08G77/18—Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/1326—Liquid crystal optical waveguides or liquid crystal cells specially adapted for gating or modulating between optical waveguides
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Nonlinear Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
도 1은 CF3-BPA의 몰비율(%)에 따른 무기-유기 하이브리드 재료의 굴절률의 변화를 그래프로 나타낸 것이다.1 is a graph showing the change of the refractive index of the inorganic-organic hybrid material with the molar ratio (%) of CF 3 -BPA.
도 2는 본 발명에 따라 제조된 유기-무기 하이브리드 재료를 photo patterning하는 과정을 나타낸 것이다.Figure 2 shows the process of photo patterning the organic-inorganic hybrid material prepared according to the present invention.
도 3a 및 도 3b는 본 발명에 따라 제조된 유기-무기 하이브리드 재료를 photo patterning한 이미지를 각각 주사전자현미경(SEM) 사진으로 나타낸 것이다.Figures 3a and 3b is a scanning electron microscope (SEM) photographs of the photo patterning images of the organic-inorganic hybrid material prepared according to the present invention, respectively.
도 4는 본 발명에 따른 유기-무기 하이브리드 재료의 열광학계수를 온도변화에 따라 나타낸 것이다.Figure 4 shows the thermo-optic coefficient of the organic-inorganic hybrid material according to the present invention according to the temperature change.
본 발명은 낮은 가격으로 대량 생산이 가능한 광도파로 소자용 유기-무기 하이브리드 재료의 제조방법에 관한 것으로, 새로운 광 특성을 지닌 광도파로 소자용 유기-무기 하이브리드 재료를 합성하는 방법에 관한 것이다. The present invention relates to a method for producing an organic-inorganic hybrid material for an optical waveguide device which can be mass produced at a low price, and to a method for synthesizing an organic-inorganic hybrid material for an optical waveguide device having new optical properties.
현재 광도파로 소자는 통상적으로 반도체 제작 기술이나 MEMS(Micro Electro-Mechanical System)기술을 활용하여 제작되며, 평면 기판상에 광도파로 소자를 제작하는 경우에는 평면 도파로 기술이 이용되고 있다. 또한 이와 같이 제작된 광도파로 소자의 기능을 더욱 집적화하려는 연구가 계속적으로 진행되고 있다.Currently, an optical waveguide device is typically manufactured using a semiconductor fabrication technology or a MEMS (Micro Electro-Mechanical System) technology. In the case of manufacturing an optical waveguide device on a flat substrate, a planar waveguide technology is used. In addition, researches for further integrating the functions of the optical waveguide device manufactured as described above have been continuously conducted.
일반적으로 광도파로 소자의 제조방법을 살펴보면 다음과 같다. 우선, 기판 위에 하부 클래드층을 형성한 다음, 이 하부 클래드층 상부에 코어층을 형성한다. 이어서, 상기 코어층 상부에 포토레지스트층을 형성한 다음, 이를 노광 및 현상하여 포토레지스트 패턴을 형성한다. 얻어진 포토레지스트 패턴을 이용하여 코어층을 식각하여 패터닝한다. 그 후, 패터닝된 코어층 상부에 상부 클래드층을 형성함으로써 광도파로가 완성된다.In general, the manufacturing method of the optical waveguide device is as follows. First, a lower clad layer is formed on a substrate, and then a core layer is formed on the lower clad layer. Subsequently, a photoresist layer is formed on the core layer, and the photoresist pattern is exposed and developed to form a photoresist pattern. The core layer is etched and patterned using the obtained photoresist pattern. Thereafter, the optical waveguide is completed by forming an upper cladding layer over the patterned core layer.
상기 클래드층이나 코어층은 통상적으로 스핀 코팅법에 의해 형성되며, 그 형성재료로는 굴절률이 상이한 실리카나 또는 폴리머가 이용되고 있다. 그러나 코어와 클래드층 형성재료로서 실리카가 이용되는 경우 코어와의 굴절율의 차이는 최대 75%까지 얻어진다. 따라서 이러한 재료를 이용하는 경우에는 광도파로의 규모가 제한되어 초소형 광통신용 수동 소자를 제작하기 어렵다는 문제점이 있다. The cladding layer and the core layer are usually formed by spin coating, and silica or polymers having different refractive indices are used as the forming material. However, when silica is used as the core and cladding layer forming material, the difference in refractive index with the core is obtained up to 75%. Therefore, in the case of using such a material, the size of the optical waveguide is limited, making it difficult to manufacture a passive device for micro optical communication.
본 발명과 관련된 종래기술로서 미국특허 제6,054,253호에서는 졸-겔 방법을 이용한 광 감응성 유기-무기 혼성 재료를 이용하여 광도파로를 제작하는데, 광을 조사한 부분과 조사하지 않은 부분의 용매에 대한 용해도의 차이를 이용해서 용매를 이용하여 필요 없는 부분을 식각하여 광도파로를 형성한다. 그리고 미국 특허 제6,144,795에서는 무기-유기 혼성재료를 몰드에 사용하여 광도파로를 형성하는 방 법을 개시하고 있다. US Pat. No. 6,054,253 discloses an optical waveguide using a photosensitive organic-inorganic hybrid material using the sol-gel method, which is related to the present invention. Using the difference, the solvent is used to etch away the unnecessary portions to form the optical waveguide. And US Pat. No. 6,144,795 discloses a method of forming an optical waveguide using an inorganic-organic hybrid material in a mold.
본 발명의 목적은 새로운 광도파로 소자용 유기-무기 하이브리드 재료의 제조방법에 관한 것으로서 상세하게는 다이올과 알콕시실란의 졸-겔 반응을 이용하여 열적·화학적 안전성이 좋으며 광 손실이 낮은 새로운 광도파로 소자용 유기-무기 하이브리드 재료의 제조방법을 제공하는 것이다.An object of the present invention relates to a method for manufacturing an organic-inorganic hybrid material for a new optical waveguide device, and more specifically, a new optical waveguide having good thermal and chemical safety and low light loss by using a sol-gel reaction of a diol and an alkoxysilane. It is to provide a method for producing an organic-inorganic hybrid material for a device.
본 발명의 적절한 실시 형태에 따르면, 알콕시실란 및 다이올을 반응시켜 유기-무기 하이드리드를 제조하는 방법에 있어서, (3-아크릴록시프로필)트리메톡시실란과 4,4-(헥사플루오로이소프로필리딘)디페놀을 졸-겔 반응 촉매 존재 하에 졸-겔 반응시켜 유기-무기 하이브리드의 전구체를 제조하는 단계; 유기-무기 하이브리드의 전구체에 UV 개시제를 첨가하여 스핀 코팅하고 그리고 UV를 조사하여 가교시키는 단계를 포함한다. 본 발명의 다른 적절한 실시 형태에 따르면, 4,4-(헥사플루오로이소프로필리딘)디페놀의 양은 (3-아크릴록시프로필)트리메톡시실란의 양에 대하여 30mol% 내지 60mol%이고, 졸-겔 반응 촉매는 바륨 하이드록시 모노하이드레이트이다.According to a preferred embodiment of the present invention, in the process for preparing an organic-inorganic hydride by reacting an alkoxysilane and a diol, (3-acryloxypropyl) trimethoxysilane and 4,4- (hexafluoroiso) Sol-gel reacting propylidine) diphenol in the presence of a sol-gel reaction catalyst to prepare a precursor of an organic-inorganic hybrid; Spin coating by adding a UV initiator to the precursor of the organic-inorganic hybrid and crosslinking by irradiating UV. According to another suitable embodiment of the present invention, the amount of 4,4- (hexafluoroisopropylidine) diphenol is 30 mol% to 60 mol% with respect to the amount of (3-acryloxypropyl) trimethoxysilane, The gel reaction catalyst is barium hydroxy monohydrate.
이하 본 발명을 더 상세히 설명한다. Hereinafter, the present invention will be described in more detail.
본 발명에 따른 광도파로 소자용 유기-무기 하이브리드 재료는 다이올과 알콕시실란(alkoxysilane)을 출발물질로 하여 촉매 존재 하에서 물을 사용하지 않는 졸-겔 반응을 이용하여 합성된다. The organic-inorganic hybrid material for an optical waveguide device according to the present invention is synthesized using a sol-gel reaction without using water in the presence of a catalyst using diol and alkoxysilane as starting materials.
알콕시실란은 3-(트리메톡시실릴)프로필메타크릴레이트(3-[trimethoxysilyl] propylmethacrylate) 또는 (3-아크릴록시프로필) 트리메톡시실란 ([3-acryloxypropyl]trimethoxysilane) 을 포함할 수 있으며, 바람직하게는 (3-아크릴록시프로필) 트리메톡시실란(이하 “APTMS"라 한다.)을 사용할 수 있다.The alkoxysilane may comprise 3- (trimethoxysilyl) propylmethacrylate or (3-acryloxypropyl) trimethoxysilane, which is preferred Preferably, (3-acryloxypropyl) trimethoxysilane (hereinafter referred to as “APTMS”) can be used.
다이올은 비스페놀 에이(bisphenol A) 또는 4,4-(헥사플루오로이소프로필리딘)디페놀(4,4-[hexafluoroisopropylidene]diphenol, 이하 “CF3-BPA”라 한다.)을 포함할 수 있으며, 바람직하게는 4,4-(헥사플루오로이소프로필리딘)디페놀을 사용할 수 있다. The diol may include bisphenol A or 4,4- (hexafluoroisopropylidene) diphenol (hereinafter referred to as “CF 3 -BPA”). , Preferably 4,4- (hexafluoroisopropylidine) diphenol can be used.
졸-겔 반응시 사용되는 촉매는 스트론튬하이드록사이드 모노하이드레이트(strontium hydroxide monohydrate), 칼슘하이드록사이드 모노하이드레이트(calcium hydroxide monohydrate) 또는 바륨하이드록사이드 모노하이드레이트(barium hydroxide monohydrate, Ba(OH)2·H2O)을 포함할 수 있으며, 바람직하게는 바륨하이드록사이드 모노하이드레이트를 사용할 수 있다.The catalyst used in the sol-gel reaction is strontium hydroxide monohydrate, calcium hydroxide monohydrate or barium hydroxide monohydrate (Ba (OH) 2. H 2 O), preferably barium hydroxide monohydrate can be used.
졸-겔 반응은 실리콘이나 금속 알콕사이드 단위 전구체(monomer precursor) 로부터 다양한 종류의 무기질 망상 조직(network)을 만드는 것으로 알려져 있다. 일반적으로 졸-겔 반응 과정은 가수분해(hydrolysis), 물축합, 알코올축합의 과정으로 나타나며 많은 양의 물을 필요로 한다. 그러나 본 발명에 따른 졸-겔 반응은 가수분해가 필요하지 않은 다이올을 반응물로 사용함으로 물을 사용하지 않는 졸-겔법을 이용하였다.Sol-gel reactions are known to form various types of inorganic networks from silicon or metal alkoxide unit precursors. In general, the sol-gel reaction process appears as a process of hydrolysis, water condensation, and alcohol condensation and requires a large amount of water. However, the sol-gel reaction according to the present invention uses a sol-gel method without using water by using a diol which does not require hydrolysis as a reactant.
반응식 1은 본 발명에 따른 졸-겔 반응에 의한 유기-무기 하이브리드 재료의 합성 반응식이다.
[반응식 1]
졸-겔 반응 후 생성물에 대해 진공 가열(vacuum heating)과 필터링(filtering)을 하여 반응 후 부산물인 알코올과 촉매를 제거한다.After the sol-gel reaction, vacuum heating and filtering of the product are performed to remove by-product alcohol and catalyst after the reaction.
생성된 투명한 용액 물질에 UV 개시제를 넣고 스핀코팅한 후 UV를 조사하여 가교시킨다. UV 개시제는 2-벤질-2-디메틸아미노-4‘-모르폴리노부티로페논(2-benzyl-2-(dimethylamino)-4'-morpholinobutyrophenone) 또는 2,2-디메톡시-2-페닐-아세토페논(2,2-Dimethoxy-2-phenyl-acetophenone)을 사용할 수 있으며, 바람직하게는 2,2-디메톡시-2-페닐-아세토페논을 포함할 수 있다. 이때 UV개시제의 양은 알콕시실란 물질의 0.5 내지 3mol/%이고 바람직하게는 1mol%이다. UV initiator is added to the resultant transparent solution material, spin-coated, and crosslinked by UV irradiation. UV initiators are 2-benzyl-2- (dimethylamino) -4'-morpholinobutyrophenone or 2,2-dimethoxy-2-phenyl-aceto Phenone (2,2-Dimethoxy-2-phenyl-acetophenone) may be used, and may preferably include 2,2-dimethoxy-2-phenyl-acetophenone. The amount of UV initiator is then 0.5 to 3 mol /% and preferably 1 mol% of the alkoxysilane material.
스핀 코팅 후 UV를 조사하여 가교시킨 생성물을 이용하여 전체적으로 일정한 두께와 고른 표면을 갖는 필름을 제조할 수 있다. 반응식 2는 UV 조사에 의한 가교 반응식이다.After spin coating, a product having a uniform thickness and a uniform surface as a whole may be manufactured using a crosslinked product by irradiating UV. Scheme 2 is a crosslinking scheme by UV irradiation.
[반응식 2]Scheme 2
가교된 유기-무기 하이브리드 재료를 이용하여 광도파로 소자를 만드는 방법은 다음과 같다.A method of making an optical waveguide device using a crosslinked organic-inorganic hybrid material is as follows.
졸 상태의 생성물을 원하는 기판 위에 떨어뜨린 다음, 원하는 모양을 가진 PDMS 몰드로 덮은 후 UV를 조사하여 경화시키므로 다양한 패턴을 가진 광학 필름을 제조할 수 있다.The product in a sol state is dropped on a desired substrate, and then covered with a PDMS mold having a desired shape, and then cured by irradiating with UV, thereby producing an optical film having various patterns.
본 발명에 따른 포토 패터닝(photo patterning) 과정을 도 2에 나타내었다. The photo patterning process according to the present invention is shown in FIG. 2.
또한 본 발명에 따른 유기-무기 하이브리드 재료는 다이올의 불소기의 양에 따라 굴절율이 변화하는데, 다이올의 양이 증가할수록 굴절율이 감소한다. 즉 다이올인 CF3-BPA의 양이 알콕시실란 즉 3-아크릴록시프로필 트리메톡시실란 양에 대하여 30mol%인 경우에는 굴절율이 1.488인데 반하여, 60mol%인 경우에는 1.484까지 감소하였다. 다이올의 양에 따른 굴절율의 변화를 도 1에 나타내었다. In addition, in the organic-inorganic hybrid material according to the present invention, the refractive index changes depending on the amount of the fluorine group of the diol, and the refractive index decreases as the amount of the diol increases. That is, when the amount of CF 3 -BPA, which is a diol, was 30 mol% based on the amount of alkoxysilane, that is, 3-acryloxypropyl trimethoxysilane, the refractive index was 1.488, whereas when the amount of 60 mol% was reduced to 1.484. The change in refractive index according to the amount of diol is shown in FIG. 1.
본 발명에 따른 유기-무기 하이브리드 물질의 굴절율 및 두께는 프리즘 커플러를 이용하여 측정하였다. 굴절율 및 두께는 유기-무기 하이브리드 물질을 실리콘 기판위에 코팅하여 가교시킨 필름을 1550nm의 파장에서 측정하였다. 프리즘 커플러는 막(Film) 내부에서의 광도파 이론을 응용한 것으로 유전체나 고분자의 굴절률과 두께를 빠르고 정확하게 측정하는 장비이다. The refractive index and thickness of the organic-inorganic hybrid material according to the present invention were measured using a prism coupler. Refractive index and thickness were measured at a wavelength of 1550 nm for a crosslinked film coated with an organic-inorganic hybrid material on a silicon substrate. The prism coupler is an application of the optical waveguide theory inside a film, and is a device for quickly and accurately measuring the refractive index and thickness of a dielectric or a polymer.
본 발명에 따른 유기-무기 하이브리드 재료의 열광학계수는 코팅필름의 온도에 따른 굴절율을 알아보는 것이므로 이 역시 프리즘커플러를 이용하여 측정한다. 프리즘 커플러에 설치되어 있는 자동 온도조절장치를 이용하여 코팅필름의 온도를 변화시켜가면서 굴절율을 측정하였다. 이 역시 1550nm의 파장에서 측정되었다.The thermo-optic coefficient of the organic-inorganic hybrid material according to the present invention is to determine the refractive index according to the temperature of the coating film, which is also measured using a prism coupler. The refractive index was measured while changing the temperature of the coating film using a thermostat installed in the prism coupler. This was also measured at a wavelength of 1550 nm.
아래에서 실시예를 들어 본 발명을 더욱 상세히 설명하나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail with reference to examples, but the embodiments according to the present invention can be modified in various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. do.
실시예Example
실시예 1Example 1
APTMS 3g과 졸-겔 반응의 촉매인 바륨하이드록사이드 모노하이드레이트 0.024g을 반응기에 넣고 80℃에서 10분간 먼저 교반한다. 교반 후 상분리와 자체 축합 반응을 막기 위해 CF3-BPA 1.29g을 2시간 동안 연속하여 넣어 준 후 80℃에서 2시간 더 반응시켰다. 반응 후 부산물인 알코올과 촉매는 vacuum heating과 filtering을 하여 제거하였다. 3 g of APTMS and 0.024 g of barium hydroxide monohydrate, which is a catalyst for sol-gel reaction, are added to a reactor and stirred first at 80 ° C. for 10 minutes. After stirring, in order to prevent phase separation and self-condensation reaction, CF 3 -BPA 1.29 g was continuously added for 2 hours, followed by further reaction at 80 ° C for 2 hours. After the reaction, by-product alcohol and catalyst were removed by vacuum heating and filtering.
최종 용액에 UV 개시제로서 2,2-디메톡시-2-페닐-아세토페논(2,2-Dimethoxy-2-phenyl-acetophenone)을 APTMS의 0.0328g 넣고 스핀 코팅기를 이용하여 실리콘 기판 위에 코팅한 후 상온에서 UV를 15분간 조사하여 광가교시킨 후 150℃에서 3시간동안 열처리하였다. 가교된 물질의 굴절율을 프리즘 커플러를 이용하여 측정하였다. 그 결과를 표 1에 나타내었다. 또한 가교된 유기-무기 하이브리드 재료의 온도변화에 따른 열광학계수를 측정하여 도 4에 나타내었다. 2,2-Dimethoxy-2-phenyl-acetophenone as a UV initiator was added to the final solution, and 0.0328g of APTMS was added and coated on a silicon substrate using a spin coater. UV light was irradiated at 15 minutes for photocrosslinking and heat treatment at 150 ° C. for 3 hours. The refractive index of the crosslinked material was measured using a prism coupler. The results are shown in Table 1. In addition, the thermo-optic coefficient of the crosslinked organic-inorganic hybrid material was measured and shown in FIG. 4.
실시예 2Example 2
CF3-BPA를 1.72g 사용한 것 외에는 실시예 1과 동일한 방법으로 실시하였다. 굴절율과 열광학계수를 각각 측정하여 도 1 및 도 4에 나타내었다. The same procedure as in Example 1 was carried out except that 1.72 g of CF 3 -BPA was used. The refractive index and the thermo-optic coefficient were measured, respectively, and are shown in FIGS. 1 and 4.
실시예 3Example 3
CF3-BPA를 2.15g 사용한 것 외에는 실시예 1과 동일한 방법으로 실시하였다. 굴절율과 열광학계수를 각각 측정하여 도 1 및 도 4에 나타내었다.The same procedure as in Example 1 was carried out except that 2.15 g of CF 3 -BPA was used. The refractive index and the thermo-optic coefficient were measured, respectively, and are shown in FIGS. 1 and 4.
실시예 4Example 4
CF3-BPA를 2.58g 사용한 것 외에는 실시예 1과 동일한 방법으로 실시하였다. 굴절율과 열광학계수를 각각 측정하여 도 1 및 도 4에 나타내었다.The same procedure as in Example 1 was carried out except that 2.58 g of CF 3 -BPA was used. The refractive index and the thermo-optic coefficient were measured, respectively, and are shown in FIGS. 1 and 4.
도 4에 따르면 다이올인 CF3-BPA의 양이 증가하면 벤젠기의 양도 증가하게 되어 가교 밀도가 높아지게 되어 온도변화에 따른 굴절율의 변화가 감소한다는 것을 알 수 있다. According to Figure 4 it can be seen that when the amount of CF 3 -BPA, a diol increases, the amount of benzene groups also increases, so that the crosslinking density increases, so that the change in refractive index with temperature changes decreases.
[표 1]TABLE 1
※mol%는 비교물질의 몰비를 %로 나타낸 것이다.※ mol% shows molar ratio of comparative substance in%.
본 발명은 구체적인 예에 대해서만 상세하게 설명되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능한 것은 이 분야에서 통상의 지식을 가진 자에게 명백한 것이고, 본 발명은 이러한 수정 및 변형 발명에 의하여 제한되 지 않는다. Although the present invention has been described in detail only with respect to specific examples, it will be apparent to those skilled in the art that various changes and modifications can be made within the technical spirit of the present invention, and the present invention is directed to such modifications and variations. It is not limited.
본 발명에 따른 유기-무기 하이브리드 재료는 열적·화학적 안정성이 좋으며 안정적인 열광학 계수를 가진다. 또한 다이올의 양에 따라 굴절률을 자유로이 조절할 수 있으므로 광도파로 제작시 코어와 클래드 재료로 사용할 수 있다.The organic-inorganic hybrid material according to the present invention has good thermal and chemical stability and has a stable thermo-optic coefficient. In addition, since the refractive index can be freely adjusted according to the amount of diol, it can be used as a core and clad material when manufacturing an optical waveguide.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060064835A KR100763936B1 (en) | 2006-07-11 | 2006-07-11 | Process for preparing organic-inorganic hybrid material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060064835A KR100763936B1 (en) | 2006-07-11 | 2006-07-11 | Process for preparing organic-inorganic hybrid material |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100763936B1 true KR100763936B1 (en) | 2007-10-05 |
Family
ID=39419258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060064835A Expired - Fee Related KR100763936B1 (en) | 2006-07-11 | 2006-07-11 | Process for preparing organic-inorganic hybrid material |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100763936B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100957528B1 (en) | 2008-07-03 | 2010-05-11 | 인하대학교 산학협력단 | Manufacturing method of high dielectric organic-inorganic hybrid composite material |
KR20160066869A (en) * | 2014-12-03 | 2016-06-13 | 인하대학교 산학협력단 | Method for manufacturing organic-inorganic hybrid compounds for carbon dioxide capture with amine grafted hollow mesoporous silica particle |
KR20160066868A (en) * | 2014-12-03 | 2016-06-13 | 인하대학교 산학협력단 | Method for manufacturing organic-inorganic hybrid compounds for carbon dioxide capture |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6639039B1 (en) | 1998-02-13 | 2003-10-28 | Institut für Neue Materialien Gemeinnützige GmbH | Photochromic coating composition comprising nanoscales particles and process for providing substrate coated with the same |
US20050181566A1 (en) | 2004-02-12 | 2005-08-18 | Sony Corporation | Method for doping impurities, methods for producing semiconductor device and applied electronic apparatus |
KR20050099849A (en) * | 2004-04-12 | 2005-10-17 | 한국과학기술원 | Inorganic/organic hybrid oligomer, nano hybrid polymer for optical devices and displays, and manufacturing method thereof |
-
2006
- 2006-07-11 KR KR1020060064835A patent/KR100763936B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6639039B1 (en) | 1998-02-13 | 2003-10-28 | Institut für Neue Materialien Gemeinnützige GmbH | Photochromic coating composition comprising nanoscales particles and process for providing substrate coated with the same |
US20050181566A1 (en) | 2004-02-12 | 2005-08-18 | Sony Corporation | Method for doping impurities, methods for producing semiconductor device and applied electronic apparatus |
KR20050099849A (en) * | 2004-04-12 | 2005-10-17 | 한국과학기술원 | Inorganic/organic hybrid oligomer, nano hybrid polymer for optical devices and displays, and manufacturing method thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100957528B1 (en) | 2008-07-03 | 2010-05-11 | 인하대학교 산학협력단 | Manufacturing method of high dielectric organic-inorganic hybrid composite material |
KR20160066869A (en) * | 2014-12-03 | 2016-06-13 | 인하대학교 산학협력단 | Method for manufacturing organic-inorganic hybrid compounds for carbon dioxide capture with amine grafted hollow mesoporous silica particle |
KR20160066868A (en) * | 2014-12-03 | 2016-06-13 | 인하대학교 산학협력단 | Method for manufacturing organic-inorganic hybrid compounds for carbon dioxide capture |
KR101638109B1 (en) | 2014-12-03 | 2016-07-11 | 인하대학교 산학협력단 | Method for manufacturing organic-inorganic hybrid compounds for carbon dioxide capture with amine grafted hollow mesoporous silica particle |
KR101638107B1 (en) | 2014-12-03 | 2016-07-11 | 인하대학교 산학협력단 | Method for manufacturing organic-inorganic hybrid compounds for carbon dioxide capture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6832036B2 (en) | Siloxane optical waveguides | |
JP5975582B2 (en) | Epoxy functional radiation curable composition containing epoxy functional siloxane oligomer | |
US6593392B2 (en) | Curable halogenated compositions | |
JP4205368B2 (en) | Curable composition for optical materials | |
TW581746B (en) | Photosensitive composition, optical waveguide element and production process therefor | |
US6800724B2 (en) | Materials for optical applications | |
TWI518391B (en) | Methods for fabricating flexible waveguides using alkyl-functional silsesquioxane resins and planar optical waveguide assembly prepared therefrom | |
KR100553327B1 (en) | Siloxane monomers containing trifluorovinylether functional groups and sol-gel hybrid polymers prepared using the monomers | |
JPH07331173A (en) | Coating composition for formation of optical material and optical material | |
KR100763936B1 (en) | Process for preparing organic-inorganic hybrid material | |
Eo et al. | Optical characteristics of photo-curable methacryl-oligosiloxane nano hybrid thick films | |
Du et al. | Sol-gel waveguide fabrication parameters: an experimental investigation | |
KR100763933B1 (en) | Process for preparing organic-inorganic hybrid material | |
US6908723B2 (en) | Photo-patternable mono-phase fluorinated organometallic sol-gels for integrated optics and methods of fabrication | |
JP3273519B2 (en) | Method for manufacturing polysiloxane-based optical waveguide | |
KR101285701B1 (en) | Process for preparing UV-curing organic-inorganic hybrid compound | |
KR100760333B1 (en) | Process for preparing organic-inorganic hybrid material | |
JP5130671B2 (en) | Organic polymer composition, optical waveguide, and method of manufacturing optical waveguide | |
Luo et al. | Anhydrous sol-gel synthesis of titania-doped siloxane polymer for integrated optics | |
JP4025397B2 (en) | Organic / inorganic polymer composite and production method thereof | |
JP2006117846A (en) | Resin composition for forming pattern and pattern forming process | |
Matsuda et al. | Sol–Gel Nano-/Micropatterning Process | |
US6319551B1 (en) | Methods and compositions for forming silica, germanosilicate and metal silicate films, patterns and multilayers | |
KR100426959B1 (en) | Menufacturing Method for Planar Optical Waveguide | |
KR101597551B1 (en) | PREPARATION METHOD OF MATERIAL FOR FORMATION OF SiO2 THIN FILM AND FORMING METHOD OF SiO2 THIN FILM USING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20060711 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20070426 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20070920 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20070928 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20071001 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20100818 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20110823 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20120911 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20130527 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20130527 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140612 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20140612 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150626 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20150626 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160602 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20160602 Start annual number: 10 End annual number: 10 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20180709 |