KR100728739B1 - Automatic control apparatus in AOP Advanced Oxidation Process using Hydrogen Peroxide-CT control unit and the control method - Google Patents

Automatic control apparatus in AOP Advanced Oxidation Process using Hydrogen Peroxide-CT control unit and the control method Download PDF

Info

Publication number
KR100728739B1
KR100728739B1 KR1020050119593A KR20050119593A KR100728739B1 KR 100728739 B1 KR100728739 B1 KR 100728739B1 KR 1020050119593 A KR1020050119593 A KR 1020050119593A KR 20050119593 A KR20050119593 A KR 20050119593A KR 100728739 B1 KR100728739 B1 KR 100728739B1
Authority
KR
South Korea
Prior art keywords
hydrogen peroxide
aop
advanced oxidation
oxidation process
measuring device
Prior art date
Application number
KR1020050119593A
Other languages
Korean (ko)
Other versions
KR20070060314A (en
Inventor
오현제
지재성
황태문
정진홍
최준석
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Priority to KR1020050119593A priority Critical patent/KR100728739B1/en
Publication of KR20070060314A publication Critical patent/KR20070060314A/en
Application granted granted Critical
Publication of KR100728739B1 publication Critical patent/KR100728739B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/23O3

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

본 발명은 종래의 고도산화공정의 산화능 제어를 구현할 수 없는 문제점을 해결하기 위한 것으로, 고도산화공정(AOP : Advanced Oxidation Process)에서 실시간으로 잔류과산화수소농도를 측정하고, 과산화수소-CT(산화능)제어를 이용한 고도산화공정(AOP)의 자동제어장치 및 제어방법에 관한 것으로, 고도산화공정(AOP)의 핵심적인 운전인자인 과산화수소(H2O2)의 주입량을 연속으로 결정하여 제어하는 과산화수소 연속계측에 의한 고도산화공정(AOP)의 자동제어장치 및 제어방법에 관한 것이다.The present invention is to solve the problem that can not implement the control of the oxidation performance of the conventional advanced oxidation process, to measure the residual hydrogen peroxide concentration in real time in the advanced oxidation process (AOP: Advanced Oxidation Process), hydrogen peroxide-CT (oxidation capacity) control The present invention relates to an automatic control apparatus and a control method of the advanced oxidation process (AOP), which is used to continuously measure and control the injection amount of hydrogen peroxide (H 2 O 2 ), which is a key operating factor of the advanced oxidation process (AOP). The present invention relates to an automatic control apparatus and a control method of an advanced oxidation process (AOP).

따라서 본 발명에 의하면, 고도산화공정(AOP)에서 과산화수소-CT값을 만족하도록 운전함으로써 유입수의 수질변화에 대응하여 수처리가 가능하고, 처리수질의 안정성이 확보되며, 자동제어시스템으로의 연계가 가능할 뿐만 아니라, 기도입된 오존공정 또는 고도산화공정(AOP)에 쉽게 적용시킬 수 있고, 과산화수소 주입량을 정확히 산정하여 항상 적정한 농도를 유지할 수 있으므로 과산화수소 주입설비의 에너지 절감 등 운영상 최적화 구현이 가능하다.Therefore, according to the present invention, by operating to satisfy the hydrogen peroxide-CT value in the advanced oxidation process (AOP), it is possible to treat the water in response to the water quality change of the influent, to ensure the stability of the treated water quality, and to be linked to the automatic control system. In addition, it can be easily applied to the air-injected ozone process or advanced oxidation process (AOP), and it is possible to precisely calculate the hydrogen peroxide injection amount and always maintain the proper concentration, thereby implementing operational optimization such as energy saving of the hydrogen peroxide injection facility.

고도산화공정(AOP), 과산화수소 주입량 결정, 실시간 유량측정장치, OH 라디칼, 고도산화공정(AOP) 콘트롤 유닛, 자동제어 Advanced oxidation process (AOP), hydrogen peroxide injection amount determination, real time flow measurement device, OH radical, advanced oxidation process (AOP) control unit, automatic control

Description

과산화수소-CT제어유닛을 이용한 고도산화공정의 자동제어장치 및 제어방법{Automatic control apparatus in AOP (Advanced Oxidation Process) using Hydrogen Peroxide-CT control unit and the control method}Automatic control apparatus in AOP (Advanced Oxidation Process) using Hydrogen Peroxide-CT control unit and the control method}

도1은 본 발명에 따른 일실시예로서 실시간 과산화수소-CT제어유닛을 이용한 고도산화공정(AOP)의 자동제어장치의 개략적인 구성도. 1 is a schematic configuration diagram of an automatic control apparatus of an advanced oxidation process (AOP) using a real-time hydrogen peroxide-CT control unit according to an embodiment of the present invention.

도2는 본 발명의 따른 과산화수소 측정장치와 유량측정장치를 이용한 고도산화공정(AOP)의 제어방법을 나타낸 개략적은 흐름도. Figure 2 is a schematic flowchart showing a control method of an advanced oxidation process (AOP) using the hydrogen peroxide measuring device and the flow rate measuring device according to the present invention.

도3는 본 발명에 따른 과산화수소 측정장치의 상세 구성도.Figure 3 is a detailed configuration of the hydrogen peroxide measuring device according to the present invention.

도4는 본 발명에 따른 실시간 과산화수소 농도 측정을 위한 과산화수소 측정장치의 각종 밸브 개폐순서를 나타낸 시간 순서도.Figure 4 is a time flow chart showing the various valve opening and closing procedures of the hydrogen peroxide measuring device for real-time hydrogen peroxide concentration measurement according to the present invention.

도5는 과산화수소측정장치의 연속측정방법에 적용된 과산화수소 측정방법의 원리에 대한 화학식.5 is a chemical formula for the principle of the hydrogen peroxide measuring method applied to the continuous measuring method of the hydrogen peroxide measuring apparatus.

도6는 본 발명에 따른 과산화수소 측정장치의 개략적인 배치도.Figure 6 is a schematic layout of the hydrogen peroxide measuring device according to the present invention.

도7은 본 발명에 의한 고도산화공정(AOP)의 과산화수소-CT 제어에 따른 운전의 일예로서 주입오존농도에 비례하여 연속적으로 측정되고 있는 과산화수소 농도에 대한 운전한 결과에 대한 그래프.Figure 7 is a graph of the results of the operation for the hydrogen peroxide concentration continuously measured in proportion to the injection ozone concentration as an example of operation according to the hydrogen peroxide-CT control of the advanced oxidation process (AOP) according to the present invention.

도8은 본 발명에 의한 고도산화공정(AOP)의 과산화수소-CT 제어시 고도산화공정(AOP)공정에서 UV 흡수물질(UV254)의 처리효율에 대한 그래프.Figure 8 is a graph of the treatment efficiency of the UV absorbing material (UV 254 ) in the advanced oxidation process (AOP) during hydrogen peroxide-CT control of the advanced oxidation process (AOP) according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

1 : 원수유입관 2 : 유입유량계 1: raw water inflow pipe 2: inflow flow meter

3 : 고도산화공정(AOP) 접촉설비 4 : UV 램프  3: Advanced oxidation process (AOP) contact facility 4: UV lamp

5 : 처리수 유출관 6 : 과산화수소 주입펌프  5: treated water outlet pipe 6: hydrogen peroxide injection pump

7 : 과산화수소 저장조 8 : 오존발생장치  7: hydrogen peroxide storage tank 8: ozone generator

9 : 발생 오존 모니터 10 : 과산화수소 측정장치 9: Ozone Occurrence Monitor 10: Hydrogen Peroxide Measuring Device

11 : 과산화수소-CT 제어유닛 11: hydrogen peroxide-CT control unit

본 발명은 수처리 기술로서, 과산화수소 연속계측에 의한 고도산화공정(AOP)의 자동제어장치 및 제어방법에 관한 것이다. 보다 구체적으로 본 발명은 유입유량 및 잔류과산화수소농도에 의한 과산화수소-CT(Concentration×Contact Time) 즉, 고도산화공정(AOP)접촉설비내에서 과산화수소의 산화능을 나타내는 값으로부터 고도산화공정(AOP : Advanced Oxidation Process)의 핵심 운전인자인 과산화수소의 주입농도를 자동적으로 제어하는 과산화수소-CT제어유닛을 이용한 고도산화공정(AOP)의 자동제어장치 및 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic control apparatus and a control method of an advanced oxidation process (AOP) by continuous measurement of hydrogen peroxide. More specifically, the present invention relates to hydrogen peroxide-CT (Concentration × Contact Time) according to the inflow flow rate and the residual hydrogen peroxide concentration, that is, from the value indicating the oxidation ability of hydrogen peroxide in the AOP contact facility. The present invention relates to an automatic control apparatus and method for an advanced oxidation process (AOP) using a hydrogen peroxide-CT control unit that automatically controls the injection concentration of hydrogen peroxide, which is a key driving factor of the process.

일반적으로 오존(O3)을 이용하여 원수를 정수하는 기술인 오존처리법은 산화력이 강한 오존으로 물속의 불순물을 제거하는 정수법으로서, 산화력에 기인되는 오존의 특성인 살균, 탈취, 탈색, 유,무기물과의 반응성을 이용하는 것이고 기존의 염소처리법에 비해 정수력이 월등히 뛰어나다. In general, ozone treatment, which is a technology to purify raw water using ozone (O 3 ), is a water purification method that removes impurities in water with ozone having strong oxidizing power. It uses the reactivity with and is much better than the conventional chlorine treatment.

또한, 오존은 공정설치 및 운용과 산화력 면에서 염소 등과 같은 다른 산화제에 비해 다양한 장점등을 갖고 있을 뿐만 아니라, 특히 철, 망간 등 일부 중금속도 제거하고, 페놀이나 난분해성 물질과 같은 오염물질의 제거에도 우수한 효과를 나타내고 있으며, 수중의 유기물질들에 대한 제거효과도 탁월한 것으로 알려져 있다. 그리고 무엇보다도 염소살균시 생길 수 있는 발암물질인 트리할로메탄(THM)을 만들지 않는다는 장점과 염소에서와 같은 독특한 냄새가 없어서 물맛도 좋다.In addition, ozone has various advantages over other oxidizing agents such as chlorine in process installation and operation, and oxidizing power, and also removes some heavy metals such as iron and manganese, and removes contaminants such as phenol and hardly decomposable substances. It also shows an excellent effect, and is known to be excellent in the removal effect on the organic substances in the water. And best of all, it does not make trihalomethane (THM), a carcinogen that can occur during chlorine disinfection, and tastes good because it does not have a unique smell like chlorine.

이에 따라 오존의 산화력을 이용하는 정수기술이 많이 연구되고 있는 실정이고, 일반적으로 오존의 산화력을 이용하는 정수기술은 오존을 단독으로 활용하는 오존공정과, 오존처리시 산화력에 영향을 주는 OH 라디칼을 보다 많이 생성시키기 위하여 오존과 동시에 과산화수소(H2O2)를 주입하여 산화력을 향상시킨 고도산화공정(AOP)이 대표적으로 널리 활용되고 있으며, 고도산화공정(AOP)에서 OH 라디칼을 보다 많이 생성시키기 위한 조절인자로는 pH조정, 자외선(U.V.)조사 등을 이용하기도 한다. As a result, a lot of water purification technologies using oxidizing power of ozone have been studied. Generally, water purification technology using oxidizing power of ozone has more ozone process using ozone alone and more OH radicals affecting oxidation power during ozone treatment. The advanced oxidation process (AOP), which improves the oxidative power by injecting hydrogen peroxide (H 2 O 2 ) simultaneously with ozone to produce, is widely used, and is controlled to generate more OH radicals in the advanced oxidation process (AOP). As a factor, pH adjustment and ultraviolet (UV) irradiation may be used.

이 중에서 오존공정은 전체 정수처리 시스템 중에서 설치되는 위치에 따라 크게 전오존공정과 후오존공정으로 구분되어 있으며, 고도산화공정(AOP)은 전세계적으로 연구가 진행되어 현재 실용화단계에 있는 정수기술이다. Among these, ozone process is divided into pre-ozone process and post-ozone process according to the installed position among the whole water treatment system. Advanced oxidation process (AOP) is a water purification technology that is being put into practical use in the world. .

전오존공정의 경우, 응집 및 침전효율의 향상과, 철 및 망간의 제거와, 조류 제거, 맛 및 냄새유발물질의 제거에 더하여 색도 제거 등을 도입목적으로 하고 있으며, 후오존공정은 미량유기오염물질의 제거와 난분해성 유기물질의 생분해도 증대, 발암물질인 트리할로메탄전구물질(THMFP) 제거 및 병원성미생물의 소독 등을 목적으로 도입하고 있다. In the ozone process, the purpose is to improve the flocculation and sedimentation efficiency, remove iron and manganese, remove algae, remove taste and odor-causing substances, and remove color. It is introduced to remove substances, increase the biodegradability of hardly degradable organic substances, remove trihalomethane precursors (THMFP), which are carcinogens, and disinfect pathogenic microorganisms.

일반적으로 오존제어방식은 파일럿(Pilot) 실험으로부터 얻어진 결과를 토대로 유입유량에 비례하는 일정농도의 오존을 주입하는 수량비례제어방식과 유출수의 잔류오존농도를 일정하게 유지하는 잔류오존제어방식이 이용되고 있으며, 오존주입량은 오존발생장치의 오존발생농도 및 오존화공기의 풍량으로 조절하고 있다. In general, the ozone control method is based on the results obtained from pilot experiments, and a proportional control method for injecting ozone in proportion to the inflow flow rate and a residual ozone control method for maintaining the residual ozone concentration in the effluent are used. In addition, the ozone injection amount is controlled by the ozone generation concentration of the ozone generator and the air volume of the ozonated air.

한편, 후오존공정에서는 유입수질의 변화에 따른 오존주입농도의 실시간 제어가 이루어지지 않고 있으며, 오존처리시의 효율 및 운전성 평가가 어렵기 때문에 처리효율성에 대한 검증이 불충분한 실정이다. 또한, 후오존공정의 후속공정인 생물활성탄(BAC, Biological Activated Carbon)공정에 미치는 영향이 불명확하여 현장 종사자가 적정 주입농도의 설정에 대해서 많은 어려움을 호소하고 있으며, 오존의 과다 주입으로 인해 발생하는 산화부산물질의 제어방안이 확립되어 있지 않다. On the other hand, in the ozone process, real-time control of ozone injection concentration is not performed according to the change of inflow water quality, and verification of treatment efficiency is insufficient because it is difficult to evaluate the efficiency and operability during ozone treatment. In addition, the impact on the Biological Activated Carbon (BAC) process, which is a successor to the after ozone process, is unclear, and thus, the field workers complain a lot of difficulty in setting an appropriate injection concentration. Control measures for oxidized by-products have not been established.

또한, 유입유량의 일변화가 반영되고 있지 않아서 유입유량 대 오존주입량의 비가 과다하게 변화하고 있으며, 이로 인한 오존의 과다주입 가능성과 후속공정인 생물활성탄공정에 대한 악영향, 그리고 산화부산물질의 과다생성 가능성도 매우 높은 실정이다.In addition, the change in inflow flow rate is not reflected, and the ratio of inflow flow rate to ozone injection flow is excessively changed, resulting in the possibility of overinjection of ozone, adverse effects on the subsequent bioactive carbon process, and overproduction of oxidative by-products. The possibility is also very high.

그래서, 오존공정과 고도산화공정(AOP)에서 자동제어시스템의 구축을 위해서는 제어인자의 선정이 매우 중요하며, 현장적용을 위해서는 많은 시간과 노력이 필요하다.Therefore, the selection of control factors is very important for the construction of the automatic control system in the ozone process and the advanced oxidation process (AOP), and it takes a lot of time and effort for the field application.

이러한 문제점을 해결하기 위해서는 유입유량의 변동이 제어시스템에 반영되어야 하며, 자동제어시스템의 구축을 위해서는 수질을 자동으로 분석하는 실시간 수질분석장치의 도입과 이들 결과로부터 도출된 데이터를 데이터베이스화하여 제어할 수 있는 전문가시스템의 도입이 요구되고 있으나, 이와 같이 유입유량의 변동을 반영하고, 수질자동분석장치 및 전문가시스템을 도입하여 수량비례제어방식을 최적화한다고 하더라도 이를 위해서는 파일럿 실험을 통한 데이터의 수집이 필수적으로 요구되고, 수질자동분석장치에 의해서 분석되는 원수의 수질특성을 제어시스템에 반영하는 데에는 한계가 있으므로 최적의 운전효과를 기대하기 곤란하다.In order to solve this problem, changes in inflow flow should be reflected in the control system.In order to construct an automatic control system, the introduction of a real-time water quality analysis device that analyzes water quality automatically and the data derived from these results can be controlled by database. Although the introduction of the expert system is required, the data collection through pilot experiment is essential for reflecting the fluctuations in the inflow flow and optimizing the proportional control method by introducing the automatic water quality analysis device and expert system. It is difficult to expect the optimum driving effect because there is a limit in reflecting the water quality characteristics of raw water analyzed by the automatic water quality analysis device to the control system.

또한, 고도산화공정(AOP)은 미량유기오염물질의 산화에 가장 큰 목적이 있으므로 오염물질에 대한 충분한 산화조건을 만족시키기 위해서는 산화능에 대한 제어방식의 도입이 필요한데 종래기술에 있어서는 고도산화공정(AOP)의 산화능제어를 구현할 수 없다는 문제점을 지니고 있다. In addition, the advanced oxidation process (AOP) has the biggest purpose for the oxidation of trace organic pollutants, so in order to satisfy the sufficient oxidation conditions for the pollutants, it is necessary to introduce a control method for the oxidation ability. There is a problem in that it is impossible to implement oxidative control.

상술된 문제점을 해결하기 위해서는 우선 유입유량의 변화와 이에 따른 수처리 시스템의 고도산화공정(AOP)에서 접촉설비 내에 라디칼 산화능을 평가할 수 있는 과산화수소-CT값의 변화가 수처리 제어시스템에 반영되어야 하고, 상기 고도산 화공정(AOP)접촉설비 내의 과산화수소-CT값을 설정하여 제어할 수 있어야 하나, 종래기술에 의하면 실시간 과산화수소 측정장치 및 제어인자로의 적용성 등과 같은 문제점들이 해결되지 못하는 문제점을 지니고 있다.In order to solve the above problems, first, the change of inflow flow rate and the change of hydrogen peroxide-CT value which can evaluate the radical oxidation ability in the contact facility in the advanced oxidation process (AOP) of the water treatment system should be reflected in the water treatment control system. The hydrogen peroxide-CT value in the AOP contact facility should be set and controlled, but according to the prior art, problems such as real-time hydrogen peroxide measuring device and applicability to control factors cannot be solved.

본 발명은 상기의 제반 문제점을 해결하기 위하여 제안된 것으로써, 본 발명의 첫번째 목적은 고도산화공정(AOP)에서 실시간 과산화수소 측정장치를 이용하여 과산화수소-CT를 측정하고, 이를 운전인자로 반영하여 고도산화공정 접촉지내에서 안정된 과산화수소-CT를 유지하고, 수질 및 수량의 변화에 실시간으로 대응하고, 처리수질의 안전성을 확보하며, 기존 처리시설에 연계가 가능하고, 상기 실시간 과산화수소 측정장치의 분석결과를 이용하여 정확한 과산화수소-CT제어가 가능한 고도산화공정의 자동제어장치 및 방법을 제공하기 위한 것이다.The present invention has been proposed to solve the above problems, the first object of the present invention is to measure the hydrogen peroxide-CT using a real-time hydrogen peroxide measuring device in the advanced oxidation process (AOP), and reflects this as a driving factor Maintain stable hydrogen peroxide-CT in the contact point of the oxidation process, respond to changes in water quality and quantity in real time, secure the safety of treated water, connect to existing treatment facilities, and analyze the results of the real-time hydrogen peroxide measuring device. The purpose of the present invention is to provide an automatic control apparatus and method for an advanced oxidation process capable of accurate hydrogen peroxide-CT control.

본 발명의 두번째 목적은 수처리시스템 내에서 고도산화공정으로 유입되는 배관의 일단에 설치된 온라인 과산화수소측정장치를 통해 실시간 측정된 잔류과산화수소농도를 운전인자로 활용할 수 있도록 설정한 과산화수소-CT값에 항상 만족하도록 제어하는 고도산화공정(AOP) 자동제어장치 및 그 방법을 제공하기 위한 것이다.The second object of the present invention is to always satisfy the hydrogen peroxide-CT value set to utilize the residual hydrogen peroxide concentration measured in real time through the on-line hydrogen peroxide measuring device installed at one end of the pipe flowing into the high oxidation process in the water treatment system. An AOP automatic control apparatus for controlling and a method thereof are provided.

본 발명은 원수가 유입되고, 오존과 UV램프 또는 오존과 과산화수소가 선택 적으로 공급되어 반응하는 고도산화공정(AOP)접촉설비; 상기 고도산화공정(AOP)접촉설비에 연결되어 유출수에 대하여 잔류과산화수소농도를 측정하는 과산화수소측정장치; 상기 고도산화공정(AOP)접촉설비에 오존을 공급하는 오존발생장치; 상기 고도산화접촉설비에 유입되는 유량을 측정하는 유입유량계; 상기 고도산화접촉설비에 과산화수소를 공급하는 과산화수소공급장치; 및 상기 유입유량계, 과산화수소측정장치, 과산화수소공급장치, 및 오존발생장치와 연결되어 각각의 측정값에 따라 과산화수소의 공급량을 제어하는 과산화수소 CT제어 유닛을 포함하는 과산화수소-CT제어유닛을 이용한 고도산화공정(AOP)의 자동제어장치를 제공한다.The present invention is an advanced oxidation process (AOP) contact facility that raw water is introduced, and ozone and UV lamps or ozone and hydrogen peroxide are selectively supplied and reacted; A hydrogen peroxide measuring device connected to the AOP contact facility to measure residual hydrogen peroxide concentration with respect to the effluent; An ozone generator for supplying ozone to the advanced oxidation process (AOP) contact facility; An inflow flow meter for measuring the flow rate flowing into the advanced oxidation contacting facility; A hydrogen peroxide supply device for supplying hydrogen peroxide to the highly oxidative contact facility; And an advanced oxidation process using a hydrogen peroxide-CT control unit including a hydrogen peroxide CT control unit connected to the inflow flow meter, the hydrogen peroxide measuring device, the hydrogen peroxide supply device, and the ozone generator to control the supply amount of hydrogen peroxide according to each measured value. AOP) provides automatic control device.

또한 본 발명은 고도산화공정(AOP)접촉설비로 유입되는 원수의 유입유량을 유입유량계를 통해 측정하고, 상기 고도산화공정(AOP)접촉설비를 통과하는 원수의 잔류과산화수소농도를 과산화수소 측정장치를 통해 실시간으로 측정하고, 상기 과산화수소 측정장치를 통해 실시간으로 측정한 잔류과산화수소농도와 상기 유입유량계에 의해 측정된 유입유량에 의해 과산화수소- CT제어유닛에서 CT값을 산출하고, 수처리시스템의 운전자에 의해 설정되어 있는 CT값과 측정된 잔류과산화수소농도에 의한 CT값을 비교하여 그 편차가 소정비율 미만인가를 판단하고, 상기 편차 판단에 따라 과산화수소의 주입량이 결정되면 결정된 주입량에 따라 오존발생장치와 과산화수소 주입펌프를 조절하고, 과산화수소를 주입하는 과산화수소 측정장치와 유량측정장치를 이용한 고도산화공정(AOP)의 제어방법을 제공한다. In addition, the present invention measures the inflow flow rate of the raw water flowing into the advanced oxidation process (AOP) contact facility through the inflow flowmeter, and the residual hydrogen peroxide concentration of the raw water passing through the advanced oxidation process (AOP) contact facility through the hydrogen peroxide measuring device Measured in real time, the CT value is calculated in the hydrogen peroxide-CT control unit by the residual hydrogen peroxide concentration measured in real time through the hydrogen peroxide measuring device and the inflow flow rate measured by the inflow flow meter, and is set by the operator of the water treatment system. Comparing the CT value with the measured residual hydrogen peroxide concentration to determine whether the deviation is less than the predetermined ratio, and if the injection amount of hydrogen peroxide is determined according to the deviation determination, the ozone generator and the hydrogen peroxide injection pump are determined according to the determined injection amount. The hydrogen peroxide measuring device and the flow measuring device that It provides a control method for the advanced oxidation process (AOP).

그리고, 설정되어 있는 CT값과 측정된 잔류과산화수소농도에 의한 CT값의 편차가 소정비율이상이면, 측정된 유입유량과 잔류과산화수소농도에 의해 설정된 CT 값을 얻기 과산화수소 주입량을 데이터베이스에 요청하여 과산화수소의 주입량을 결정하는 것이 바람직하다. 또한 설정되어 있는 CT값과 측정된 잔류과산화수소농도에 의한 CT값의 편차의 소정비율은 10%인 것이 바람직하다. If the CT value is different from the CT value set by the measured residual hydrogen peroxide concentration or more than the predetermined ratio, the CT value set by the measured inflow flow rate and the residual hydrogen peroxide concentration is obtained, and the hydrogen peroxide injection amount is requested to the database. It is desirable to determine. Moreover, it is preferable that the predetermined ratio of the deviation of the CT value by the set CT value and the measured residual hydrogen peroxide concentration is 10%.

상기와 같이 이루어진 본 발명은 수처리 시스템의 고도산화공정(AOP)으로 유입되는 유입수의 유량과 잔류과산화수소농도를 실시간으로 측정하여 과산화수소의 적정주입농도를 산출하고 과산화수소 공급펌프를 제어하여 적정량을 자동주입하게 되므로 처리되는 수질을 일정하게 제어하게 되므로 원수의 유입량과 수질의 변화에도 실시간으로 대응할 수 있어서 안전하고 신뢰성이 향상되는 수처리를 하게 되는 것이다. The present invention made as described above is to measure the flow rate of the inflow water flowing into the advanced oxidation process (AOP) of the water treatment system and the residual hydrogen peroxide concentration in real time to calculate the proper injection concentration of hydrogen peroxide and to control the hydrogen peroxide supply pump to automatically inject the appropriate amount Therefore, the water quality to be treated is controlled constantly, so that it can respond in real time to the inflow of raw water and changes in the water quality, thereby making the water treatment safe and reliable.

이하 상기의 목적을 구체적으로 실현할 수 있는 본 발명의 바람직한 실시예를 본 발명이 속한 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부한 도면를 참고하여 설명한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention for realizing the above objects will be described with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention.

본 발명의 바람직한 실시예를 단지 예로서만 상세히 설명하기로 한다. 그러나 본 발명의 장치 및 방법은 본 발명의 정신을 벗어나지 않는 한 다른 실시예에도 유사하게 적용할 수 있다. Preferred embodiments of the invention will be described in detail by way of example only. However, the apparatus and method of the present invention can be similarly applied to other embodiments without departing from the spirit of the present invention.

도1은 본 발명에 따른 일실시예로서 실시간 과산화수소-CT제어유닛을 이용한 고도산화공정(AOP)의 자동제어장치의 개략적 구성도이고, 도면에 나타낸 바와 같이, 본 발명에 따른 자동제어장치는 원수유입관(1), 유입유량계(2), 고도산화공정(AOP)접촉설비(3), UV램프(4), 처리수 유출관(5), 과산화수소 주입펌프(6), 과산화수소 저장조(7), 오존발생장치(8), 발생오존모니터(9), 과산화수소 측정장치(10), 및 과산화수소-CT 제어유닛(11)을 포함한다.1 is a schematic configuration diagram of an automatic control apparatus for an advanced oxidation process (AOP) using a real-time hydrogen peroxide-CT control unit according to an embodiment of the present invention. As shown in the drawing, the automatic control apparatus according to the present invention is a circle. Water inlet pipe (1), inflow flowmeter (2), advanced oxidation process (AOP) contact facility (3), UV lamp (4), treated water outlet pipe (5), hydrogen peroxide injection pump (6), hydrogen peroxide storage tank (7) , An ozone generator 8, an ozone generator 9, a hydrogen peroxide measuring device 10, and a hydrogen peroxide-CT control unit 11.

상기 고도산화공정(AOP)접촉설비(2)는 원수유입관(1)에 의해 유입되는 원수에 오존 및 UV램프 또는 오존 및 과산화수소를 공급하여 반응하기 위한 것이고, 유입유량계(2)는 상기 원수유입관(1)의 일측에 장착된다. 그리고, 상기 과산화수소측정장치(10)는 고도산화공정(AOP)접촉설비의 유출수에서 잔류과산화수소농도를 실시간으로 측정하기 위해 고도산화공정(AOP)접촉설비(3)에 연결되도록 설치된다. 또한 상기 과산화수소 주입펌프(6)는 과산화수소저장조(7)에 저장되어 있는 과산화수소를 상기 고도산화공정(AOP)접촉설비(3)에 공급하기 위한 것이고, 오존발생장치(8)는 오존을 발생하여 상기 고도산화공정(AOP)접촉설비에 공급하기 위한 것이고, 발생오존 모니터(9)는 오존발생장치(8)에 연결되어 고도산화공정 접촉설비(3)에 공급되는 오존의 농도를 측정하기 위한 것이고, 과산화수소-CT 제어유닛(11)은 유입유량계(2), 실시간 과산화수소측정장치(10), 과산화수소 주입펌프(6), 오존발생장치(8) 및 발생오존 모니터(9)에 연결되어 각각의 측정값에 따라 과산화수소의 공급량을 제어한다. The advanced oxidation process (AOP) contact facility (2) is for supplying and reacting ozone and UV lamps or ozone and hydrogen peroxide to the raw water introduced by the raw water inlet pipe (1), the inflow flowmeter (2) is the crude oil It is mounted on one side of the entrance tube 1. In addition, the hydrogen peroxide measuring device 10 is installed to be connected to the advanced oxidation process (AOP) contact facility (3) to measure the residual hydrogen peroxide concentration in the effluent of the advanced oxidation process (AOP) contact facility in real time. In addition, the hydrogen peroxide injection pump (6) is for supplying hydrogen peroxide stored in the hydrogen peroxide storage tank (7) to the advanced oxidation process (AOP) contact facility (3), the ozone generator (8) generates ozone to the It is for supplying to the advanced oxidation process (AOP) contact facility, the generation ozone monitor (9) is connected to the ozone generator (8) to measure the concentration of ozone supplied to the advanced oxidation process contact facility (3), The hydrogen peroxide-CT control unit 11 is connected to an inflow flowmeter (2), a real-time hydrogen peroxide measuring device (10), a hydrogen peroxide injection pump (6), an ozone generator (8), and an ozone generating monitor (9) to measure the respective measured values. According to control the amount of hydrogen peroxide supplied.

이와 같이 이루어지고, 본 발명의 일실시예에 따른 실시간 과산화수소-CT제어유닛을 이용한 고도산화공정(AOP)의 자동제어장치의 작용 및 작동관계에 대하여 자세히 설명한다.As described above, the operation and operation relationship of the automatic control device of the advanced oxidation process (AOP) using the real-time hydrogen peroxide-CT control unit according to an embodiment of the present invention will be described in detail.

우선 상기 고도산화공정(AOP)접촉설비(2)에 원수유입관(1)의 유도에 의해 원수가 유입되면 오존 및 UV램프 또는 오존 및 과산화수소를 선택적으로 공급하여 원수를 처리하게 되고, 유입유량계(2)는 유입되는 원수의 유량을 측정하여 과산화수 소-CT제어유닛(11)으로 측정결과를 전송한다. First, when raw water flows into the AOP contact facility (2) by the induction of the raw water inlet pipe (1), the raw water is selectively supplied by treating ozone and UV lamps or ozone and hydrogen peroxide, and the inflow flowmeter ( 2) measures the flow rate of the incoming raw water and transmits the measurement result to the hydrogen peroxide-CT control unit (11).

또한, 고도산화공정(AOP)접촉설비(3)에 연결되는 과산화수소측정장치(10)에서는 도3에 나타낸 실시간 과산화수소 연속측정장치의 분석 절차에 따라 고도산화공정(AOP)접촉설비(3)를 통과하는 원수의 잔류과산화수소농도를 실시간으로 측정하고, CT제어 유닛(11)으로 측정결과를 전송하게 된다.In addition, in the hydrogen peroxide measuring apparatus 10 connected to the advanced oxidation process (AOP) contact facility 3, the advanced oxidation process (AOP) contact facility 3 passes through the analysis procedure of the real-time hydrogen peroxide continuous measurement device shown in FIG. The residual hydrogen peroxide concentration of the raw water is measured in real time, and the measurement results are transmitted to the CT control unit 11.

본 발명에 따른 실시간 과산화수소 측정장치의 분석원리는 도3에 나타낸 형광검출법을 이용한 FIA(Flow Injection Analysis, 흐름주입법)이 적용된다. 과산화수소의 형광검출법의 측정원리는 과산화수소의 환원에 기인한 방법으로 과산화수소가 P-히드록시페닐아세트산(p-hydroxyphenylacetic acid)를 페록시다아제(peroxidase) 촉매에 의해 산화시켜 2,2-디히드록시비페닐(dihydroxybiphenyl) 유도체를 형성시키는데, 이는 정확하게 화학 양론적으로 생성되기 때문에 과산화물의 농도를 바로 정확하게 측정할 수 있다. (λmax(exitation) = 320 nm, λ max(emission) = 400nm). The analysis principle of the real-time hydrogen peroxide measuring device according to the present invention is applied to FIA (Flow Injection Analysis) using the fluorescence detection method shown in FIG. The measurement principle of the fluorescence detection method of hydrogen peroxide is a method due to the reduction of hydrogen peroxide. It forms a dihydroxybiphenyl derivative, which is produced exactly stoichiometrically so that the concentration of peroxide can be measured accurately. (λ max (exitation) = 320 nm, λ max (emission) = 400 nm).

상기 과산화수소-CT제어유닛(11)은 유입유량계(2)와 과산화수소측정장치(10)에서 전송된 측정값을 이용하여 CT값을 산출하고, 운전자에 의해 설정된 CT값과 비교하여 과산화수소의 주입농도를 결정한다.The hydrogen peroxide-CT control unit 11 calculates the CT value by using the measured value transmitted from the inflow flow meter 2 and the hydrogen peroxide measuring device 10, and compares the injection concentration of hydrogen peroxide with the CT value set by the driver. Decide

따라서, 본 발명에 의한 수처리시스템에서 원수는 원수유입관(1)를 통해 유도되어 고도산화공정(AOP)접촉설비(2)로 공급되고, 원수유입관(1)에 유입유량계(2)가 설치되어 유입되는 원수의 유량을 측정하게 되고, 측정된 유량은 과산화수소-CT제어 유닛(11)으로 전송되고, 고도산화공정(AOP)접촉설비(3)에 연결된 실시간 과산화수소 측정장치(10)에서 분석된 잔류과산화수소의 농도는 과산화수소-CT제어 유닛 (11)으로 전송되어 잔류과산화수소농도의 값에 고도산화공정(AOP)의 체류시간을 곱하여 과산화수소-CT값을 산출하게 된다. Therefore, in the water treatment system according to the present invention, the raw water is guided through the raw water inflow pipe (1) and supplied to the advanced oxidation process (AOP) contact facility (2), and the inflow flowmeter (2) is installed in the raw water inflow pipe (1). The flow rate of the raw water is measured, and the measured flow rate is transmitted to the hydrogen peroxide-CT control unit 11 and analyzed by the real-time hydrogen peroxide measuring device 10 connected to the advanced oxidation process (AOP) contact facility (3). The residual hydrogen peroxide concentration is transmitted to the hydrogen peroxide-CT control unit 11 to calculate the hydrogen peroxide-CT value by multiplying the residual hydrogen peroxide concentration value by the residence time of the advanced oxidation process (AOP).

이와 같은 CT값은 수학식 1에 나타낸 간편화된 함수로 축약될 수 있다.This CT value can be abbreviated to the simplified function shown in equation (1).

(수학식 1)(Equation 1)

CT(mg/L×min) = ∑(C ×T) 이고,CT (mg / L × min) = ∑ (C × T),

C(mg/L)는 고도산화공정(AOP) 접촉설비 잔류과산화수소농도이고,C (mg / L) is the residual hydrogen peroxide concentration in the AOP contact facility,

T(min)는 고도산화공정(AOP) 접촉설비 체류시간이다.T (min) is the residence time of the advanced oxidation process (AOP) contact facility.

따라서, 상기 수학식 1로 산출된 CT값이 운전자가 설정한 CT값에 수렴하도록 실시간 과산화수소 측정장치(10)의 설정값을 가변 제어한다. 즉, 예를 들어 운전자가 설정한 CT값이 1.0 mg/L×min일 때, 고도산화공정(AOP)접촉설비(3)의 체류시간이 10분일 경우, CT제어유닛(11)은 오존/고도산화공정(AOP)접촉설비(3)의 실시간 과산화수소측정장치(5)에서 측정되는 처리수의 잔류과산화수소농도가 0.1mg/L가 되도록 과산화수소의 주입량을 자동제어하고, 원수의 유입유량이 감소되어 고도산화공정(AOP)접촉설비(3)의 체류시간이 20분으로 늘어나게 되면 실시간 과산화수소 측정장치(10)에서 분석되는 처리수의 잔류과산화수소농도는 0.05mg/L가 되도록 과산화수소의 주입량을 자동제어한다. Therefore, the control value of the real-time hydrogen peroxide measuring device 10 is variably controlled so that the CT value calculated by Equation 1 converges to the CT value set by the driver. That is, for example, when the CT value set by the driver is 1.0 mg / L × min, and the residence time of the AOP contact facility 3 is 10 minutes, the CT control unit 11 is ozone / altitude. The amount of hydrogen peroxide is automatically controlled so that the residual hydrogen peroxide concentration of the treated water measured by the real-time hydrogen peroxide measuring device 5 of the AOP contacting facility 3 becomes 0.1 mg / L, and the inflow of raw water is reduced to When the residence time of the oxidation process (AOP) contacting equipment 3 is increased to 20 minutes, the amount of hydrogen peroxide is automatically controlled so that the residual hydrogen peroxide concentration of the treated water analyzed by the real-time hydrogen peroxide measuring apparatus 10 is 0.05 mg / L.

이와 같이 본 발명은 유입유량의 변화에 따른 체류시간의 변동을 고려하여 실시간으로 잔류과산화수소농도의 설정값을 변화시킴으로써 최적의 CT제어가 가능하다. 즉, 운전자가 설정한 CT값을 만족하도록 고도산화공정(AOP)의 과산화수소주입농도를 설정하여 수학식 2에 따라 과산화수소주입량을 결정하고 제어한다. As described above, the present invention allows optimal CT control by changing the set value of the residual hydrogen peroxide concentration in real time in consideration of the change in residence time according to the change of the inflow flow rate. That is, the hydrogen peroxide injection concentration of the advanced oxidation process (AOP) is set to satisfy the CT value set by the driver to determine and control the hydrogen peroxide injection amount according to Equation 2.

(수학식 2)(Equation 2)

과산화수소주입량(mg/min) = 유입유량(L/min) × 과산화수소주입농도(mg/L)이고,Hydrogen peroxide injection rate (mg / min) = inflow flow rate (L / min) x hydrogen peroxide injection concentration (mg / L),

유입유량(L/min)는 유입유량계의 실시간 측정값이고,Inflow flow rate (L / min) is a real-time measurement of the inflow flowmeter,

과산화수소주입농도(mg/L)는 설정 CT값 만족하는 주입농도이다.The hydrogen peroxide injection concentration (mg / L) is an injection concentration that satisfies the set CT value.

따라서, 상기 수학식에 의해 결정된 오존주입량에 따라 오존발생장치(9)를 CT제어유닛(11)에서 과산화수소 주입펌프(7)를 제어하여 자동주입하게 된다. Therefore, the ozone generator 9 controls the hydrogen peroxide injection pump 7 in the CT control unit 11 according to the ozone injection amount determined by the above equation and automatically injects the ozone generator 9.

즉, 고도산화공정(AOP)은 오존이 분해되는 과정에서 중간물질로 생성된 OH 라디칼이 수처리에서 매우 중요한 역할을 하고, 과산화수소나 UV 램프 등을 이용하여 오존분해를 인위적으로 가속화하여 OH 라디칼 생성을 증가시킴으로써 유기물 분해는 촉진된다. 또한 고도산화공정(AOP)는 대부분 미량유기오염물질의 산화에 가장 큰 목적이 있으므로 오염물질에 대한 충분한 산화조건을 만족시키기 위해서는 과산화수소-CT제어방식의 도입이 요구된다. In other words, the advanced oxidation process (AOP) plays an important role in the water treatment of OH radicals generated as intermediates in the process of ozone decomposing, and artificially accelerates ozone decomposition using hydrogen peroxide or UV lamps to generate OH radicals. By increasing, organic matter decomposition is promoted. In addition, since most of the advanced oxidation process (AOP) has the biggest purpose for the oxidation of trace organic pollutants, the introduction of hydrogen peroxide-CT control method is required to satisfy the sufficient oxidation conditions for pollutants.

이는 고도산화공정(AOP) 반응에서 생성되는 라디칼을 실시간으로 측정할 수 없어, 라디칼 생성에 직접적인 영향을 미치는 과산화수소 농도의 실시간 분석을 통해 고도산화공정(AOP) 산화능을 평가할 수 있기 때문이다.This is because it is not possible to measure the radicals generated in the AOP reaction in real time, and thus it is possible to evaluate the AOP oxidation ability through the real-time analysis of the hydrogen peroxide concentration which directly affects the radical formation.

또한, 고도산화공정(AOP)에서 과산화수소 주입량을 제어하기 위한 종래의 제어방식으로는 주입오존농도 비례제어방식이 있다. 주입오존농도 비례제어기법은 오존주입농도에 일정한 비율로 과산화수소 주입농도를 제어하는 기법으로서 제어가 간편하다는 장점이 있다. 그러나, 유입수량을 계측할 수 있어야 하고, 오존제어장 치로부터 실시간으로 오존주입농도를 수신하여 과산화수소 주입농도를 제어하여야 하고, 오존주입 자동제어시스템과 연계하여 구축되어야 하기 때문에 오존주입농도의 결정방식에 따라 라디칼 반응을 촉진시키기 위한 과산화수소 주입량이 오주입되는 문제점이 발생될 수 있다.In addition, a conventional control method for controlling the hydrogen peroxide injection amount in the advanced oxidation process (AOP) is the injection ozone concentration proportional control method. The injection ozone concentration proportional control technique is a technique for controlling the hydrogen peroxide injection concentration at a constant rate with respect to the ozone injection concentration. However, the method of determining ozone injection concentration should be able to measure the amount of inflow water, receive the ozone injection concentration from the ozone control device in real time, control the hydrogen peroxide injection concentration, and establish it in conjunction with the automatic ozone injection control system. As a result, a problem may occur that the hydrogen peroxide injection amount to inject radicals to promote the radical reaction.

따라서, 본 발명에 따른 과산화수소-CT 제어방식은 실시간 잔류과산화수소농도와 유입수 유량을 통하여 얻어진 고도산화공정(AOP)접촉설비 내의 과산화수소-CT값을 기준으로 제어하는 방식으로 구현된다. 상기 과산화수소-CT제어방식은 실시간 과산화수소 측정장치가 별도로 필요하기는 하나, 고도산화공정(AOP)의 라디칼 반응을 촉진시킬 수 있는 과산화수소를 직접적인 제어인자로 활용함으로 기존 제어방식에 비하여 원수의 수질변화에 대하여 능동적이며 실시간으로 대응이 가능하고, 처리수의 안전성 및 안정성을 도모할 수 있다. Therefore, the hydrogen peroxide-CT control method according to the present invention is implemented by controlling based on the hydrogen peroxide-CT value in the advanced oxidation process (AOP) contact facility obtained through real-time residual hydrogen peroxide concentration and influent flow rate. The hydrogen peroxide-CT control method requires a real-time hydrogen peroxide measuring device separately, but utilizes hydrogen peroxide as a direct control factor to promote radical reaction of the advanced oxidation process (AOP) as compared to the existing control method to change the water quality of raw water. Active and real-time response is possible, and the safety and stability of the treated water can be promoted.

또한, 자동제어시스템의 구축시 쉽게 연계할 수 있고, 수질에 따라 요구되는 과산화수소 주입량을 정확히 산정하여 항상 적정한 농도를 유지할 수 있으므로 오존발생설비의 에너지 소비 및 과산화수소 주입설비의 운영은 최적화될 수 있다. In addition, since the automatic control system can be easily connected, and the required amount of hydrogen peroxide is accurately calculated according to the water quality, the proper concentration can be maintained at all times, so that the energy consumption of the ozone generating facility and the operation of the hydrogen peroxide injection facility can be optimized.

다음으로 도2에 의해서 본 발명에 따른 과산화수소-CT제어유닛을 이용한 고도산화공정(AOP)의 자동제어방법에 대하여 자세히 설명한다. Next, the automatic control method of the advanced oxidation process (AOP) using the hydrogen peroxide-CT control unit according to the present invention will be described in detail with reference to FIG.

먼저, 수처리시스템으로 유입되고 원수유입관(1)의 유도를 통해 고도산화공정(AOP)접촉설비(3)로 유입되는 원수는 유입유량계(2)를 통해 유입유량이 측정(S10)한다.First, the raw water flowing into the water treatment system and introduced into the advanced oxidation process (AOP) contact facility 3 through the induction of the raw water inflow pipe 1 measures the inflow flow rate through the inflow flow meter 2 (S10).

그리고, 고도산화공정(AOP)접촉설비(2)를 통과하는 원수의 잔류과산화수소농 도는 과산화수소 측정장치(5)에 의해 실시간으로 측정(S20)한다.Then, the residual hydrogen peroxide concentration of the raw water passing through the advanced oxidation process (AOP) contact facility (2) is measured in real time by the hydrogen peroxide measuring apparatus (5).

상기 과산화수소 측정장치(10)에 의해 실시간으로 측정된 잔류과산화수소농도와 상기 유입유량계(2)에 의해 측정된 유입유량에 의해 과산화수소- CT제어 유닛(11)에서 CT값을 산출(S30)한다.The CT value is calculated by the hydrogen peroxide-CT control unit 11 based on the residual hydrogen peroxide concentration measured in real time by the hydrogen peroxide measuring apparatus 10 and the inflow flow rate measured by the inflow flow meter 2 (S30).

다음으로, 수처리시스템의 운전자에 의해 설정되어 있는 CT값과 측정된 잔류과산화수소농도에 의한 CT값을 비교하여 그 편차가 소정비율 미만인가를 판단(S40)하여 CT값의 편차가 소정비율 미만이면, 유입유량을 고려하여 과산화수소의 주입량을 결정(S50)한다. 이때 설정되어 있는 CT값과 측정된 잔류과산화수소농도에 의한 CT값의 편차의 소정비율은 10%인 것이 바람직하다. Next, the CT value set by the driver of the water treatment system is compared with the CT value of the measured residual hydrogen peroxide concentration, and it is determined whether the deviation is less than the predetermined ratio (S40), and if the deviation of the CT value is less than the predetermined ratio, In consideration of the inflow flow, the injection amount of hydrogen peroxide is determined (S50). It is preferable that the predetermined ratio of the deviation of the CT value set by the CT value set at this time and the measured residual hydrogen peroxide concentration is 10%.

그러나, 설정되어 있는 CT값과 측정된 잔류과산화수소농도에 의한 CT값의 편차가 10% 이상이면, 측정된 유입유량에 따라 결정되는 고도산화공정접촉설비(3)의 체류시간에 대해서 설정된 CT값을 얻기 위한 실시간 과산화수소측정장치(5)의 잔류과산화수소농도값이 새롭게 설정되고, 새롭게 설정된 잔류과산화수소농도값을 만족시키기 위해서 과산화수소 주입량을 CT제어 유닛(11)에 저장된 데이터베이스에 요청(S60)하여 과산화수소의 주입량을 결정하게 된다.However, if the difference between the CT value set and the CT value due to the measured residual hydrogen peroxide concentration is 10% or more, the CT value set for the residence time of the advanced oxidation process contacting facility 3 determined according to the measured inflow flow rate is determined. The residual hydrogen peroxide concentration value of the real-time hydrogen peroxide measuring device 5 for obtaining is newly set, and in order to satisfy the newly set residual hydrogen peroxide concentration value, the hydrogen peroxide injection amount is requested to the database stored in the CT control unit 11 (S60) to inject hydrogen peroxide. Will be determined.

다음으로 과산화수소의 주입량이 결정되면 결정된 주입량에 따라 과산화수소 주입펌프(7)를 조절(S70)하고, 과산화수소를 주입(S110)한다.Next, when the injection amount of hydrogen peroxide is determined, the hydrogen peroxide injection pump 7 is adjusted (S70) according to the determined injection amount, and hydrogen peroxide is injected (S110).

도3은 본 발명에 따른 형광검출법을 이용한 FIA(Flow Injection Analysis, 흐름주입법)의 과산화수소 측정장치의 상세 구성도이고, 도4는 본 발명에 따른 실시간 과산화수소 농도 측정을 위한 과산화수소 측정장치의 각종 밸브 개폐순서를 나타낸 시간 순서도이다.Figure 3 is a detailed configuration of the hydrogen peroxide measuring device of the FIA (Flow Injection Analysis, flow injection method) using the fluorescence detection according to the present invention, Figure 4 is a valve opening and closing of various valves of the hydrogen peroxide measuring device for real-time hydrogen peroxide concentration measurement according to the present invention A time flow chart showing the sequence.

기본적으로 2개의 시약(NaOH, Fluorescence Reagent)과 시료가 일정 비율로 반응할 수 있도록 연속적으로 주입하기 위해 전기적으로 제어되는 DC Control Motor Pump로 시약 및 시료의 주입을 제어한다. 또한 각각의 시약 및 시료의 혼합 순서와 측정을 위해 전기적 제어가 가능한 일련의 솔레노이드 밸브(Solenoid Valve)를 구비한다. 또한, 과산화수소 분석시 잔류오존의 간섭을 막기 위해 환원제인 Na2S2O3 시약을 유량 제어가 가능한 정량펌프를 구비하여 연속적으로 주입한다.Basically, injection of reagents and samples is controlled by an electrically controlled DC control motor pump to continuously inject two reagents (NaOH, Fluorescence Reagent) and the sample to react at a constant rate. It also has a series of solenoid valves that can be electrically controlled for each reagent and sample mixing sequence and measurement. In addition, in order to prevent interference of residual ozone during the analysis of hydrogen peroxide, Na 2 S 2 O 3 reagent, which is a reducing agent, is continuously provided with a metering pump capable of controlling the flow rate.

이하, 각 단계별 진행에 대하여 자세히 설명한다.Hereinafter, the progress of each step will be described in detail.

우선, 연속적으로 측정 “PRECLEANING"단계는 증류수를 이용하여 이전의 측정에서 남은 반응 시료를 제거하고 형광검출기에서는 영점을 잡게 된다. First, the continuous measurement “PRECLEANING” step uses distilled water to remove the remaining reaction sample from the previous measurement and zero the fluorescence detector.

“PRECLEANING" 단계가 끝난 후 시료수를 pump로 연속적으로 주입하는 "SAMPLE INPUT" 단계에서는 과산화수소를 측정하기 위한 시료수를 연속적으로 주입하도록 valve를 조작하게 된다. In the "SAMPLE INPUT" step, which continuously injects sample water into the pump after the "PRECLEANING" step, the valve is operated to continuously inject sample water to measure hydrogen peroxide.

그 다음“FLUORESCENCE REAGENT INPUT" 단계에서는 형광검출기로 분석하기 위한 중합체 화합물을 형성시키기 위하여 potassium hydrogen phtalate, peroxidase 및 p-hydroxyphenyl acetic acid가 일정비율로 혼합된 fluorescence reagent를 주입하도록 valve를 조작한다.Next, in the “FLUORESCENCE REAGENT INPUT” step, the valve is operated to inject a fluorescence reagent containing a proportion of potassium hydrogen phtalate, peroxidase and p-hydroxyphenyl acetic acid to form a polymer compound for analysis with a fluorescence detector.

다음으로 ”NaOH INPUT" 단계에서는 pH를 조절시킬 수 있도록 NaOH를 주입하도록 valve를 조작하고,“DETECTION" 단계에서는 형광검출기로 주입된 중합체를 excitation : 320nm, emission : 420nm에서 측정하여 과산화수소 농도를 나타낸다. Next, in the “NaOH INPUT” step, the valve was operated to inject NaOH to adjust the pH, and in the “DETECTION” step, the polymer injected by the fluorescence detector was measured at excitation: 320 nm and emission: 420 nm to represent the hydrogen peroxide concentration.

그 이후, ″RETURN TO BLANK" 단계에서는 “PRECLEANING"단계에서 주입한 시료수, fluorescence reagent 및 NaOH의 투입을 중지하고, 증류수를 주입하여 영점이 되는지 확인한다.After that, in the ″ RETURN TO BLANK ”step, the sample water injected in the“ PRECLEANING ”step, the fluorescence reagent and NaOH are stopped, and distilled water is injected to check whether it is at zero.

도5는 과산화수소의 형광검출법의 측정원리로, 과산화수소의 환원에 기인한 방법으로 과산화수소가 p-hydroxyphenylacetic acid를 peroxidase 촉매에 의해 산화시켜 2,2-dihydroxybiphenyl 유도체를 형성시키고, 이는 정확하게 화학 양론적으로 생성되기 때문에 과산화물의 농도를 바로 정확하게 측정할 수 있다.(λmax(exitation) = 320 nm, λ max(emission) = 400nm). 5 is a measurement principle of the fluorescence detection method of hydrogen peroxide, hydrogen peroxide oxidizes p-hydroxyphenylacetic acid by a peroxidase catalyst to form a 2,2-dihydroxybiphenyl derivative in a method due to the reduction of hydrogen peroxide, which is produced exactly stoichiometrically Therefore, the concentration of peroxide can be measured accurately (λ max (exitation) = 320 nm, λ max (emission) = 400 nm).

도6은 본 발명에 따른 과산화수소 측정장치의 구성도를 개략적으로 나타낸 것이고, 도7은 본 발명에 따른 고도산화공정(AOP)의 과산화수소-CT제어유닛에 따라 주입오존농도에 비례하여 연속적으로 측정되고 있는 과산화수소 농도에 대한 운전결과를 나타낸 것이다.Figure 6 schematically shows the configuration of the hydrogen peroxide measuring device according to the present invention, Figure 7 is continuously measured in proportion to the injection ozone concentration according to the hydrogen peroxide-CT control unit of the advanced oxidation process (AOP) according to the present invention The operating results for the concentration of hydrogen peroxide are shown.

그 결과를 살펴보면, 접촉조내에서 잔류과산화수소는 일정시간 경과 후에 안정한 상태로 유지되었으며, 오존 주입량이 증가됨에 따라 잔류과산화수소 역시 증가됨을 알 수 있다. 또한, 고도산화공정(AOP)에서 오존 주입량에 따라 잔류과산화수소는 일정한 농도로 유지되기 때문에 과산화수소-CT 제어가 가능하다.As a result, it can be seen that the residual hydrogen peroxide was maintained in a stable state after a certain time in the contact tank, and the residual hydrogen peroxide also increased as the amount of ozone injected increased. In addition, hydrogen peroxide-CT control is possible because residual hydrogen peroxide is maintained at a constant concentration according to the ozone injection amount in the advanced oxidation process (AOP).

도8은 본 발명에 따른 고도산화공정(AOP)의 과산화수소-CT 제어시 고도산화공정(AOP)공정에서 UV 흡수물질(UV254)의 처리효율에 대한 개략적인 그래프이고, 그 래프에 나타낸 바와 같이, UV254 제거 효율은 오존 주입량이 0.67 mg/L일 때 70%로 가장 높게 나타났으며, 오존 주입량을 0.67 mg/L이상 증가시키더라도 UV254 제거 효율은 더 이상 증가되지 않는 경향을 나타내고 있다. 그리고 잔류 과산화수소의 농도 역시 UV254 제거 효율의 경향과 비슷하게 오존 주입량이 1.06 mg/L까지 증가할수록 비례적으로 증가되지만, 오존주입량이 1.06 mg/L보다도 높아지면 증가하는 추세는 오히려 감소되는 현상을 나타내고 있다. 이와 같이 오존주입량이 0.67-1.06 mg/L일 때 UV254와 잔류과산화수소가 유사한 경향을 보임으로써, 적정 오존 주입농도에서 유기물의 최적 제거 효율을 유지할 수 있는 제어 인자로 잔류 과산화수소의 농도가 적용될 수 있음을 나타내고 있다.Figure 8 is a schematic graph of the treatment efficiency of the UV absorbing material (UV 254 ) in the advanced oxidation process (AOP) during hydrogen peroxide-CT control of the advanced oxidation process (AOP) according to the present invention, as shown in the graph The UV 254 removal efficiency was the highest at 70% when the ozone dose was 0.67 mg / L, and the UV 254 removal efficiency did not increase any more even when the ozone dose was increased to 0.67 mg / L or more. In addition, the concentration of residual hydrogen peroxide also increased proportionally as the amount of ozone injection increased to 1.06 mg / L, similar to the trend of UV 254 removal efficiency. have. Thus, when ozone injection amount is 0.67-1.06 mg / L, UV 254 and residual hydrogen peroxide show a similar tendency, so the residual hydrogen peroxide concentration can be applied as a control factor to maintain the optimum removal efficiency of organic matter at the proper ozone injection concentration. Indicates.

또한 잔류 과산화수소의 농도를 적용하여 과산화수소-CT 값을 계산하였을 때, 최적 과산화수소-CT는 접촉시간 10분에서 1.3-1.7 mg/L×min으로 결정된다. 즉, 이와 같은 결과는 과산화수소의 일정한 CT값을 유지함으로써 원수의 수질과 유입수량에 상관없이 고도산화공정(AOP)이 최적 조건에서 운전될 수 있다. In addition, when the hydrogen peroxide-CT value was calculated by applying the residual hydrogen peroxide concentration, the optimal hydrogen peroxide-CT was determined to be 1.3-1.7 mg / L × min at 10 minutes of contact time. In other words, the result is that by maintaining a constant CT value of hydrogen peroxide, the advanced oxidation process (AOP) can be operated under optimum conditions irrespective of the quality of the raw water and the amount of influent.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변환 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다. The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, conversions, and changes are possible in the technical field of the present invention without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.

상술된 바와 같이, 본 발명은 고도산화공정(AOP)에서 과산화수소농도 및 유입유량으로부터 고도산화공정(AOP)의 적정 과산화수소-CT값을 만족시키는 과산화수소의 주입농도를 실시간으로 산출하여 제어할 수 있으며, 이러한 자동제어장치를 고도산화공정(AOP) 시스템에 적용하여 최적화된 고도정수처리의 제어가 가능하고, 수질 및 수량의 변화에 대응하여 수처리가 가능하게 되므로, 처리수질의 안정성이 확보되며, 자동제어시스템으로의 연계가 가능할 뿐만 아니라, 기도입된 후오존공정에 쉽게 적용시킬 수 있고, 수질에 따라 요구되는 과산화수소 주입량을 정확히 산정하여 항상 적정한 농도를 유지할 수 있으므로 과산화수소의 에너지 소비와 운영을 최적화할 수 있는 과산화수소-CT제어유닛을 이용한 고도산화공정(AOP)의 자동제어장치 및 제어방법을 제공하는 효과를 갖는다.As described above, the present invention can be controlled in real time by calculating the injection concentration of hydrogen peroxide that satisfies the appropriate hydrogen peroxide-CT value of the advanced oxidation process (AOP) from the hydrogen peroxide concentration and the inflow flow in the advanced oxidation process (AOP), By applying this automatic control device to the advanced oxidation process (AOP) system, it is possible to control the optimized high-purity water treatment and to treat the water in response to changes in the water quality and quantity, thereby ensuring the stability of the treated water quality and automatically controlling the water. Not only can it be linked to the system, but it can be easily applied to the air-introduced ozone process, and it is possible to optimize the energy consumption and operation of hydrogen peroxide by accurately calculating the required amount of hydrogen peroxide injected according to the water quality and maintaining the proper concentration at all times. Automatic control system and control method of advanced oxidation process (AOP) using hydrogen peroxide-CT control unit Has the effect of providing.

Claims (8)

원수가 유입되고, 오존과 과산화수소가 공급되어 반응하는 고도산화공정(AOP)접촉설비; An advanced oxidation process (AOP) contact facility in which raw water is introduced and ozone and hydrogen peroxide are supplied and reacted; 상기 고도산화공정(AOP)접촉설비에 연결되고 형광검출기를 구비하고, 유출수의 잔류과산화수소농도를 형광검출법에 의하여 실시간으로 측정하는 과산화수소측정장치; A hydrogen peroxide measuring device connected to the advanced oxidation process (AOP) contact facility and equipped with a fluorescence detector for measuring in real time the residual hydrogen peroxide concentration of the effluent by a fluorescence detection method; 상기 고도산화공정(AOP)접촉설비에 오존을 공급하는 오존발생장치; An ozone generator for supplying ozone to the advanced oxidation process (AOP) contact facility; 상기 고도산화접촉설비에 유입되는 유량을 측정하는 유입유량계;An inflow flow meter for measuring the flow rate flowing into the advanced oxidation contacting facility; 상기 고도산화접촉설비에 과산화수소를 공급하는 과산화수소공급장치; 및A hydrogen peroxide supply device for supplying hydrogen peroxide to the highly oxidative contact facility; And 상기 유입유량계, 과산화수소측정장치, 과산화수소공급장치, 및 오존발생장치와 연결되어 각각의 측정값에 따라 과산화수소의 공급량을 제어하는 과산화수소 CT제어 유닛을 포함하는 A hydrogen peroxide CT control unit is connected to the inflow flow meter, the hydrogen peroxide measuring device, the hydrogen peroxide supply device, and the ozone generator to control the supply amount of hydrogen peroxide according to each measured value. 과산화수소-CT제어유닛을 이용한 고도산화공정(AOP)의 자동제어장치.Automatic control of advanced oxidation process (AOP) using hydrogen peroxide-CT control unit. 제1항에 있어서, The method of claim 1, 상기 고도산화접촉설비는The advanced oxidation contact equipment 자외선을 제공하기 위한 UV램프를 더 포함하는Further comprising a UV lamp for providing ultraviolet light 과산화수소-CT제어유닛을 이용한 고도산화공정(AOP)의 자동제어장치.Automatic control of advanced oxidation process (AOP) using hydrogen peroxide-CT control unit. 제1항에 있어서, The method of claim 1, 상기 과산화수소측정장치는The hydrogen peroxide measuring device 상기 유출수와 P-히드록시페닐아세트산(p-hydroxyphenylacetic acid)를 페록시다아제(peroxidase) 촉매에 의해 산화시켜 2,2-디히드록시비페닐(dihydroxybiphenyl) 유도체를 형성시키기 위해 2개의 반응시약(NaOH, 형광시약(Fluorescence Reagent))을 일정 비율로 연속적으로 주입하는 정량 펌프장치;Two reaction reagents are formed to oxidize the effluent and P-hydroxyphenylacetic acid by a peroxidase catalyst to form a 2,2-dihydroxybiphenyl derivative. Metering pump device for continuously injecting NaOH, Fluorescence Reagent (Fluorescence Reagent) at a constant ratio; 상기 정량 펌프장치에 의하여 접촉설비 유출수와 2개의 반응시약이 혼합되어 반응할 수 있도록 하는 연속반응모듈; 및A continuous reaction module allowing the effluent of the contact equipment and the two reaction reagents to react by the metering pump device; And 상기 연속반응모듈 장치에서 반응된 시료에 의해 과산화수소 농도를 측정하는 형광검출기를 포함하는It includes a fluorescence detector for measuring the hydrogen peroxide concentration by the sample reacted in the continuous reaction module device 과산화수소-CT제어를 이용한 고도산화공정(AOP)의 자동제어장치.Automatic control of advanced oxidation process (AOP) using hydrogen peroxide-CT control. 제1항에 있어서, The method of claim 1, 상기 오존발생장치에 연결되어 고도산화공정(AOP)접촉설비에 공급되는 오존의 농도를 측정하기 위한 발생오존 모니터를 더 포함하는 The ozone generator is connected to the ozone generator further comprises a ozone monitor for measuring the concentration of ozone supplied to the advanced oxidation process (AOP) contact facility 과산화수소-CT제어를 이용한 고도산화공정(AOP)의 자동제어장치.Automatic control of advanced oxidation process (AOP) using hydrogen peroxide-CT control. 고도산화공정(AOP)접촉설비로 유입되는 원수의 유입유량을 유입유량계를 통해 측정하고,Inflow flow rate of raw water flowing into AOP contact facility is measured by inflow flowmeter, 상기 고도산화공정(AOP)접촉설비를 통과하는 원수의 잔류과산화수소농도를 형광검출기를 이용한 형광검출법에 의하여 과산화수소 측정장치를 통해 실시간으로 측정하고,Residual hydrogen peroxide concentration in the raw water passing through the advanced oxidation process (AOP) contact facility is measured in real time through a hydrogen peroxide measuring device by a fluorescence detection method using a fluorescence detector, 상기 과산화수소 측정장치를 통해 실시간으로 측정한 잔류과산화수소농도와 상기 유입유량계에 의해 측정된 유입유량에 의해 과산화수소- CT제어 유닛에서 CT값을 산출하고,The CT value is calculated by the hydrogen peroxide-CT control unit by the residual hydrogen peroxide concentration measured in real time through the hydrogen peroxide measuring device and the inflow flow rate measured by the inflow flow meter. 수처리시스템의 운전자에 의해 설정되어 있는 CT값과 측정된 잔류과산화수소농도에 의한 CT값을 비교하여 그 편차가 소정비율 미만인가를 판단하고,The CT value set by the operator of the water treatment system and the CT value based on the measured residual hydrogen peroxide concentration are compared to determine whether the deviation is less than the predetermined ratio, 상기 편차 판단에 따라 과산화수소의 주입량이 결정되면 결정된 주입량에 따라 오존발생장치와 과산화수소 주입펌프를 조절하고, When the injection amount of hydrogen peroxide is determined according to the deviation determination, the ozone generator and the hydrogen peroxide injection pump are adjusted according to the determined injection amount, 과산화수소를 주입하는Injecting hydrogen peroxide 과산화수소 측정장치와 유량측정장치를 이용한 고도산화공정(AOP)의 제어방법.Control method of advanced oxidation process (AOP) using hydrogen peroxide measuring device and flow measuring device. 제5항에 있어서, The method of claim 5, 설정되어 있는 CT값과 측정된 잔류과산화수소농도에 의한 CT값의 편차가 소정비율 미만이면, 유입유량을 고려하여 과산화수소의 주입량을 결정하는 If the deviation of the CT value between the set CT value and the measured residual hydrogen peroxide concentration is less than the predetermined ratio, the amount of hydrogen peroxide injected is determined in consideration of the inflow flow rate. 과산화수소 측정장치와 유량측정장치를 이용한 고도산화공정(AOP)의 제어방법.Control method of advanced oxidation process (AOP) using hydrogen peroxide measuring device and flow measuring device. 제5항에 있어서, The method of claim 5, 설정되어 있는 CT값과 측정된 잔류과산화수소농도에 의한 CT값의 편차가 10% 이상이면, 측정된 유입유량에 따라 결정되는 AOP접촉설비의 체류시간에 대해서 설정된 CT값을 얻기 위한 실시간 과산화수소측정장치의 잔류과산화수소농도값이 새롭 게 설정되고, When the deviation between the CT value set by the measured CT value and the measured residual hydrogen peroxide concentration is 10% or more, the real-time hydrogen peroxide measuring device for obtaining the CT value set for the residence time of the AOP contact equipment determined according to the measured inflow flow rate. The residual hydrogen peroxide concentration value is newly set, 새롭게 설정된 잔류과산화수소농도값을 만족시키기 위해서 과산화수소 주입량을 CT제어 유닛에 저장된 데이터베이스에 요청하여 과산화수소의 주입량을 결정하는In order to satisfy the newly set residual hydrogen peroxide concentration value, the hydrogen peroxide injection amount is requested to the database stored in the CT control unit to determine the hydrogen peroxide injection amount. 과산화수소 측정장치와 유량측정장치를 이용한 고도산화공정(AOP)의 제어방법.Control method of advanced oxidation process (AOP) using hydrogen peroxide measuring device and flow measuring device. 제5항 또는 제6항에 있어서, The method according to claim 5 or 6, 설정되어 있는 CT값과 측정된 잔류과산화수소농도에 의한 CT값의 편차의 소정비율은 10%인The predetermined ratio of the deviation of the CT value by the set CT value and the measured residual hydrogen peroxide concentration is 10%. 과산화수소 측정장치와 유량측정장치를 이용한 고도산화공정(AOP)의 제어방법.Control method of advanced oxidation process (AOP) using hydrogen peroxide measuring device and flow measuring device.
KR1020050119593A 2005-12-08 2005-12-08 Automatic control apparatus in AOP Advanced Oxidation Process using Hydrogen Peroxide-CT control unit and the control method KR100728739B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050119593A KR100728739B1 (en) 2005-12-08 2005-12-08 Automatic control apparatus in AOP Advanced Oxidation Process using Hydrogen Peroxide-CT control unit and the control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050119593A KR100728739B1 (en) 2005-12-08 2005-12-08 Automatic control apparatus in AOP Advanced Oxidation Process using Hydrogen Peroxide-CT control unit and the control method

Publications (2)

Publication Number Publication Date
KR20070060314A KR20070060314A (en) 2007-06-13
KR100728739B1 true KR100728739B1 (en) 2007-06-19

Family

ID=38356345

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050119593A KR100728739B1 (en) 2005-12-08 2005-12-08 Automatic control apparatus in AOP Advanced Oxidation Process using Hydrogen Peroxide-CT control unit and the control method

Country Status (1)

Country Link
KR (1) KR100728739B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092653A1 (en) * 2020-10-26 2022-05-05 주식회사 엔비인사이트 Advanced oxidation water treatment apparatus including high-efficiency plug-flow type ozone dissolution reactor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844410B1 (en) * 2007-01-10 2008-07-07 이앤위즈(주) Preliminary diagnostic method for the effective evaluation of water treatment using advanced oxidation processes and device thereof
KR101306155B1 (en) * 2012-06-14 2013-09-10 한국건설기술연구원 Autocontrol system and method of uv and hydrogen peroxide dose using real-time hydroxyl radical scavenging and hydroxyl radical reacting index measurement device
CN109851025A (en) * 2018-12-29 2019-06-07 广州市金龙峰环保设备工程股份有限公司 A kind of device and method of ozone/hydrogen peroxide solution advanced oxidation indegradable industrial effluent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290878A (en) 1998-02-16 1999-10-26 Japan Organo Co Ltd Control method for removing toc component
KR20020007469A (en) 2000-07-13 2002-01-29 양현승 Auto control apparatus of ozone process and AOP(Advanced Oxidation Process) using CT control and method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290878A (en) 1998-02-16 1999-10-26 Japan Organo Co Ltd Control method for removing toc component
KR20020007469A (en) 2000-07-13 2002-01-29 양현승 Auto control apparatus of ozone process and AOP(Advanced Oxidation Process) using CT control and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092653A1 (en) * 2020-10-26 2022-05-05 주식회사 엔비인사이트 Advanced oxidation water treatment apparatus including high-efficiency plug-flow type ozone dissolution reactor

Also Published As

Publication number Publication date
KR20070060314A (en) 2007-06-13

Similar Documents

Publication Publication Date Title
KR101306155B1 (en) Autocontrol system and method of uv and hydrogen peroxide dose using real-time hydroxyl radical scavenging and hydroxyl radical reacting index measurement device
US20160376166A1 (en) Process and Device for the Treatment of a Fluid Containing a Contaminant
KR100728739B1 (en) Automatic control apparatus in AOP Advanced Oxidation Process using Hydrogen Peroxide-CT control unit and the control method
US20210024388A1 (en) Advanced oxidation water treatment system and method
KR101253251B1 (en) Realtime monitoring and controlling apparatus of taste-odor matters for drinking water treatment, and method for the same
US20180265385A1 (en) Water treatment apparatus and water treatment method
KR100373512B1 (en) Auto control apparatus of ozone process and AOP(Advanced Oxidation Process) using CT control and method thereof
KR100373513B1 (en) Auto control apparatus of ozone process and AOP(Advanced Oxidation Process) using kc(ozone consumption rate) and method thereof
JP4660211B2 (en) Water treatment control system and water treatment control method
KR102086341B1 (en) Non-biodegradable amine waste water treatment method and apparatus of chloramine forming and uv-photolysis
JP4334404B2 (en) Water treatment method and water treatment system
WO2020122012A1 (en) Water treatment system, controller of water treatment system and water treatment method
JP4509644B2 (en) Ozone gas injection control system
KR100490907B1 (en) Auto control apparatus of ozone process and AOP(Advanced Oxidation Process) using TOC(Total Organic Carbon) and method thereof
JP3321876B2 (en) Ozone treatment apparatus, ozone treatment method, and water purification treatment method
JP5061320B2 (en) Water treatment reactor, water treatment system, and water treatment method
CN114229990A (en) Ozone adding control system and method for ozone catalytic oxidation process
KR100373511B1 (en) Auto control apparatus of ozone process and AOP(Advanced Oxidation Process) using I.D(Instantaneous Ozone Demand) and method thereof
JP4331048B2 (en) Ozone water treatment control system
JP3889294B2 (en) Water treatment system using a fluorescence analyzer
KR100271562B1 (en) Device for measuring ozone decomposition rate and water treatment system using the same
JP7408371B2 (en) Water treatment systems and methods
JP4628660B2 (en) Accelerated oxidation treatment method
CN106315775A (en) Iron-carbon micro-electrolysis and Fenton process combined metering control system
JP4138618B2 (en) Accelerated oxidation treatment method and apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130611

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140609

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170607

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190610

Year of fee payment: 13