KR100752098B1 - 신경망 기반 로봇 시스템 - Google Patents

신경망 기반 로봇 시스템 Download PDF

Info

Publication number
KR100752098B1
KR100752098B1 KR1020060021312A KR20060021312A KR100752098B1 KR 100752098 B1 KR100752098 B1 KR 100752098B1 KR 1020060021312 A KR1020060021312 A KR 1020060021312A KR 20060021312 A KR20060021312 A KR 20060021312A KR 100752098 B1 KR100752098 B1 KR 100752098B1
Authority
KR
South Korea
Prior art keywords
factor
module
perceptual
behavior
learning
Prior art date
Application number
KR1020060021312A
Other languages
English (en)
Inventor
이석호
박지형
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020060021312A priority Critical patent/KR100752098B1/ko
Application granted granted Critical
Publication of KR100752098B1 publication Critical patent/KR100752098B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B19/00Hoop exercising apparatus

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Manipulator (AREA)

Abstract

외부로부터 시각정보 및 음성정보를 입력받는 외부정보 입력부, 외부정보에 기초하여 학습을 수행하고 동작제어 신호를 생성하는 행동학습 및 제어부 및 동작제어 신호에 따라 모터를 구동하는 모터 구동부를 포함하는 신경망 기반 로봇 시스템을 제공한다. 행동학습 및 제어부는, 외부정보로부터 모델과 물체의 지각특징과 명령을 추출하고, 지각특징 및 명령으로부터 물체조작 유형을 분석하고, 분석된 물체조작 유형이 새로운 유형일 경우, 물체조작 유형을 저장하고, 물체조작 유형에 대응하는 지각인자, 행동인자 및 동작패턴을 생성 및 저장하고, 분석된 물체조작 유형이 이미 저장된 유형과 동일할 경우, 대응 지각인자를 추출하고, 지각인자에 기초하여 다수의 행동인자 중 어느 하나를 선택하고, 선택된 행동인자에 대응하는 상기 동작 제어신호를 생성한다.
로봇, 학습, 행동, 지능, 지각인자, 행동인자

Description

신경망 기반 로봇 시스템{ROBOT SYSTEM BASED ON NEURAL NETWORK}
도 1은 종래 인간기능 지능의 학습 방법을 보이는 개념도.
도 2는 본 발명의 실시예에 따른 신경망 기반 로봇 시스템의 구성을 보이는 블록도.
도 3은 절대이동을 설명하기 위한 개략도.
도 4는 상대이동을 설명하기 위한 개략도.
도 5는 집중대상 선택 방법을 설명하기 위한 개략도.
도 6은 다수 지각인자 연관관계를 반영하여 행동인자 선택 방법을 보이는 개략도.
도 8은 오프라인 학습과정을 설명하기 위한 개략도.
본 발명은 신경망 기반 로봇 시스템에 관한 것으로, 특히 외부 입력정보로부터 물체조작 유형을 분석하고 학습하는 신경망 기반 로봇 시스템에 관한 것이다.
지능형 로봇은 일반적으로 로봇이 스스로 판단하여 행동할 수 있는 로봇이라 정의된다. 보다 구체적으로 정의하면, 지능형 로봇은 외형이 인간과 유사한 로봇을 의미하지 않으며, 무선네트워크 등을 통해 인간이 별도로 조작하지 않아도 스스로 판단하고 행동하며 외부환경에 적응할 수 있는 로봇이다. 즉, 인간으로부터 명령이 입력되지 않더라도 주변의 상황정보를 나름대로 인지하고 기억하고 행동하는 능력을 갖춘 로봇을 지능로봇으로 정의할 수 있다.
사람의 외형과 비슷하게 두 팔, 두 다리를 움직이는 휴머노이드(humonid) 로봇의 한 형태인 인간기능 지능로봇은 인간과 현실공간을 공유하고 상호작용 하면서 인간기능을 수행하는 기술융합(fusion) 시스템이다. 인간기능 지능로봇은 인공지능과 신경망회로를 내장하고 주변환경으로부터 입력되는 정보를 자율적으로 처리하면서 사회경제적 역할을 수행하는 로봇을 말한다.
인간기능 지능로봇은 손목, 발목, 손가락의 관절을 움직이는 운동기능 외에도 시각, 촉각, 청각 등의 감각기능과 학습, 연상, 기억, 추론 등 인간의 두뇌작용의 일부인 사고기능까지 갖추고 있다.
로봇과 인간 간의 효율적인 상호작용을 위해, 인간이 일상생활에서 주고받는 사회적 단서를 이해하여 사람과 쉽게 의사소통 할 수 있는 사회적 지능이 로봇에게 필요하다.
또한, 인간기능 지능로봇이 물리적인 행동을 수행하여 사람을 도울 수 있으려면 사람과 비슷한 수준의 지능으로 물리적인 세계를 인지하여야 한다. 예를 들면 물을 가지고 오라고 했을 때 로봇은 물이 무엇인지, 가져오는 행동은 어떻게 수행하여야 하는 것인지에 대한 정보를 알고 있어야 한다.
종래 인간기능 지능로봇은 지각에 따라 다른 행동을 수행할 수 있으나, 대부 분 단순한 행동만을 할 수 있을 뿐이었다. 예로서, 도 1에 보이는 바와 같이 종래 인간기능 지능 로봇(10)은 지각 모듈(11)을 통하여 인지된 정보를 바탕으로 다수의 지각인자(11a)를 선택하고, 행동 선택 모듈(12)은 선택된 각 지각인자(11a)에 고정된 연관관계(fixed weight)를 반영하여 특정 행동인자(12a)를 선택하고, 동작 모듈(13)은 선택된 행동인자(12a)에 대응하는 동작패턴(13a)을 수행할 뿐이었다.
단순한 동물이나 아주 어린 아이가 보이는 본능적인 동작 패턴(13a)은 자극 즉, 지각인자(11a)와 행동인자(12a) 간의 상관관계를 쉽게 예상할 수 있기 때문에 미리 설계된 프로그램을 인공지능 로봇 내에 내장할 수 있다.
이처럼, 종래의 인간기능 지능로봇은 미리 저장된 지각인자에 기초하여 행동인자를 선택하기 때문에, 체스 게임(chess game), 특정 대상체의 탐색, 정해진 경로의 이동 등과 같이 미리 설계된 범위 내에서 국한된 행동만 할 뿐이어서 활용이 제한될 뿐만 아니라, 새롭게 요구되는 동작 패턴은 일일이 프로그램되어야 하는 단점이 있다.
예를 들어, 집안 청소의 경우, 사람은 아무런 문제없이 인지되는 물건의 위치를 변경시켜야 할지, 그냥 두어야 할지, 쓰레기인지 아닌지 등을 구분하고, 해당 물건을 제자리에 갖다 두거나, 쓰레기를 휴지통에 버린다. 그러나, 인간기능 지능로봇을 이용하여 청소를 하려면, 집 안에 있는 물체들에 대한 정보를 미리 로봇 내에 입력해 놓아야 청소가 가능할 것이다. 하지만, 사람들의 생활환경은 항상 변화한다. 예를 들어, 아침에 새로운 우유와 신문이 배달되고, 새로운 TV나 가구를 들여 놓을 수도 있고, 책상 위를 꽃으로 장식할 수도 있다. 또한, 아이가 새로 산 장 난감을 소파에 놓아둘 수도 있고, 기분에 따라 가구의 위치를 바꿀 수도 있다. 물건에 대한 동작 패턴이 고정되어 있지 않거나 없을 경우, 변화된 상황에서 로봇은 적절한 행동할 수 없다. 이와 같은 문제를 해결하기 위해서는 환경의 변화가 있을 때마다, 대상체에 대한 동작 패턴이 바뀔 때 마다 설계자가 일일이 프로그램을 수정해야 하는 문제점이 있다.
따라서, 각 상황에 따라 적절한 행동을 하여 인간의 생활을 도와 줄 수 있는 인간기능 지능로봇을 구현하기 위해, 사용자에 의해 물체를 인식하고 물체를 움직이는 행동을 학습하여 수행할 수 있는 능력이 필요하다.
본 발명은 전술한 문제점을 해결하기 위한 것으로, 외부 입력정보에 근거하여 물체조작 유형을 분석하고 학습하는 신경망 기반 로봇 시스템을 제공하는데 그 목적이 있다.
본 발명에 따른 신경망 기반 로봇 시스템은, 외부로부터 시각정보 및 음성정보를 입력받는 외부정보 입력부; 상기 외부정보에 기초하여 학습을 수행하고 동작제어 신호를 생성하는 행동학습 및 제어부; 및 상기 동작제어 신호에 따라 모터를 구동하는 모터 구동부를 포함하되,상기 행동학습 및 제어부는, 상기 외부정보로부터 모델과 물체의 지각특징과 명령을 추출하고, 상기 지각특징 및 명령으로부터 물체조작 유형을 분석하고, 상기 분석된 물체조작 유형이 새로운 유형일 경우, 상기 물체조작 유형을 저장하고, 상기 물체조작 유형에 대응하는 지각인자, 행동인자 및 동작패턴을 생성 및 저장하고, 상기 분석된 물체조작 유형이 이미 저장된 유형과 동일할 경우, 대응 지각인자를 추출하고, 상기 지각인자에 기초하여 다수의 행동인자 중 어느 하나를 선택하고, 상기 선택된 행동인자에 대응하는 상기 동작 제어신호를 생성한다.
본 발명에 따른 신경망 기반 로봇 시스템은, 외부로부터 시각정보 및 음성정보를 입력받는 외부정보 입력부; 상기 외부정보에 기초하여 학습을 수행하고 동작제어 신호를 생성하는 행동학습 및 제어부; 및 상기 동작제어 신호에 따라 모터를 구동하는 모터 구동부를 포함하되, 상기 행동학습 및 제어부는, 상기 외부정보로부터 모델과 물체의 지각특징과 명령을 추출하는 하위지각 모듈; 상기 지각특징 및 명령으로부터 물체조작 유형을 분석하고, 상기 분석된 물체조작 유형이 새로운 유형일 경우, 상기 물체조작 유형을 저장하고, 상기 물체조작 유형에 대응하는 지각인자를 생성 및 저장하고, 행동인자 형성신호 및 동작패턴 형성신호를 생성 및 저장하고, 상기 분석된 물체조작 유형이 이미 저장된 유형과 동일할 경우, 대응 지각인자를 추출하는 상위지각 모듈; 상기 행동인자 형성신호에 기초하여 행동인자를 생성하고 저장하며, 상기 행동인자와 상기 지각인자의 상호 연관관계를 생성하고, 적어도 상기 지각인자와 상기 연관관계에 기초하여 다수의 행동인자 중 어느 하나를 선택하는 행동 모듈; 적어도 상기 선택된 행동인자에 대응하는 동작 제어신호를 생성하고, 상기 동작패턴 형성신호에 기초하여 새로운 동작패턴을 생성 및 저장하는 동작 모듈; 및 상기 상위지각 모듈에서 분석된 물체조작 유형이 새로운 유형일 경우 학습관련 행동인자를 생성하고, 상기 새로운 물체조작 유형에 대응하는 지각인자와 상기 학습관련 행동인자의 연관관계를 증가시키는 오프라인 학습부를 포함 한다.
이하, 도 2 내지 도 7을 참고하여 본 발명의 실시예에 따른 인간기능 지능로봇의 구성 및 그 구동 방법을 설명한다.
도 2에 보이는 바와 같이, 본 발명에 따른 지능로봇은 외부정보 입력부(100), 행동 학습 및 제어부(200) 및 모터 구동부(300)를 포함한다.
외부정보 입력부(100)는 외부로부터 시각정보, 음성정보 등과 같은 외부정보 입력받는다. 외부정보 입력부(100)는 시각정보를 입력받는 시각정보 인식부(110) 및 음성정보를 입력받는 음성정보 인식부(120)를 포함한다. 시각정보 인식부(110)는 디지털 카메라로 구현되고, 음성정보 인식부(120)는 마이크로 구현된다.
행동 학습 및 제어부(200)는 도 3에 보이는 바와 같이 하위지각 모듈(low-level perceptual module)(210), 상위지각 모듈(high-level perceptual module)(220), 동기 모듈(motivation module)(230), 주의집중 모듈(attention module)(240), 행동 모듈(250), 동작 모듈(260) 및 오프라인 학습모듈(270)을 포함한다. 행동 학습 및 제어부(200) 내 각 모듈은 독자적인 정보처리 기능과 저장기능을 갖춘다. 이하, 행동 학습 및 제어부(200) 내 각 모듈의 기능을 설명한다.
하위지각 모듈(210)은 외부정보로부터 행동을 행하는 모델과 행동의 객체인 물체의 지각특징과 명령을 추출한다. 모델은 사람 또는 특정 행동을 수행하는 로봇, 동물 등이 될 수 있다. 지각특징은 모델 또는 물체를 식별, 모델 또는 물체의 위치, 크기, 외형, 움직임에 관한 정보를 포함한다. 하위지각 모듈(210)은 시각정 보 인식부(110)로부터 입력되는 시각정보를 처리하는 영상처리기(image processor)와 음성정보 인식부(120)로부터 입력되는 음성정보를 인식 및 처리하는 음성 처리기(speech processor)를 포함한다. 명령은 시각정보로부터 추출된 사람의 수신호 등과 같은 특정행동 또는 음성정보로부터 추출된 특정 단어, 문장이다.
영상처리기는 디지털 카메라 등과 같은 시각정보 인식부(110)로부터 입력된 영상을 처리하여 모델(사람)과 물체를 구분하고, 사람과 물체의 위치 및 움직임 등과 같은 특징인자를 추출한다. 모델과 물체는 색상 또는 채도를 이용하여 구별한다. 물체 또는 사람은 한가지 색상을 많이 포함하고 있는 영역으로 구분할 수 있다. 예를 들어, 살색은 사람, 빨간색은 사과, 검은색은 가방, 노란색은 바나나와 같이 주된 색을 기준으로 모델과 각 물체를 구분한다. 보다 구체적으로, 영상처리기는 카메라로부터 입력되는 RGB 영상을 HSV 영상으로 변환하고, HSV 영상 내에서 비슷한 색상을 갖는 영역을 추출하여 이진화하고, 이진화된 이미지를 영역화하고(clustering), 각 영역의 크기와 3차원 위치를 추출한다. 본 발명의 실시예에서 각 영역의 3차원 위치는 스테레오 카메라의 상용 소프트웨어인 포인트 그레이사(Point Grey Co.)의 Bumblebee® 를 이용하여 추출한다. 각 영역에서 물체 또는 사람의 손과 얼굴의 실제 크기를 산출한다. 예를 들어, 사람의 피부색과 비슷한 영역의 3차원 좌표와 실제 크기를 산출하고, 그 크기에 따라 얼굴과 손을 구분한다. 한편, 색상만을 고려하여 구분할 경우, 피부색에 해당하는 영역이 다수개 존재할 경우 로봇이 사람의 손과 얼굴을 인식하지 못한다. 이를 보완하기 위해, 사람의 얼굴에서 눈 의 위치를 추출하여 얼굴을 구분할 수도 있다. 물체와 사람의 얼굴은 상용 소프트웨어를 이용하여 구별인식할 수 있으므로, 보다 상세한 설명은 생략한다. 아울러, 영상처리기는 얼굴의 방향, 물체와 얼굴의 거리정보를 추출하고, 물체에 대한 사람의 시선을 벡터정보로써 생성한다. 움직임은 연속적으로 입력되는 프레임들(frames)의 각 화소값을 가감 연산하여 산출한다.
음성 처리기는 상용의 음성인식 소프트웨어를 이용하여 마이크 등과 같은 음성정보 인식부(120)로부터 들어온 'wave', 'mp3' 등의 음성정보를 처리하여 텍스트 정보로 전환한다.
상위지각 모듈(220)은 물체조작 유형 저장부(221)와 지각인자 저장부(222)를 포함한다. 하위지각 모듈(210)로부터 입력되는 지각특징 및 명령으로부터 물체조작 유형을 분석하고, 분석결과에 따라 물체조작 유형을 저장하고, 행동인자 형성신호와 동작패턴 형성신호를 생성하고, 지각인자를 생성 또는 추출하고 저장한다. 즉, 분석된 물체조작 유형이 새로운 것이면, 그 물체조작 유형을 저장하고, 새로운 물체조작유형에 대응하는 행동인자 형성신호, 동작패턴 형성신호 및 지각인자를 생성하고, 생성된 지각인자를 저장한다. 분석된 물체조작 유형이 이미 물체조작 유형 저장부(221)에 저장된 것과 동일한 것이면, 지각인자 저장부(222)에서 대응하는 지각인자를 추출한다.
지각인자는 물체의 식별에 관한 인자, 물체의 크기에 관한 인자, 모델과 물체의 거리에 관한 인자, 물체와 목표지점 간의 거리에 관한 인자, 사람의 물체에 대한 주의정도에 관한 인자, 사람 및 사물의 속도에 관한 지각인자 그리고 검출된 사람의 행동에 관한 인자로 나뉘어진다. 모델과 물체의 거리는 물체의 중요성을 인지하기 위한 정보 중의 하나이며, 사람의 물체에 대한 주의 정도는 사람과의 상호작용을 위해 중요한 정보이다. 한편, 각 지각인자는 크기별로 세분화될 수 있다. 예를 들어, 모델과 물체의 거리에 관한 인자는 거리별로 1 m, 2 m, 3 m에 해당하는 각 지각인자가 있을 수 있다. 또한, 로봇에 대한 사람의 주의정도에 따라 지각인자가 구분될 수 있다. 예로써, 사람이 로봇을 정면으로 바라볼 경우의 지각인자와 사람의 시선이 로봇이 이루는 각도가 90도일 경우의 지각인자가 구분될 수 있다.
한편, 로봇이 물체를 조작하기 위해서는 조작할 물체를 결정하고, 물체의 이동 목표지점이 결정되어야 한다. 조작할 물체와 목표지점이 결정되면, 미리 학습된 동작패턴에 따라 손으로 대상물체 목표지점으로 이동시킴으로써 물체조작을 수행할 수 있다. 따라서, 이동의 초기 지점과 끝 지점은 물체 조작 행동에 중요한 정보이다. 물체 조작은 사람과 물체를 동시에 고려해야 하며, 사람이 주의하고 있는 여러 물체 중 하나를 선택해야 하는 등 복잡한 과정이다. 본 발명에서는 물체조작 유형을 절대이동과 상대이동 두 가지로 구분한다. 절대이동은 물체를 정해진 방향으로 정해진 거리 만큼 이동시키는 행동이고, 상대이동은 물체를 목표지점 즉, 특정 장소 또는 다른 물체 주변으로 이동시키는 행동이다. 도 3 및 도 4는 각각 절대이동 및 상대이동의 예를 보이고 있다. 도 3에 보이는 바와 같이, 상위지각 모듈(220)이 하위지각 모듈(210)로부터 입력되는 텍스트 정보로부터 "오른쪽으로 옮겨"라는 명령을 추출하면, 정해진 방향 즉, 오른쪽으로 대상물체를 옮기는 행동이 절대이동에 해당한다. 도 4에 보이는 바와 같이 상위지각 모듈(220)이 하위지각 모듈(210)로부 터 입력되는 텍스트 정보로부터 "버려"라는 명령을 추출하면, 대상물체를 목적위치 즉, 휴지통이 있는 위치로 이동시키는 행동이 상대이동에 해당한다. 목표지점은 지정된 사람의 손의 좌표 등이 될 수도 있다.
물체조작 유형 분석시, 절대이동과 상대이동은 대상물체의 이동이 멈춘 장소 주변의 물체 또는 사람(이하, 주변체라 함)과 대상물체 사이의 거리로써 분류된다. 가장 가까운 주변체가 임의의 임계거리 내에 있으면 대상물체의 조작유형은 상대이동으로 분석되고, 새로운 조작유형일 경우 상대이동에 대한 행동인자 형성신호 및 동작패턴 형성신호를 생성한다. 가장 가까운 주변체가 임계거리 밖에 있으면 대상물체의 조작유형은 절대이동으로 분석되고, 새로운 조작유형일 경우 절대이동에 대한 행동인자 형성신호와 동작패턴 형성신호를 생성한다. 절대이동 정보는 대상물체의 처음 위치와 이동된 위치로부터 추출된 벡터정보를 포함한다. 한편, 절대이동의 경우 이전에 추출된 벡터정보와 현재 추출된 벡터정보를 비교하여 방향 또는 크기의 차이가 정해진 범위를 벗어나면 새로운 물체조작 유형으로 분석하고, 상대이동의 경우, 대상물체와 목적물체의 고유번호들을 서로 비교하여 새로운 물체조작 유형인지 판단한다.
동기 모듈(230)은 상위지각 모듈(220)에서 이루어진 물체조작 유형의 분석결과에 기초하여, 환경에 적극적으로 적응하기 위한 자발적인 행동을 유발하는 사회동기, 호기심 동기, 피곤동기 등과 같은 각종 동기인자를 생성, 저장 및 조절한다. 각 동기인자는 수치 변화에 의해 자발적인 행동을 유도한다. 즉, 각 동기는 환경에 적극적으로 적응하기 위한 자발적인 행동을 유발하는 기능을 한다. 각 동기의 수치 는 시간에 따라 정해진 값만큼 증가하고, 관련행동이 활성화되면 대응하는 동기의 수치는 줄어든다. 예를 들어, '사람에게 인사하기'와 같은 사회동기를 만족시키는 행동이 활성화되면 사회동기의 수치는 줄어든다.
주의집중 모듈(240)은 상위지각 모듈(220)로부터 입력되는 지각인자, 또는 지각인자와 동기 모듈(230)로부터 입력되는 동기인자를 고려하여 주변 환경에서 가장 주목해야 할 집중대상을 선택한다. 일 예로써, 집중대상은 상위지각 모듈(220)로부터 입력되는 로봇-사람 또는 로봇-물체 간의 거리에 관한 지각인자, 물체가 움직이는 속도에 대한 지각인자 및 사람의 로봇에 대한 주의정도에 관한 지각인자를 고려하여 선택한다. 다른 예로서 주의집중 모듈(240)은 상위지각 모듈(220)로부터 입력되는 다수의 지각인자로부터 로봇과 주변체 사이의 거리, 사람의 로봇에 대한 주의도, 물체의 속도의 값들을 추출하고, 추출된 값들과 동기 모듈(230)로부터 입력되는 동기를 이용하여 다음의 수학식 1에 따라 주의값을 산출하여 집중대상을 선택한다.
Figure 112006016156414-pat00001
예를 들어, 도 5에 보이는 바와 같이, 사람과 로봇의 거리가 2 m이고, 사람이 로봇을 바라보는 주의도1이 90, 사람이 로봇을 부르는 주의도2가 90, 사람 속도가 0.1m/s, 로봇의 사회적인 동기가 0.7인 경우, 로봇의 사람에 대한 주의값은 (1(거리가중치)+0.9(주의도1)+0.9(주의도2)+0.1(움직임)+0.7(동기))/2(거리)=1.8로 계 산된다. 같은 조건에서 호기심 동기가 0.3인 경우, 로봇의 물체에 대한 주의값은 (1+0+0+0+0.3)/1=1.3으로 계산된다. 따라서, 산출된 주의값을 비교하여, 주의값이 상대적으로 큰 사람을 집중대상으로 선택한다.
환경의 변화가 없을 경우, 주변을 두루 살피기 위해 이전에 선택된 집중대상의 주의값을 시간에 따라 감소시킨다. 예를 들어, 집중대상이 선택되면 주의를 집중한 시간으로부터 시간이 흐를수록 주의 값을 (1-(t-4)(초)/8)배의 비율로 감소시키면, 주의값이 선택 직후부터 일정시간 동안(0~4초)에는 증가하지만, 4초 이후부터는 주의값이 감소하여 12초가 지나면 0의 값을 갖게 된다. 이전 집중대상에 대한 주의값이 감소하는 동안 다른 대상의 주의값이 증가하면 주의집중 대상이 바뀐다. 주의집중대상이 바뀌면 t=0으로 초기화된다. 이러한 과정에 따라 로봇의 집중대상을 변화시켜가며 환경에 보다 다양하게 대응할 수 있도록 한다.
한편, 집중대상이 선택되면, 주의집중 모듈(240)은 집중대상을 영상의 중앙에 배치하기 위한 시선움직임 신호를 생성한다. 집중대상이 사람으로 선택되었을 경우에는, 사람에게 로봇이 물체를 인지하였다는 것을 알려주기 위한 인지신호를 생성한다.
행동 모듈(250)은 상위지각 모듈(220)로부터 입력되는 행동인자 형성신호에 기초하여 행동인자를 생성하고 저장하며, 상위지각 모듈(220)에서 선택된 지각인자와 동기 모듈(230)로부터 제공되는 동기인자에 기초하여 상호 연관관계를 생성하고, 지각인자와 동기인자에 기초하여 다수의 행동인자 중 어느 하나를 선택하고, 선택된 행동인자의 유효 시간을 결정한다. 이를 위해, 행동 모듈(250)은 연관관계 저장부(251) 및 행동인자 저장부(252)를 포함한다. 행동 모듈(250)은 외부로부터 입력되는 자극에 의해 행동 뉴런을 활성화시켜 행동을 수행하는 동물의 행동결정 메카니즘으로 설명할 수 있다. 즉, 행동 모듈(250)은 로봇 내부상태를 반영하는 적어도 하나의 동기인자를 동기 모듈(240)로부터 입력받고, 외부상태를 반영하는 적어도 하나의 지각인자를 상위지각 모듈(220)로부터 입력받고, 지각인자와 동기인자에 기초하여 각 행동인자의 활성값을 결정하고, 활성값에 따라 행동인자를 선택한다. 행동인자의 유형은 미리 정의된 순차적인 행동, 단순 대응 제스처, 음성, 학습된 물체조작으로 분류한다. 한편, 행동인자의 활성값이 미리 정해진 문턱값 이하일 경우 어떤 행동인자도 선택되지 않을 수 있다.
도 6은 다수의 지각인자(지각인자 1 내지 3)와 다수의 행동인자(행동인자 1 내지 3)의 연관관계를 보인다. 보다 구체적으로, 다음의 수학식 2에 보이는 바와 같이 동기인자(
Figure 112006016156414-pat00002
), 지각인자(
Figure 112006016156414-pat00003
)에 해당 가중치(
Figure 112006016156414-pat00004
,
Figure 112006016156414-pat00005
)를 반영하여 각 행동인자의 활성화값(
Figure 112006016156414-pat00006
)을 결정한다. 수학식 2에서 바이어스(
Figure 112006016156414-pat00007
)는 각 인자의 입력에 대하여 일괄적으로 더해지는 값으로 활성화값의 임계값이다.
Figure 112006016156414-pat00008
수학식 2에 보이는 바와 같이 지각인자과 동기인자의 영향에 의하여 각 행동인자의 활성화 값(
Figure 112006016156414-pat00009
)이 결정되고, 활성화값이 가장 큰 행동인자가 선택된 다. 예를 들어, 로봇으로부터 2 m 떨어져 있는 사람이 로봇을 보고 손을 흔들며 "안녕하세요"라는 인삿말을 했을 경우, 사람-로봇 사이의 거리 2 m에 해당하는 지각인자의 가중치가 1.0, 손을 흔드는 행동에 해당하는 지각인자의 가중치가 0.9, "안녕하세요" 라는 인사말을 하는 행동인자와 사람-로봇 사이의 거리 2 m에 해당하는 지각인자의 연관관계가 0.3이고, "안녕하세요" 라는 인사말을 하는 행동인자와 손을 흔드는 행동인자의 연관관계가 0.6이며 나머지 다른 지각인자와의 연관관계가 모두 0이라고 하면 "안녕하세요" 행동인자의 활성값은 1.0*0.3+0.9*0.6으로 0.84가 된다. 이하, "안녕"이라는 인사말을 하는 행동인자(행동인자1)와 "안녕하세요?" 이라는 인사말을 하는 행동인자(행동인자2)의 선택 방법을 설명한다. 만약, 행동인자1 및 행동인자2가 모두 사람-로봇 간의 2 m 거리에 대한 지각인자와 손을 흔드는 행동인자에 대하여 동일한 연관관계를 가지며, 친근함을 나타내는 지각인자의 가중치가 0.5이고, 상대방이 처음 보는 사람인 경우의 지각인자가 -0.5라면, 처음보는 사람을 인지하였을 때 "안녕"에 해당하는 행동인자1의 활성값은 "안녕하세요"에 해당하는 행동인자2의 활성값에 대해 0.25만큼 작게 되므로, 행동인자2가 선택되게 된다. 이와 같이, 다양한 지각인자의 영향을 동시에 고려하여 가장 적절한 행동이 선택된다. 아울러, 동기에 의한 영향도 지각인자와의 관계와 같은 과정을 통하여 행동인자 값을 산출하는데 영향을 미친다.
동작 모듈(260)은 행동 모듈(250)에서 선택된 행동인자 또는 주의집중 모듈(240)로부터 입력되는 시선움직임 신호 또는 인지신호에 대응하는 동작 제어신호를 생성하고, 상위지각 모듈(220)로부터 입력되는 동작패턴 형성신호에 기초하여 새로 운 동작패턴(action pattern)을 생성 및 저장한다. 또한, 동작 모듈(260)은 새롭게 형성된 동작패턴과 행동 모듈(250)에서 새롭게 형성된 행동인자를 대응시키기 위한 연결신호를 생성한다. 이에 따라, 새로운 물체조작 유형으로 분석된 경우 상위지각 모듈(220)에서 생성된 새로운 행동인자 형성신호와 동작패턴 형성신호에 각각 대응하여 형성된 행동인자와 동작패턴이 서로 대응된다. 동작 모듈(260)은 각 행동인자, 시선움직임 또는 인지정보에 대응하는 동작패턴 저장부(261)를 포함한다. 동작패턴은 미리 정의된 행동에 대한 동작패턴, 음성행동에 대한 동작 패턴 그리고 상위지각 모듈에서 학습된 물체조작 유형으로부터 형성된 상대이동 정보 및 절대이동 정보에 대한 동작패턴으로 구분된다. 동작 제어신호는 로봇의 목표위치, 로봇 손의 목표 위치, 물체를 잡는 위치, 물체를 놓는 위치 등에 대한 좌표정보를 포함한다.
오프라인 학습 모듈(270)은 행동 모듈(250)과 동작 모듈(260)이 구동되지 않은 상태에서, 지각과 행동의 관계를 학습한다. 즉, 상위지각 모듈(220)에 입력되는 명령이 오프라인 학습 수행과 관계된 명령이거나, 행동인자 형성신호 또는 동작패턴 형성신호가 생성될 때 오프라인 학습 모듈(270)은 상위지각 모듈(220)에서 새로운 유형이라고 분석된 물체조작 유형에 대응하는 행동인자(이하, 학습관련 행동인자라 함)를 생성하고, 학습관련 행동인자와 상위지각 모듈(220)에서 새로운 물체조작 유형에 대응하여 생성된 지각인자의 연관관계를 증가시킨다. 예를 들면, 사람이 로봇에게 새로운 음성 또는 제스처 형태의 명령을 내리고 연이어 물체조작 행동을 보여주었을 때 오프라인 학습이 진행된다. 오프라인 학습 과정에서, 로봇은 이후 사람이 수행했던 물체조작 행동을 수행할 수 있도록, 새로운 물체조작 유형에 대응 하는 지각인자와 학습관련 행동인자 사이의 연관도를 증가시킨다. 한편, 오프라인 학습과정에서, 학습 대상인 물체조작 유형이 사회적인 유형인지 호기심에 의한 유형인지 분류하고, 각 행동과 관계있는 동기인자의 활성값을 설정한다. 예컨대, 사람에게 말하는 동작처럼 사람과 상호관계가 있는 행동인 경우 사회동기를 만족시키기 위한 행동일 가능성이 크므로 사회 동기인자의 활성값을 다른 동기인자보다 크게 설정한다.
한편, 학습관련 행동인자, 즉 새로운 물체조작 유형에 대응하여 오프라인 학습모듈(270)에서 생성된 행동인자의 활성값이 오프라인 학습과정에서 일정시간 동안 지속적으로 선택될 수 있도록 기울기 경사법(gradient descent method)을 이용한다. 기울기 경사법으로서 위도르-호프(Widrow-hoff) 방식을 이용하여, 오프라인 학습과정에서 다음에 보이는 수학식 3에 따라 지각인자와 행동인자간의 연결관계를 수정한다.
Figure 112006016156414-pat00010
수학식 3에서
Figure 112006016156414-pat00011
는 시간 t에서 지각인자 i와 행동인자 j 의 연관관계이고,
Figure 112006016156414-pat00012
는 학습 효과에 따라 조정되는 학습률이고,
Figure 112006016156414-pat00013
는 행동인자 j의 바람직한 출력값이고,
Figure 112006016156414-pat00014
는 행동인자 j의 출력값이며,
Figure 112006016156414-pat00015
는 지각인자 i의 입력값이다.
도 7은 사람2와 관련한 지각인자들의 활성값들과 물체조작 유형의 종류에 따라 정해진 동기인자를 고려하여 선택된 행동인자의 활성화 값을 보인다. 본 발명에 서는 전술한 바와 같이 학습관련 행동인자의 활성값이 다른 행동인자의 활성값 보다 커질 때까지 기울기 경사법으로 지각인자와 행동인자의 활성값들을 고려하여, 비슷한 지각인자일 경우 학습관련 행동인자가 선택될 수 있도록 한다. 이와 같이, 여러 지각인자를 반영하여 학습관련 행동인자의 활성값을 증가시킴으로써 학습과정에서 인식되는 외부환경 변화에 대응하여 순차적으로 다른 행동인자의 활성값을 증가시킬 수 있다. 즉, 외부환경 변화에 따라 변하는 지각인자와의 관계도 학습할 수 있다. 예를 들어, 1번 물체를 책상의 왼쪽 가장자리에 놓은 후 2번 물체를 1번 물체 위에 위치시키는 과정으로 이루어지는 책상정리 작업을 로봇에게 학습시키는 경우, 먼저 사람이 1번 물체를 책상의 가장자리에 놓았을 때 이 행동과 관련한 지각인자의 수치가 증가하고, 연이어 2번 물체를 1번 물체 위에 놓는 행동을 수행하면 2번 물체의 이동에 관한 행동인자의 활성값은 1번 물체의 이동과 관련한 지각인자의 영향으로 증가될 수 있다.
모터 구동부(300)는 동작 모듈(260)로부터 입력되는 동작제어신호에 따라 모터를 구동시킨다.
사람이 물체를 움직이는 방법에 따라 다양한 물체 조작 행동을 학습할 수 있으므로 고정된 명령에 따라 제어되는 로봇보다 다양한 기능을 수행하는 로봇을 구현할 수 있다. 아울러, 반복적인 훈련없이 사람이 명령을 학습할 때처럼 한번의 실행으로 동작을 학습시킬 수 있다.

Claims (13)

  1. 삭제
  2. 외부로부터 시각정보 및 음성정보를 입력받는 외부정보 입력부; 상기 외부정보에 기초하여 학습을 수행하고 동작제어 신호를 생성하는 행동학습 및 제어부; 및 상기 동작제어 신호에 따라 모터를 구동하는 모터 구동부를 포함하되,
    상기 행동학습 및 제어부는,
    상기 외부정보로부터 모델과 물체의 지각특징과 명령을 추출하는 하위지각 모듈;
    상기 지각특징 및 명령으로부터 물체조작 유형을 분석하고, 상기 분석된 물체조작 유형이 새로운 유형일 경우, 상기 물체조작 유형을 저장하고, 상기 물체조작 유형에 대응하는 지각인자를 생성 및 저장하고, 행동인자 형성신호 및 동작패턴 형성신호를 생성 및 저장하고, 상기 분석된 물체조작 유형이 이미 저장된 유형과 동일할 경우, 대응 지각인자를 추출하는 상위지각 모듈;
    상기 행동인자 형성신호에 기초하여 행동인자를 생성하고 저장하며, 상기 행동인자와 상기 지각인자의 상호 연관관계를 생성하고, 적어도 상기 지각인자와 상기 연관관계에 기초하여 다수의 행동인자 중 어느 하나를 선택하는 행동 모듈;
    적어도 상기 선택된 행동인자에 대응하는 동작 제어신호를 생성하고, 상기 동작패턴 형성신호에 기초하여 새로운 동작패턴을 생성 및 저장하는 동작 모듈; 및
    상기 상위지각 모듈에서 분석된 물체조작 유형이 새로운 유형일 경우 학습관련 행동인자를 생성하고, 상기 새로운 물체조작 유형에 대응하는 지각인자와 상기 학습관련 행동인자의 연관관계를 증가시키는 오프라인 학습부를 포함하는
    신경망 기반 로봇 시스템.
  3. 제 2 항에 있어서,
    상기 행동학습 및 제어부는,
    상기 물체조작 유형에 따라 다수의 동기인자를 생성, 저장 및 조절하는 동기 모듈을 더 포함하는 신경망 기반 로봇 시스템.
  4. 제 2 항에 있어서,
    상기 행동학습 및 제어부는,
    적어도 상기 지각인자를 고려하여 주변 환경에서 가장 주목해야 할 집중대상을 선택하는 주의집중 모듈을 더 포함하는, 신경망 기반 로봇 시스템.
  5. 제 2 항에 있어서,
    상기 행동학습 및 제어부는,
    상기 물체조작 유형에 따라 다수의 동기인자를 생성, 저장 및 조절하는 동기 모듈; 및
    상기 지각인자와 상기 동기인자를 고려하여 주변 환경에서 가장 주목해야 할 집중대상을 선택하는 주의집중 모듈을 더 포함하는, 신경망 기반 로봇 시스템.
  6. 제 4 항 또는 제 5 항에 있어서,
    상기 주의집중 모듈은 시선움직임 신호 또는 인지신호를 생성하는, 신경망 기반 로봇 시스템.
  7. 제 6 항에 있어서,
    상기 동작 모듈은 상기 시선움직임 신호 또는 인지신호로부터 상기 동작제어 신호를 생성하는, 신경망 기반 로봇 시스템.
  8. 제 3 항 또는 제 5 항에 있어서,
    상기 행동 모듈은 상기 지각인자와 상기 동기인자를 고려하여 상기 행동인자를 선택하는 신경망 기반 로봇 시스템.
  9. 제 2 항에 있어서,
    상기 모델은, 사람 또는 특정 행동을 수행하는 로봇 및 동물을 포함하는, 신경망 기반 로봇 시스템.
  10. 제 2 항에 있어서,
    상기 지각특징은 모델 또는 물체를 식별, 모델 또는 물체의 위치, 크기, 외형, 움직임에 관한 정보를 포함하는, 신경망 기반 로봇 시스템.
  11. 제 2 항에 있어서,
    상기 외부정보 입력부는 시각정보 인식부 및 음성정보 인식부를 포함하고,
    상기 하위지각 모듈은, 상기 시각정보 인식부로부터 입력되는 시각정보를 처리하는 영상처리기와 음성정보 인식부로부터 입력되는 음성정보를 인식 및 처리하는 음성 처리기를 포함하는, 신경망 기반 로봇 시스템.
  12. 제 2 항에 있어서,
    상기 상위지각 모듈은 물체조작 유형 저장부와 지각인자 저장부를 포함하고,
    상기 행동 모듈은 연관관계 저장부 및 행동인자 저장부를 포함하는, 신경망 기반 로봇 시스템.
  13. 제 2 항에 있어서,
    상기 행동 모듈은 상기 선택된 행동인자의 유효 시간을 결정하는, 신경망 기반 로봇 시스템.
KR1020060021312A 2006-03-07 2006-03-07 신경망 기반 로봇 시스템 KR100752098B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060021312A KR100752098B1 (ko) 2006-03-07 2006-03-07 신경망 기반 로봇 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060021312A KR100752098B1 (ko) 2006-03-07 2006-03-07 신경망 기반 로봇 시스템

Publications (1)

Publication Number Publication Date
KR100752098B1 true KR100752098B1 (ko) 2007-08-24

Family

ID=38615379

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060021312A KR100752098B1 (ko) 2006-03-07 2006-03-07 신경망 기반 로봇 시스템

Country Status (1)

Country Link
KR (1) KR100752098B1 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106564059A (zh) * 2016-10-08 2017-04-19 郭润泽 一种家庭机器人系统
CN107538492A (zh) * 2017-09-07 2018-01-05 福物(上海)机器人科技有限公司 移动机器人的智能操控系统、方法及智能学习方法
CN108568804A (zh) * 2017-03-13 2018-09-25 发那科株式会社 机器人系统、测量数据处理装置及测量数据处理方法
KR20180130157A (ko) * 2017-05-29 2018-12-07 군산대학교산학협력단 전방향 주행이 가능한 4륜 4족 자율 이동 로봇
CN109760061A (zh) * 2019-03-05 2019-05-17 上海岚豹智能科技有限公司 基于离线语音的机器人控制方法及设备
KR20200027072A (ko) * 2018-08-27 2020-03-12 엘지전자 주식회사 인공지능 이동 로봇의 제어 방법
CN111194452A (zh) * 2017-06-09 2020-05-22 川崎重工业株式会社 动作预测系统及动作预测方法
KR20200085712A (ko) * 2018-08-27 2020-07-15 엘지전자 주식회사 인공지능 이동 로봇의 제어 방법
CN111563588A (zh) * 2019-02-13 2020-08-21 西门子股份公司 编码场景和任务相关学习信息及传输到可传输神经网络层
CN112136141A (zh) * 2018-03-23 2020-12-25 谷歌有限责任公司 基于自由形式自然语言输入控制机器人
CN113848946A (zh) * 2021-10-20 2021-12-28 郑州大学 一种基于神经调节机制的机器人行为决策方法及设备
US11436825B2 (en) 2018-12-14 2022-09-06 Samsung Electronics Co., Ltd. Method and apparatus for determining target object in image based on interactive input
KR20230173004A (ko) 2022-06-15 2023-12-26 주식회사 유진로봇 인공신경망을 이용한 먼지 입자 구분 장치 및 청소 로봇

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010031909A (ko) * 1998-09-10 2001-04-16 이데이 노부유끼 로봇 장치, 로봇 장치의 제어 방법, 표시 방법 및 제공 매체
KR20020067699A (ko) * 2000-10-13 2002-08-23 소니 가부시끼 가이샤 로봇 장치 및 로봇 장치의 행동 제어 방법
JP2002307349A (ja) * 2001-04-11 2002-10-23 Sony Corp ロボット装置、情報学習方法、プログラム及び記録媒体
KR20030007841A (ko) * 2001-04-03 2003-01-23 소니 가부시끼 가이샤 각식 이동 로봇 및 그 운동교시 방법, 및 기억매체

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010031909A (ko) * 1998-09-10 2001-04-16 이데이 노부유끼 로봇 장치, 로봇 장치의 제어 방법, 표시 방법 및 제공 매체
KR20020067699A (ko) * 2000-10-13 2002-08-23 소니 가부시끼 가이샤 로봇 장치 및 로봇 장치의 행동 제어 방법
KR20030007841A (ko) * 2001-04-03 2003-01-23 소니 가부시끼 가이샤 각식 이동 로봇 및 그 운동교시 방법, 및 기억매체
JP2002307349A (ja) * 2001-04-11 2002-10-23 Sony Corp ロボット装置、情報学習方法、プログラム及び記録媒体

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106564059A (zh) * 2016-10-08 2017-04-19 郭润泽 一种家庭机器人系统
CN108568804B (zh) * 2017-03-13 2019-06-18 发那科株式会社 机器人系统、测量数据处理装置及测量数据处理方法
CN108568804A (zh) * 2017-03-13 2018-09-25 发那科株式会社 机器人系统、测量数据处理装置及测量数据处理方法
KR20180130157A (ko) * 2017-05-29 2018-12-07 군산대학교산학협력단 전방향 주행이 가능한 4륜 4족 자율 이동 로봇
KR101950784B1 (ko) * 2017-05-29 2019-02-21 군산대학교산학협력단 전방향 주행이 가능한 4륜 4족 자율 이동 로봇
CN111194452A (zh) * 2017-06-09 2020-05-22 川崎重工业株式会社 动作预测系统及动作预测方法
CN111194452B (zh) * 2017-06-09 2023-10-10 川崎重工业株式会社 动作预测系统及动作预测方法
CN107538492A (zh) * 2017-09-07 2018-01-05 福物(上海)机器人科技有限公司 移动机器人的智能操控系统、方法及智能学习方法
US11972339B2 (en) 2018-03-23 2024-04-30 Google Llc Controlling a robot based on free-form natural language input
CN112136141A (zh) * 2018-03-23 2020-12-25 谷歌有限责任公司 基于自由形式自然语言输入控制机器人
KR20200027072A (ko) * 2018-08-27 2020-03-12 엘지전자 주식회사 인공지능 이동 로봇의 제어 방법
KR20200085712A (ko) * 2018-08-27 2020-07-15 엘지전자 주식회사 인공지능 이동 로봇의 제어 방법
KR102290983B1 (ko) * 2018-08-27 2021-08-17 엘지전자 주식회사 인공지능 이동 로봇의 제어 방법
KR102423572B1 (ko) * 2018-08-27 2022-07-20 엘지전자 주식회사 인공지능 이동 로봇의 제어 방법
US11436825B2 (en) 2018-12-14 2022-09-06 Samsung Electronics Co., Ltd. Method and apparatus for determining target object in image based on interactive input
CN111563588A (zh) * 2019-02-13 2020-08-21 西门子股份公司 编码场景和任务相关学习信息及传输到可传输神经网络层
CN111563588B (zh) * 2019-02-13 2024-04-30 西门子股份公司 编码场景和任务相关学习信息及传输到可传输神经网络层
CN109760061A (zh) * 2019-03-05 2019-05-17 上海岚豹智能科技有限公司 基于离线语音的机器人控制方法及设备
CN113848946A (zh) * 2021-10-20 2021-12-28 郑州大学 一种基于神经调节机制的机器人行为决策方法及设备
CN113848946B (zh) * 2021-10-20 2023-11-03 郑州大学 一种基于神经调节机制的机器人行为决策方法及设备
KR20230173004A (ko) 2022-06-15 2023-12-26 주식회사 유진로봇 인공신경망을 이용한 먼지 입자 구분 장치 및 청소 로봇
KR20230173005A (ko) 2022-06-15 2023-12-26 주식회사 유진로봇 인공신경망을 이용한 충돌 감지 장치 및 이동 로봇

Similar Documents

Publication Publication Date Title
KR100752098B1 (ko) 신경망 기반 로봇 시스템
US6347261B1 (en) User-machine interface system for enhanced interaction
Nehaniv et al. A methodological approach relating the classification of gesture to identification of human intent in the context of human-robot interaction
Scassellati Foundations for a Theory of Mind for a Humanoid Robot
KR101028814B1 (ko) 소프트웨어 로봇 장치와 그 장치에서 소프트웨어 로봇의행동 발현 방법
JP2011115944A (ja) ロボット装置、ロボット装置の行動制御方法及びプログラム
KR20020067699A (ko) 로봇 장치 및 로봇 장치의 행동 제어 방법
Garrell et al. Teaching robot’s proactive behavior using human assistance
Cruz et al. Multi-modal integration of dynamic audiovisual patterns for an interactive reinforcement learning scenario
JP3178393B2 (ja) 行動生成装置、行動生成方法及び行動生成プログラム記録媒体
KR20160072621A (ko) 학습과 추론이 가능한 로봇 서비스 시스템
WO2018006378A1 (zh) 智能机器人控制系统、方法及智能机器人
WO2021261474A1 (ja) 行動制御装置、行動制御方法、およびプログラム
Botzheim et al. Gestural and facial communication with smart phone based robot partner using emotional model
Nehaniv Classifying types of gesture and inferring intent
Triesch Vision Based Robotic Gesture Recognition
JP7414735B2 (ja) 複数のロボットエフェクターを制御するための方法
Fujita How to make an autonomous robot as a partner with humans: design approach versus emergent approach
Takimoto et al. A simple bi-layered architecture to enhance the liveness of a robot
Farinelli Design and implementation of a multi-modal framework for scenic actions classification in autonomous actor-robot theatre improvisations
Goerick et al. Interactive online multimodal association for internal concept building in humanoids
Weng The living machine initiative
Bodiroža Gestures in human-robot interaction
Riek et al. Affective-centered design for interactive robots
Bodiroža Gestures in human-robot interaction: development of intuitive gesture vocabularies and robust gesture recognition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120808

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130731

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140729

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150730

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160728

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180213

Year of fee payment: 11