KR100744405B1 - Method for fabricating transflective type lcd device - Google Patents

Method for fabricating transflective type lcd device Download PDF

Info

Publication number
KR100744405B1
KR100744405B1 KR1020060032525A KR20060032525A KR100744405B1 KR 100744405 B1 KR100744405 B1 KR 100744405B1 KR 1020060032525 A KR1020060032525 A KR 1020060032525A KR 20060032525 A KR20060032525 A KR 20060032525A KR 100744405 B1 KR100744405 B1 KR 100744405B1
Authority
KR
South Korea
Prior art keywords
layer
shadow mask
ito
ito layer
passivation layer
Prior art date
Application number
KR1020060032525A
Other languages
Korean (ko)
Inventor
김원석
최대림
김성웅
Original Assignee
비오이 하이디스 테크놀로지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비오이 하이디스 테크놀로지 주식회사 filed Critical 비오이 하이디스 테크놀로지 주식회사
Priority to KR1020060032525A priority Critical patent/KR100744405B1/en
Application granted granted Critical
Publication of KR100744405B1 publication Critical patent/KR100744405B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136231Active matrix addressed cells for reducing the number of lithographic steps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/09Function characteristic transflective

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

A method for manufacturing a semi-transmissive type LCD is provided to simplify the manufacturing process, by forming embossing patterns in a surface of an ITO(Indium Tin Oxide) layer through cohesion of indium elements so as to easily form a reflective part. A glass substrate(110) has a reflective part(A) and a transmissive part(B). A gate electrode(120), a gate insulating layer(130), an active layer(140), source and drain electrodes(150), a passivation layer(160), and a via-hole(210) are sequentially formed on the glass substrate. An ITO layer is formed on the passivation layer by using a first shadow mask having an opening region corresponding to the reflective part. An embossing pattern is formed in a surface of the ITO layer by reducing the ITO layer to indium elements through H2 plasma treatment and cohesively growing the reduced indium elements. A reflective plate(190) is formed on the ITO layer having an embossing pattern by using the first shadow mask again. A transparent electrode(200) is formed on the passivation layer including the reflective plate and the via-hole by using a second shadow mask having an opening region corresponding to the transmissive part.

Description

반투과형 액정표시장치 제조방법{Method for fabricating transflective type LCD device}Method for fabricating transflective liquid crystal display {Method for fabricating transflective type LCD device}

도 1a 내지 도 1g는 종래 반투과형 액정표시장치 제조방법을 순차적으로 나타낸 단면도.1A to 1G are cross-sectional views sequentially illustrating a method of manufacturing a conventional transflective liquid crystal display device.

도 2a 내지 도 2h는 도 2의 순서에 따라 반투과형 액정표시장치 제조방법을 순차적으로 나타낸 단면도.2A through 2H are cross-sectional views sequentially illustrating a method of manufacturing a transflective liquid crystal display device in the order of FIG. 2;

도 3은 본 발명의 실시예에 따른 반투과형 액정표시장치 제조방법을 순차적으로 나타낸 순서도.3 is a flowchart sequentially illustrating a method of manufacturing a transflective liquid crystal display according to an exemplary embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

110 : 유리기판 120 : 게이트전극110: glass substrate 120: gate electrode

130 : 게이트절연막 140 : 액티브층130: gate insulating film 140: active layer

150 : 소스/드레인전극 160 : 패시베이션층150 source / drain electrodes 160 passivation layer

180 : ITO층 182 : 엠보싱을 갖는 ITO층180: ITO layer 182: ITO layer with embossing

190 : 반사판 200 : 투명전극190: reflector 200: transparent electrode

210 : 비아홀 220 : 제1 섀도우 마스크210: via hole 220: first shadow mask

230 : 제2 섀도우 마스크 A : 반사부230: second shadow mask A: reflector

B : 투과부B: transmission part

본 발명은 반투과형 액정표시장치 제조방법에 관한 것으로서, 보다 상세하세는, 반사부에 마련된 ITO층을 플라즈마 처리에 의하여 엠보싱 형태로 형성하는 반투과형 액정표시장치 제조방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a transflective liquid crystal display device, and more particularly, to a method of manufacturing a transflective liquid crystal display device in which an ITO layer provided on a reflecting portion is formed in an embossed form by plasma treatment.

일반적으로 반투과형 액정표시장치는 하나의 화소 영역 내에 투과 영역과 반사 영역이 공존하여 어두운 환경에서는 반투과형 액정표시장치에 내장된 내부 광원을 이용하여 투과형으로 사용하고, 밝은 환경에서는 반투과형 액정표시장치 외부의 주변광을 활용하는 반사형으로 사용하는 액정표시장치를 말한다.In general, the transflective liquid crystal display device is used as a transmissive type by using an internal light source built in the transflective liquid crystal display device in a dark environment because the transmissive area and the reflective area coexist in one pixel area, and the transflective liquid crystal display device in a bright environment. Refers to a liquid crystal display device used as a reflection type utilizing external ambient light.

이러한 반투과형 액정표시장치는 반사부에 레진층을 마련하고, 반사부에서의 반사 효율을 향상시키기 위하여 레진층의 표면을 요철 형태로 형성한 후, 이 요철 형태의 표면에 금속막을 증착시킴에 의해 반사부를 형성한다.In such a semi-transmissive liquid crystal display, a resin layer is formed in the reflecting portion, and the surface of the resin layer is formed in the form of irregularities in order to improve the reflection efficiency in the reflecting portion, and then a metal film is deposited on the surface of the irregularities. The reflecting portion is formed.

그런데, 이와 같은 방법에 의한 반사부 형성은 요철이 형성된 레진층을 마련하기 위한 별도의 마스크 공정이 필요하여 그 공정이 복잡해지는 문제점이 있다.However, in the formation of the reflecting part by the above method, a separate mask process for providing a resin layer having irregularities is required, and thus, the process is complicated.

자세하게, 도 1a 내지 도 1g는 종래 반투과형 액정표시장치 제조방법을 순차적으로 나타낸 단면도로서, 이를 설명하면 다음과 같다. 1A to 1G are cross-sectional views sequentially illustrating a method of manufacturing a conventional transflective liquid crystal display, which will be described below.

먼저, 도 1a에 도시된 바와 같이, 반사부(A)와 투과부(B)로 구획된 유리기판(11) 상에 감광막 도포, 노광 및 현상 공정을 통해 감광막패턴을 형성하는 공정 및 이를 이용한 식각 공정을 포함하는 마스크 공정(제1마스크 공정)을 통해 게이트 전극(12)을 형성한 후, 상기 게이트전극(12)을 덮도록 게이트절연막(13)을 형성한다. First, as illustrated in FIG. 1A, a process of forming a photoresist pattern on a glass substrate 11 partitioned into a reflection part A and a transmission part B through an application, exposure, and development process and an etching process using the same. After the gate electrode 12 is formed through a mask process (first mask process) including the gate electrode 12, the gate insulating layer 13 is formed to cover the gate electrode 12.

그런다음, 도 1b에 도시된 바와 같이, 게이트절연막(13) 상에 비정질실리콘층과 도핑된 비정질실리콘층을 차례로 증착한 후, 제2마스크 공정을 통해 상기 도핑된비정질실리콘층과 비정질실리콘층을 패터닝하여 게이트전극(12) 상부의 게이트절연막 부분 상에 액티브층(14)을 형성한다.Next, as shown in FIG. 1B, an amorphous silicon layer and a doped amorphous silicon layer are sequentially deposited on the gate insulating layer 13, and then the doped amorphous silicon layer and the amorphous silicon layer are formed through a second mask process. Patterning is performed to form an active layer 14 on the gate insulating film portion above the gate electrode 12.

이어서, 도 1c에 도시된 바와 같이, 액티브층(14)을 포함하는 게이트절연막(13) 상에 소오스/드레인 금속막을 증착한 후, 제3마스크 공정을 통해 상기 금속막을 패터닝하여 소스/드레인전극(15)을 형성한다. Subsequently, as illustrated in FIG. 1C, a source / drain metal film is deposited on the gate insulating film 13 including the active layer 14, and then patterned to form a source / drain electrode by patterning the metal film through a third mask process. 15).

그다음, 도 1d에 도시된 바와 같이, 소스/드레인전극(15)이 형성된 기판 결과물 상에 제4마스크 공정을 통해 레진층(17)을 형성한다. 상기 레진층(17)은 엠보싱 형성을 위해 형성하는 것으로, 반사부(A)에 해당하는 게이트절연막 부분 상에만 선택적으로 형성하며, 이러한 레진층(17)은 레진패턴들이 일정 간격으로 이격되는 형태로 형성한다. Next, as shown in FIG. 1D, the resin layer 17 is formed on the substrate product on which the source / drain electrodes 15 are formed through a fourth mask process. The resin layer 17 is formed to form embossing, and is selectively formed only on a portion of the gate insulating layer corresponding to the reflective portion A. The resin layer 17 is formed such that the resin patterns are spaced at regular intervals. Form.

다음으로, 도 1e에 도시된 바와 같이, 레진층(17)이 형성된 기판 결과물 상에 패시베이션층(16)을 형성한다. 이때, 상기 레진층(17)으로 인해 반사부(A)에 형성된 패시베이션층(16)의 표면에 요철, 즉, 엠보싱이 형성된다. 상기 엠보싱을 갖는 패시베이션층(16) 상에 반사도가 우수한 금속막을 증착한 후, 제5마스크 공정을 통해 상기 금속막을 패터닝하여 반사부(A)에 해당하는 패시베이션층 부분 상에 반사판(19)을 형성한다. 이때, 상기 반사판(19) 또한 엠보싱을 갖는다. Next, as shown in FIG. 1E, the passivation layer 16 is formed on the substrate product on which the resin layer 17 is formed. At this time, irregularities, that is, embossing is formed on the surface of the passivation layer 16 formed in the reflecting portion A due to the resin layer 17. After depositing a metal film having excellent reflectivity on the passivation layer 16 having the embossing, the metal film is patterned through a fifth mask process to form a reflector plate 19 on the portion of the passivation layer corresponding to the reflector A. FIG. do. At this time, the reflecting plate 19 also has embossing.

이어서, 도 1f에 도시된 바와 같이, 제6마스크 공정을 통해 패시베이션층(16)을 패터닝하여 소스/드레인전극(15)을 노출시키는 비아홀(21)을 형성한다. Subsequently, as illustrated in FIG. 1F, the passivation layer 16 is patterned through the sixth mask process to form the via holes 21 exposing the source / drain electrodes 15.

그리고나서, 도 1g에 도시된 바와 같이, 비아홀(21)을 포함한 결과물 상에 투명전극 물질을 형성한 후, 제7마스크 공정을 통해 이를 패터닝해서 소스/드레인전극(15)과 콘택되는 투명전극(20)을 형성한다. 이때, 상기 투명전극(20)은 투과부(B)에 배치되도록 형성함은 물론 반사부(A)의 반사판(19) 상에도 형성하는 것이 가능하다. Then, as illustrated in FIG. 1G, the transparent electrode material is formed on the resultant including the via hole 21, and then patterned through the seventh mask process to contact the source / drain electrode 15. 20). In this case, the transparent electrode 20 may be formed on the reflective plate 19 of the reflective part A as well as the transparent electrode 20.

그러나, 전술한 바와 같은 종래의 방법은 레진 공정을 통해 요철, 즉, 엠보싱을 형성해야 하는 바, 그 공정 제어가 어렵고, 특히, 총 7번의 마스크 공정을 진행해야 하는 것으로 인해 그 공정이 복잡하다는 문제점이 있다.However, the conventional method as described above has to form irregularities, that is, embossing through the resin process, which is difficult to control the process, and in particular, the process is complicated due to having to perform a total of seven mask processes. There is this.

따라서, 본 발명은 상기한 종래의 문제점을 해결하기 위해 안출된 것으로서, 반사부의 엠보싱 형성을 용이하게 할 수 있는 반투과형 액정표시장치 제조방법을 제공함에 그 목적이 있다. Accordingly, an object of the present invention is to provide a method for manufacturing a transflective liquid crystal display device which can be easily embossed to form an embossing portion of a reflecting unit.

또한, 본 발명은 제조 공정을 단순화시킬 수 있는 반투과형 액정표시장치 제조방법을 제공함에 그 다른 목적이 있다. Another object of the present invention is to provide a method of manufacturing a transflective liquid crystal display device, which can simplify the manufacturing process.

상기와 같은 목적을 달성하기 위하여, 본 발명은, 반사부와 투과부로 구획된 유리기판 상에 게이트전극, 게이트절연막, 액티브층, 소스/드레인전극, 패시베니션층 및 비아홀을 순차적으로 형성하는 단계; 상기 패시베이션층 상에 반사부에 대응 해서 개구영역을 갖는 제1 섀도우 마스크를 이용해서 ITO층을 마련하는 단계; 상기 ITO층을 H2 플라즈마 처리하여 In으로 환원시킴과 아울러 환원된 In을 응집 성장시켜 상기 ITO층의 표면에 엠보싱 형상을 형성시키는 단계; 상기 제1 섀도우 마스크를 다시 이용해서 엠보싱을 갖는 ITO층 상에 반사판을 형성하는 단계; 및 상기 반사판 및 비아홀을 포함한 패시베이션층 상에 투과부에 대응해서 개구영역을 갖는 제2 섀도우 마스크를 이용해서 투명전극을 형성하는 단계;를 포함하는 반투과형 액정표시장치 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of sequentially forming a gate electrode, a gate insulating film, an active layer, a source / drain electrode, a passivation layer and a via hole on a glass substrate partitioned by a reflecting portion and a transmitting portion; Providing an ITO layer on the passivation layer by using a first shadow mask having an opening region corresponding to a reflecting portion; Reducing the ITO layer to In by plasma treatment with H 2 and coagulating and reducing the reduced In to form an embossed shape on the surface of the ITO layer; Using the first shadow mask again to form a reflector on the ITO layer with embossing; And forming a transparent electrode on the passivation layer including the reflective plate and the via hole by using a second shadow mask having an opening area corresponding to the transmissive part.

여기서, 상기 H2 플라즈마 처리는 RF 파워를 2.5∼5kw로 하여 In이 0.8∼1.2㎛의 지름으로 성장될 때까지 진행하는 것이 바람직하다. Here, the H 2 plasma treatment is preferably performed until In is grown to a diameter of 0.8 to 1.2 μm with an RF power of 2.5 to 5 kw.

상기 반사판은 Mo과, Al 및 Cr 중 어느 하나를 이용해 140∼160Å 두께로 형성함이 바람직하다. The reflecting plate is preferably formed to a thickness of 140 ~ 160Å by using any one of Mo, Al and Cr.

상기 제2 섀도우 마스크는 반사판 보다 작은 크기의 차폐부를 갖도록 하여 상기 투명전극이 반사판과 전기적으로 연결되도록 하는 것이 바람직하다. Preferably, the second shadow mask has a shielding portion smaller than that of the reflecting plate so that the transparent electrode is electrically connected to the reflecting plate.

(실시예)(Example)

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하도록 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2e는 본 발명의 실시예에 따른 반투과형 액정표시장치 제조방법을 순차적으로 나타낸 단면도이고, 도 3은 본 발명의 실시예에 따른 반투과형 액정표시장치 제조방법에서의 반사판 및 투명전극 형성 과정을 순차적으로 나타낸 순 서도이다. 2A through 2E are cross-sectional views sequentially illustrating a method of manufacturing a transflective liquid crystal display device according to an exemplary embodiment of the present invention, and FIG. 3 is a reflection plate and a transparent electrode in the method of manufacturing a transflective liquid crystal display device according to an exemplary embodiment of the present invention. A flowchart showing the formation process in sequence.

도 2a를 참조하면, 반사부(A) 및 투과부(B)로 구획된 유리기판(110) 상에 제1마스크 공정을 통해 게이트전극(120)을 형성한 후, 상기 게이트전극(120)을 덮도록 기판 전면 상에 게이트절연막(130)을 형성한다. Referring to FIG. 2A, after the gate electrode 120 is formed on the glass substrate 110 partitioned into the reflecting portion A and the transmitting portion B through a first mask process, the gate electrode 120 is covered. The gate insulating film 130 is formed on the entire surface of the substrate.

도 2b를 참조하면, 게이트절연막(130) 상에 비정질실리콘층과 도핑된 비정질실리콘층을 차례로 증착한 후, 제2마스크 공정을 통해 상기 도핑된비정질실리콘층과 비정질실리콘층을 패터닝하여 게이트전극(120) 상부의 게이트절연막 부분 상에 액티브층(140)을 형성한다.Referring to FIG. 2B, an amorphous silicon layer and a doped amorphous silicon layer are sequentially deposited on the gate insulating layer 130, and then the doped amorphous silicon layer and the amorphous silicon layer are patterned through a second mask process to form a gate electrode ( 120, an active layer 140 is formed on the gate insulating layer.

도 2c를 참조하면, 액티브층(140)을 포함한 게이트절연막(130) 상에 소오스/드레인 금속막을 증착한 후, 제3마스크 공정을 통해 상기 금속막을 패터닝하여 소스/드레인전극(150)을 형성한다. Referring to FIG. 2C, after the source / drain metal layer is deposited on the gate insulating layer 130 including the active layer 140, the metal layer is patterned through a third mask process to form the source / drain electrode 150. .

도 2d를 참조하면, 소스/드레인전극(150)을 포함한 기판 전면 상에 패시베이션층(160)을 형성한 후, 제4마스크 공정을 통해 상기 패시베이션층(160)을 패터닝해서 소스/드레인전극(150)의 일부분을 노출시키는 비아홀(210)을 형성한다. Referring to FIG. 2D, after the passivation layer 160 is formed on the entire surface of the substrate including the source / drain electrodes 150, the passivation layer 160 is patterned through a fourth mask process to form the source / drain electrodes 150. To form a via hole 210 exposing a portion.

도 2e 및 도 3을 참조하면, 상기 패시베이션층(160) 상에 제1 섀도우 마스크(shadow mask;220)를 이용해서 ITO층(180)을 증착한다(S1). 여기서, 상기 제1 섀도우 마스크(220)는 ITO층(180)을 증착하고자 하는 영역, 즉, 반사부(A)에 대응하는 부분이 개구된 구조를 갖는다. 2E and 3, an ITO layer 180 is deposited on the passivation layer 160 using a first shadow mask 220 (S1). In this case, the first shadow mask 220 has a structure in which an area to which the ITO layer 180 is to be deposited, that is, a portion corresponding to the reflector A is opened.

도 2f 및 도 3을 참조하면, 이렇게 증착된 ITO층을 H2 플라즈마 처리하여 확 산 계수가 큰 In으로 환원시킨 후(S2), 이 환원된 In을 응집 성장시켜 표면에 엠보싱 형태가 형성되게 한다(S3). 도면부호 182는 엠보싱을 갖는 ITO층을 나타낸다. 2F and 3, the deposited ITO layer is H 2 plasma-treated to reduce In to a large diffusion coefficient (S2), and then the reduced In is aggregated and grown to form an embossed surface on the surface. (S3). Reference numeral 182 denotes an ITO layer having embossing.

여기서, H2 플라즈마 처리 시, RF 파워를 조절하여 엠보싱의 형태를 적정하게 형성하는데, 이 RF 파워는 2.5∼5kw로, 엠보싱의 지름이 0.8∼1.2㎛ 이내가 될 때까지 적용한다.Here, during the H 2 plasma treatment, the RF power is adjusted to form an embossed form appropriately. The RF power is 2.5 to 5 kw, and the application is applied until the diameter of the embossing is within 0.8 to 1.2 μm.

도 2g 및 도 3을 참조하면, 반사부(A)에 대응하는 부분이 개구된 구조를 갖는 제1 섀도우 마스크(220)를 다시 이용해서 엠보싱을 갖는 ITO층(182) 상에 Mo, Al, Cr 등과 같은 메탈로 이루어진 반사판(190)을 형성한다(S4). 여기서, 상기 반사판(190)의 두께는 140∼160Å 정도로 한다. 2G and 3, Mo, Al, Cr on the ITO layer 182 having embossing by using the first shadow mask 220 having the structure in which the portion corresponding to the reflecting portion A is opened again. A reflective plate 190 made of a metal such as is formed (S4). Here, the thickness of the reflecting plate 190 is about 140 ~ 160Å.

도 2h 및 도 3을 참조하면, 반사판(190)이 형성된 영역 이외의 부분, 즉, 투과부(B)에 대응해서 개구부가 형성된 제2 섀도우 마스크(230)를 이용하여 외부로 노출된 비아홀(210)을 포함한 패시베이션층(160) 상에 투명전극(200)을 형성한다. 이때, 상기 제2 섀도우 마스크(230)는 차폐부가 반사판(190) 보다 작은 크기를 갖도록 함으로써, 즉, 반사 영역(B) 보다 작은 크기를 갖도록 함으로써, 상기 투명전극(200)이 반사판(190)과 전기적으로 연결되도록 함이 바람직하다. 2H and 3, a via hole 210 exposed to the outside using a second shadow mask 230 having an opening formed corresponding to a transmissive portion B, that is, a portion other than a region where the reflective plate 190 is formed. Forming a transparent electrode 200 on the passivation layer 160 including. In this case, the second shadow mask 230 has a size smaller than that of the reflective plate 190, that is, the size of the second shadow mask 230 is smaller than that of the reflective region B, so that the transparent electrode 200 may be connected to the reflective plate 190. It is preferred to be electrically connected.

이와 같은 방법으로 반투과형 액정표시장치를 제조하게 되면, In 입자의 응집을 이용해 엠보싱을 형성하므로 반사부의 형성을 단순화시킬 수 있고, 또한, 총 5개의 마스크 공정을 거치게 되어 종래 레진층을 이용하여 7개의 마스크 공정을 거쳐 엠보싱 구조의 반사 영역을 갖는 반투과형 액정표시장치를 제조하는 경우보다 마스크 공정 수가 줄어들게 되며, 따라서, 공정을 단순화시킬 수 있어서 생산성을 향상시킬 수 있게 된다. When the transflective liquid crystal display is manufactured in this manner, the embossing is formed using the aggregation of the In particles, thereby simplifying the formation of the reflecting portion. In addition, a total of five mask processes are used, thereby using a conventional resin layer. The number of mask processes can be reduced compared to the case of manufacturing a transflective liquid crystal display device having a reflective region of an embossed structure through two mask processes, thereby simplifying the process and improving productivity.

상술한 바와 같이 본 발명의 반투과형 액정표시장치 제조방법에 의하면, 종래 레진층을 이용하여 엠보싱 구조를 형성하는 경우보다 반사부의 형성을 단순화시킬 수 있음은 물론 전체 마스크 공정 수가 줄어들게 되어 공정 단순화를 이룰 수 있고, 따라서, 생산성을 향상시킬 수 있다. As described above, according to the method of manufacturing the transflective liquid crystal display device according to the present invention, the formation of the reflecting portion can be simplified as well as the total number of mask processes can be simplified as compared with the case of forming an embossing structure using a conventional resin layer, thereby achieving process simplification. Therefore, productivity can be improved.

본 발명은 상기에 설명되고 도면에 예시된 것에 의해 한정되는 것은 아니며, 다음에 기재되는 청구의 범위 내에서 더 많은 변형 및 변용예가 가능한 것임은 물론이다.It is to be understood that the invention is not limited to that described above and illustrated in the drawings, and that more modifications and variations are possible within the scope of the following claims.

Claims (5)

반사부와 투과부로 구획된 유리기판 상에 게이트전극, 게이트절연막, 액티브층, 소스/드레인전극, 패시베니션층 및 비아홀을 순차적으로 형성하는 단계; Sequentially forming a gate electrode, a gate insulating film, an active layer, a source / drain electrode, a passivation layer, and a via hole on the glass substrate partitioned by the reflecting portion and the transmitting portion; 상기 패시베이션층 상에 반사부에 대응해서 개구영역을 갖는 제1 섀도우 마스크를 이용해서 ITO층을 마련하는 단계; Providing an ITO layer on the passivation layer using a first shadow mask having an opening region corresponding to a reflecting portion; 상기 ITO층을 H2 플라즈마 처리하여 In으로 환원시킴과 아울러 환원된 In을 응집 성장시켜 상기 ITO층의 표면에 엠보싱 형상을 형성시키는 단계; Reducing the ITO layer to In by plasma treatment with H 2 and coagulating and reducing the reduced In to form an embossed shape on the surface of the ITO layer; 상기 제1 섀도우 마스크를 다시 이용해서 엠보싱을 갖는 ITO층 상에 반사판을 형성하는 단계; 및 Using the first shadow mask again to form a reflector on the ITO layer with embossing; And 상기 반사판 및 비아홀을 포함한 패시베이션층 상에 투과부에 대응해서 개구영역을 갖는 제2 섀도우 마스크를 이용해서 투명전극을 형성하는 단계;Forming a transparent electrode on the passivation layer including the reflective plate and the via hole by using a second shadow mask having an opening area corresponding to the transmission part; 를 포함하는 것을 특징으로 하는 반투과형 액정표시장치 제조방법.Semi-transmissive liquid crystal display device manufacturing method comprising a. 제 1 항에 있어서,The method of claim 1, 상기 H2 플라즈마 처리는 RF 파워를 2.5∼5kw로 하여 In이 0.8∼1.2㎛의 지름으로 성장될 때까지 진행하는 것을 특징으로 하는 반투과형 액정표시장치 제조방법.And the H 2 plasma treatment is performed until the In is grown to a diameter of 0.8 to 1.2 mu m with an RF power of 2.5 to 5 kw. 제 1 항에 있어서,The method of claim 1, 상기 반사판은 Mo과, Al 및 Cr 중 어느 하나로 형성하는 것을 특징으로 하는 반투과형 액정표시장치 제조방법.The reflective plate is formed of any one of Mo, Al and Cr. 제 1 항에 있어서,The method of claim 1, 상기 반사판은 140∼160Å 두께로 형성하는 것을 특징으로 하는 반투과형 액정표시장치 제조방법.And the reflecting plate is formed to have a thickness of 140 to 160 140. 제 1 항에 있어서,The method of claim 1, 상기 제2 섀도우 마스크는 반사판 보다 작은 크기의 차폐부를 갖도록 하여 상기 투명전극이 반사판과 전기적으로 연결되도록 하는 것을 특징으로 하는 반투과형 액정표시장치 제조방법.And the second shadow mask has a shielding portion smaller in size than the reflecting plate so that the transparent electrode is electrically connected to the reflecting plate.
KR1020060032525A 2006-04-10 2006-04-10 Method for fabricating transflective type lcd device KR100744405B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060032525A KR100744405B1 (en) 2006-04-10 2006-04-10 Method for fabricating transflective type lcd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060032525A KR100744405B1 (en) 2006-04-10 2006-04-10 Method for fabricating transflective type lcd device

Publications (1)

Publication Number Publication Date
KR100744405B1 true KR100744405B1 (en) 2007-07-30

Family

ID=38499922

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060032525A KR100744405B1 (en) 2006-04-10 2006-04-10 Method for fabricating transflective type lcd device

Country Status (1)

Country Link
KR (1) KR100744405B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130013042A (en) * 2011-07-27 2013-02-06 엘지디스플레이 주식회사 Method of fabricating array substrate for in-plane switching mode liquid crystal display device
KR20130063140A (en) * 2011-12-06 2013-06-14 엘지디스플레이 주식회사 Method of thin film transistor substrate and method of liquid crystal display device using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010104428A (en) * 2000-04-27 2001-11-26 구본준, 론 위라하디락사 Method of Fabricating Liquid Crystal Display Device
JP2003207774A (en) 2001-10-30 2003-07-25 Nec Corp Semi-transmission type liquid crystal display and fabrication method thereof
KR20040070716A (en) * 2003-02-04 2004-08-11 삼성전자주식회사 Transflective type liquid crystal display device and method of manufacturing the same
KR20060029409A (en) * 2004-10-01 2006-04-06 엘지.필립스 엘시디 주식회사 Trans-reflective liquid crystal display device and method for fabricating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010104428A (en) * 2000-04-27 2001-11-26 구본준, 론 위라하디락사 Method of Fabricating Liquid Crystal Display Device
JP2003207774A (en) 2001-10-30 2003-07-25 Nec Corp Semi-transmission type liquid crystal display and fabrication method thereof
KR20040070716A (en) * 2003-02-04 2004-08-11 삼성전자주식회사 Transflective type liquid crystal display device and method of manufacturing the same
KR20060029409A (en) * 2004-10-01 2006-04-06 엘지.필립스 엘시디 주식회사 Trans-reflective liquid crystal display device and method for fabricating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130013042A (en) * 2011-07-27 2013-02-06 엘지디스플레이 주식회사 Method of fabricating array substrate for in-plane switching mode liquid crystal display device
KR101921164B1 (en) * 2011-07-27 2018-11-23 엘지디스플레이 주식회사 Method of fabricating array substrate for in-plane switching mode liquid crystal display device
KR20130063140A (en) * 2011-12-06 2013-06-14 엘지디스플레이 주식회사 Method of thin film transistor substrate and method of liquid crystal display device using the same
KR101903414B1 (en) * 2011-12-06 2018-11-08 엘지디스플레이 주식회사 Method of thin film transistor substrate and method of liquid crystal display device using the same

Similar Documents

Publication Publication Date Title
US8842231B2 (en) Array substrate and manufacturing method thereof
TW200525225A (en) Trans-reflective type liquid crystal display device and method for fabricating the same
KR101300035B1 (en) An array substrate for reflective and trans-flective type liquid crystal display device and method of fabricating the same
WO2013026375A1 (en) Thin film transistor array substrate and its manufacturing method and an electronic device
US9111815B2 (en) Pixel structure, LCD panel, and manufacturing method thereof
CN107946318A (en) A kind of array base palte and preparation method thereof, display panel
WO2004027498A1 (en) Liquid crystal display device
US20070002222A1 (en) Method for manufacturing transflective liquid crystal display
KR100487899B1 (en) Semi-transmission type liquid-crystal display and fabrication method thereof
US20040125288A1 (en) Method of fabricating liquid crystal display device having concave reflector
KR100744405B1 (en) Method for fabricating transflective type lcd device
US8421096B2 (en) Pixel structure and display panel
US20080024702A1 (en) Pixel structure and fabrication method thereof
CN103187366B (en) Method for forming TFT array substrate
CN113488517B (en) Manufacturing method of display panel and photomask
KR100827856B1 (en) Array substrate of transflective type fringe field switching mode liquid crystal display and the method thereof
KR20060124850A (en) Transflective liquid crystal display device
US20090127563A1 (en) Thin film transistor array panel and manufacturing method thereof
JP2010032765A (en) Tft array substrate, and liquid crystal display using the same
KR101658514B1 (en) Method of fabricating an array substrate for trans-flective liquid crystal display device
CN111584424B (en) Array substrate preparation method
KR100978252B1 (en) Fabrication method of liquid crystal display device
KR100678736B1 (en) Manufacture method of transflective lcd device
KR20060088616A (en) Method of manufacturing for liquid crystal display panel
KR100811643B1 (en) 1-step etching method for insulated layer having multi-layer structure

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130612

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140624

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150617

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160616

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170621

Year of fee payment: 11