JP5061320B2 - Water treatment reactor, water treatment system, and water treatment method - Google Patents

Water treatment reactor, water treatment system, and water treatment method Download PDF

Info

Publication number
JP5061320B2
JP5061320B2 JP2008131700A JP2008131700A JP5061320B2 JP 5061320 B2 JP5061320 B2 JP 5061320B2 JP 2008131700 A JP2008131700 A JP 2008131700A JP 2008131700 A JP2008131700 A JP 2008131700A JP 5061320 B2 JP5061320 B2 JP 5061320B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
water treatment
reaction tank
water
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008131700A
Other languages
Japanese (ja)
Other versions
JP2009000677A (en
Inventor
浩司 小坂
真理 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Health Sciences Foundation
Original Assignee
Japan Health Sciences Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Health Sciences Foundation filed Critical Japan Health Sciences Foundation
Priority to JP2008131700A priority Critical patent/JP5061320B2/en
Publication of JP2009000677A publication Critical patent/JP2009000677A/en
Application granted granted Critical
Publication of JP5061320B2 publication Critical patent/JP5061320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、水処理用反応槽、水処理システム及び水処理方法に関する。詳しくは、オゾン及び過酸化水素併用型水処理用反応槽に関する。   The present invention relates to a water treatment reactor, a water treatment system, and a water treatment method. Specifically, the present invention relates to a water treatment reactor for combined use of ozone and hydrogen peroxide.

従来、水処理システムではオゾン処理が適用され、上下水、工場等の産業排水等の様々な水処理に用いられている。近年では、さらに処理速度を速めた促進酸化処理技術が確立しつつある。   Conventionally, ozone treatment is applied in a water treatment system, and it is used for various water treatments such as water and sewage and industrial wastewater from factories. In recent years, an accelerated oxidation treatment technique that further increases the treatment speed has been established.

オゾン処理とは、オゾンの酸化力を利用して、水中の有機物を酸化及び分解する水処理技術である。オゾン処理では、オゾン分子による反応と、オゾンが分解して生成したヒドロキシルラジカルによる反応との、二つの経路により対象物質の酸化分解が行われている。ヒドロキシルラジカルとは、酸化力が高い物質であり、オゾンでは分解できないような物質の酸化分解も可能である。このため、オゾンに過酸化水素や紫外線等を組み合わせ、ヒドロキシルラジカルの生成を促進させることで難オゾン分解性物質の分解を促進させる水処理技術、すなわち、促進酸化処理方法が有望視されている(例えば、非特許文献1、2参照)。   Ozone treatment is a water treatment technique that uses the oxidizing power of ozone to oxidize and decompose organic substances in water. In the ozone treatment, the target substance is oxidatively decomposed by two routes, namely, a reaction by ozone molecules and a reaction by hydroxyl radicals generated by decomposing ozone. Hydroxyl radical is a substance having high oxidizing power, and oxidative decomposition of a substance that cannot be decomposed by ozone is possible. For this reason, water treatment technology that promotes decomposition of a hardly ozone-decomposable substance by combining ozone with hydrogen peroxide, ultraviolet light, etc., and promoting the generation of hydroxyl radicals, that is, an accelerated oxidation treatment method is promising ( For example, see non-patent documents 1 and 2).

かかる促進酸化処理方法の一種であるオゾン/過酸化水素処理法では、過酸化水素の注入量が処理効率に影響を及ぼすので、これまで、過酸化水素の注入量については、過酸化水素と、ガスとして注入するオゾンとのモル比率(重量比)の観点から、良好な処理効率が得られる比率を求め、それに基づいて注入制御が行われてきた(例えば、特許文献1、2参照)。
宍田健一、「オゾン/過酸化水素処理法による排水処理システムの開発に関する研究」、京都大学学位論文(博士)、p53−p85(2002) 岩本卓治ら、「AOP併用型オゾン接触池の基礎検討(II)」、第15回日本オゾン協会年次研究講演会講演集、p45−p48(2005) 特開平9−276882号公報 特開平10−165971号公報
In the ozone / hydrogen peroxide treatment method, which is a kind of the accelerated oxidation treatment method, the injection amount of hydrogen peroxide affects the processing efficiency. From the viewpoint of the molar ratio (weight ratio) with ozone injected as a gas, a ratio at which good treatment efficiency is obtained is obtained, and injection control has been performed based on the ratio (for example, see Patent Documents 1 and 2).
Kenichi Hamada, “Research on development of wastewater treatment system by ozone / hydrogen peroxide treatment method”, Kyoto University Doctoral Dissertation (Doctor), p53-p85 (2002) Takuharu Iwamoto et al., “Basic Study of AOP Combined Ozone Contact Pond (II)”, 15th Annual Meeting of the Japan Ozone Society, p45-p48 (2005) JP-A-9-276882 JP-A-10-165971

しかしながら、上記の良好な処理効率が得られる比率は、有機物濃度、pH、水温等の被処理水の水質やオゾンガスの注入率により異なるため、実験的に予め検討する必要がある。また、水質が変動する実環境水を対象とした場合、良好な処理効率を得られる過酸化水素とオゾンとの比率も水質の変動により変化すると考えられ、比率変化の程度を把握することは実質的に困難を伴う。さらに、過酸化水素とオゾンとの比率は装置により異なるため、実験室規模で得られた比率をそのまま実プラントに適用しても、実験と同様の処理効率が得られるとは限らない。   However, since the ratio at which the above-described good treatment efficiency is obtained varies depending on the quality of the water to be treated such as organic substance concentration, pH, water temperature, and the injection rate of ozone gas, it is necessary to experimentally examine it in advance. In addition, in the case of actual environmental water whose water quality varies, the ratio of hydrogen peroxide to ozone that can achieve good treatment efficiency is also considered to change due to the fluctuation of water quality. Is difficult. Furthermore, since the ratio between hydrogen peroxide and ozone differs depending on the apparatus, even if the ratio obtained on the laboratory scale is applied to an actual plant as it is, the processing efficiency similar to the experiment is not always obtained.

また、特許文献1、2に開示されている発明は、促進酸化処理を適用したオゾン接触槽のオゾン吸収効率を高め、オゾンと過酸化水素とが過剰注入にならないようにし、オゾン接触槽とその制御方法の提供を目的とするものであり、いずれの発明も、オゾン接触槽において、『予め設定した過酸化水素及びオゾンの注入率』から、各オゾン発生装置の駆動と過酸化水素の注入率を制御する方法を主たる内容としたものである。さらに、余剰となる溶存オゾン濃度が一定になるように、過酸化水素のバルブ開度目標値を求めてその開度を調整しているので、過酸化水素及びオゾンの注入率の設定をせずに、促進酸化の効果を最大にすることは困難である。   In addition, the inventions disclosed in Patent Documents 1 and 2 increase the ozone absorption efficiency of the ozone contact tank to which the accelerated oxidation treatment is applied, prevent ozone and hydrogen peroxide from being excessively injected, The purpose of the present invention is to provide a control method. In any of the inventions, in the ozone contact tank, from the “preset hydrogen peroxide and ozone injection rate”, the driving of each ozone generator and the hydrogen peroxide injection rate. The main content is the method of controlling the. In addition, the valve opening target value of hydrogen peroxide is determined and adjusted so that the excess dissolved ozone concentration is constant, so the injection rate of hydrogen peroxide and ozone is not set. In addition, it is difficult to maximize the effect of accelerated oxidation.

従って、本発明の目的は、被処理水の水質及びその変動、オゾンガスの注入率、反応装置の形状等の外的因子によらず、良好な処理効率を得るための水処理用反応槽、水処理システム及び水処理方法を提供することにある。   Therefore, the object of the present invention is to provide a water treatment reactor for obtaining good treatment efficiency regardless of external factors such as the quality of the water to be treated and its fluctuation, the injection rate of ozone gas, the shape of the reactor, and the like. A treatment system and a water treatment method are provided.

本発明の上記目的は、下記手段により達成される。   The above object of the present invention is achieved by the following means.

(1)すなわち、本発明は、オゾンガスを被処理水に注入するオゾンガス注入手段と、過酸化水素を前記被処理水に注入する過酸化水素注入手段と、前記被処理水中の溶存オゾンの濃度を計測する溶存オゾン濃度計測手段と、を有する水処理用反応槽であって、前記過酸化水素注入手段は、前記溶存オゾン濃度計測手段により計測された溶存オゾン濃度が信頼測定範囲の下限値未満となるように前記過酸化水素の注入量を制御することを特徴とする、前記水処理用反応槽である。(1) That is, the present invention relates to ozone gas injection means for injecting ozone gas into the water to be treated, hydrogen peroxide injection means for injecting hydrogen peroxide into the water to be treated, and the concentration of dissolved ozone in the water to be treated. A water treatment reactor having a dissolved ozone concentration measuring means for measuring, wherein the hydrogen peroxide injection means has a dissolved ozone concentration measured by the dissolved ozone concentration measuring means less than a lower limit value of a reliable measurement range. The water treatment reaction tank is characterized in that the injection amount of the hydrogen peroxide is controlled.

(2)本発明はまた、前記過酸化水素注入手段は、前記過酸化水素の前記注入量が最小となるように制御することを特徴とする、(1)に記載の水処理用反応槽である。(2) In the water treatment reactor according to (1), the hydrogen peroxide injection unit may control the hydrogen peroxide injection amount to be a minimum. is there.

(3)本発明はまた、水処理用反応槽を少なくとも1つ備えてなり、前記水処理用反応槽は、オゾンガスを被処理水に注入するオゾンガス注入手段と、過酸化水素を前記被処理水に注入する過酸化水素注入手段と、前記被処理水中の溶存オゾンの濃度を計測する溶存オゾン濃度計測手段と、を有する水処理システムであって、前記過酸化水素注入手段は、前記溶存オゾン濃度計測手段により計測された溶存オゾン濃度が信頼測定範囲の下限値未満となるように前記過酸化水素の注入量を制御することを特徴とする、前記水処理システムである。(3) The present invention also includes at least one water treatment reaction tank, wherein the water treatment reaction tank includes ozone gas injection means for injecting ozone gas into the water to be treated, and hydrogen peroxide as the water to be treated. A water treatment system having hydrogen peroxide injection means for injecting into the water and dissolved ozone concentration measurement means for measuring the concentration of dissolved ozone in the water to be treated, wherein the hydrogen peroxide injection means includes the dissolved ozone concentration In the water treatment system, the injection amount of the hydrogen peroxide is controlled so that the dissolved ozone concentration measured by the measuring unit is less than the lower limit value of the reliable measurement range.

(4)本発明はまた、前記過酸化水素注入手段は、前記過酸化水素の前記注入量が最小となるように制御することを特徴とする、(3)に記載の水処理システムである。(4) The water treatment system according to (3), wherein the hydrogen peroxide injection unit controls the injection amount of the hydrogen peroxide to be a minimum.

(5)本発明はまた、オゾンガスを被処理水に注入するオゾンガス注入工程と、過酸化水素を前記被処理水に注入する過酸化水素注入工程と、前記被処理水中の溶存オゾンの濃度を計測する溶存オゾン濃度計測工程と、を有する水処理方法であって、前記過酸化水素注入工程は、前記溶存オゾン濃度計測工程により計測された前記溶存オゾンの濃度が信頼測定範囲の下限値未満となるように前記過酸化水素の注入量を制御することを特徴とする、前記水処理方法である。(5) The present invention also measures an ozone gas injection step of injecting ozone gas into the water to be treated, a hydrogen peroxide injection step of injecting hydrogen peroxide into the water to be treated, and a concentration of dissolved ozone in the water to be treated. A dissolved ozone concentration measuring step, wherein the hydrogen peroxide injection step is such that the concentration of the dissolved ozone measured by the dissolved ozone concentration measuring step is less than a lower limit value of a reliable measurement range. Thus, the water treatment method is characterized in that the injection amount of the hydrogen peroxide is controlled.

(6)本発明はまた、前記過酸化水素注入工程は、前記過酸化水素の前記注入量が最小となるように制御することを特徴とする、(5)に記載の水処理方法である。(6) The water treatment method according to (5), wherein the hydrogen peroxide injection step is controlled so that the injection amount of the hydrogen peroxide is minimized.

本発明によれば、溶存オゾン濃度が最小となるように過酸化水素の注入量を制御した結果、ヒドロキシルラジカルの生成量が増加するので、水の浄化能力、すなわち、農薬、家庭用品、医薬品等種々の有害化学物質、臭気物質等の酸化分解能力を最大限に引き上げることができる。   According to the present invention, as a result of controlling the injection amount of hydrogen peroxide so as to minimize the dissolved ozone concentration, the amount of hydroxyl radicals generated increases, so water purification ability, that is, agricultural chemicals, household goods, pharmaceuticals, etc. The ability to oxidatively decompose various toxic chemicals and odorous substances can be maximized.

また、本発明によれば、過酸化水素の注入量を、連続的監視が可能な溶存オゾン濃度により制御しているので、被処理水の水質やその変動、オゾンガスの注入率の変化に対し、速やかに対応でき、同様に、装置の形状に依存することなく、対応可能である。   In addition, according to the present invention, the injection amount of hydrogen peroxide is controlled by the dissolved ozone concentration that can be continuously monitored, so the quality of the water to be treated and its variation, the change in the injection rate of ozone gas, It is possible to respond quickly and similarly, without depending on the shape of the apparatus.

さらに、本発明によれば、従来技術のように、過酸化水素とオゾンとの比率を、事前に又は作業中に算出する必要がないので、作業効率を向上させ、さらに作業にかかる経済的負担を減少させることができる。   Furthermore, according to the present invention, unlike the prior art, since it is not necessary to calculate the ratio of hydrogen peroxide and ozone in advance or during work, the work efficiency is improved and the economic burden on the work is further increased. Can be reduced.

また、本発明によれば、必要最低限の過酸化水素の注入量を算出することができるので、良好な処理効率を維持しつつ、過剰な過酸化水素の使用による経済的負担を低減することができる。   In addition, according to the present invention, since the minimum injection amount of hydrogen peroxide can be calculated, it is possible to reduce the economic burden due to the use of excess hydrogen peroxide while maintaining good processing efficiency. Can do.

さらに、本発明によれば、従来技術でも算出していた溶存オゾン濃度を過酸化水素の注入量の制御に適用しているので、既存の装置を用いることができ、装置にかかる経済的負担を減少させることができ、同様に、装置設計の自由度や汎用性を高めることができる。   Furthermore, according to the present invention, since the dissolved ozone concentration calculated in the prior art is applied to control the injection amount of hydrogen peroxide, the existing apparatus can be used, and the economic burden on the apparatus is reduced. Similarly, the degree of freedom and versatility of device design can be increased.

また、本発明によれば、溶存オゾン濃度を最小濃度に保つことにより、オゾンと原水中の臭化物イオンが反応してできる発がん性物質の臭素酸イオンやアルデヒド類等の生成濃度を低く保つことができる。   In addition, according to the present invention, by keeping the dissolved ozone concentration at the minimum concentration, it is possible to keep the production concentration of bromate ions, aldehydes, and the like of carcinogenic substances formed by the reaction of ozone and bromide ions in raw water. it can.

さらに、本発明によれば、過酸化水素及び溶存オゾン濃度が最小濃度で保たれるため、オゾン/過酸化水素処理工程の後の工程である活性炭処理や塩素処理において、活性炭の寿命や塩素剤の消費に悪影響を与える可能性がある過酸化水素及び溶存オゾンの残留を最小限に留めることができる。   Furthermore, according to the present invention, since the hydrogen peroxide and dissolved ozone concentrations are kept at the minimum concentration, the life of the activated carbon and the chlorine agent in the activated carbon treatment and chlorination after the ozone / hydrogen peroxide treatment step. Residues of hydrogen peroxide and dissolved ozone, which can adversely affect the consumption of water, can be minimized.

また、本発明によれば、制御因子が過酸化水素の注入量だけであることから、計装設備の構造を単純化し、装置の効率化及び故障の低減を図ることができる。   Further, according to the present invention, since the control factor is only the injection amount of hydrogen peroxide, the structure of the instrumentation equipment can be simplified, the efficiency of the apparatus can be improved, and the failure can be reduced.

さらに、本発明によれば、酸化剤として、極めて反応性が高いヒドロキシルラジカルを用いているので、後の処理工程において悪影響を与える有害化学物質の生成を低減することができる。   Furthermore, according to the present invention, since hydroxyl radicals having extremely high reactivity are used as the oxidizing agent, it is possible to reduce the generation of harmful chemical substances that adversely affect the subsequent processing steps.

以下、本発明の実施の形態を、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の第1の実施形態にかかる水処理用反応槽が適用された水処理システムの全体構成を示すブロック図である。図1に示すように、本実施形態にかかる水処理システム1は、被処理水又は処理水が流れる水道管11と、着水井21と、混和池31と、フロック形成池41と、沈殿池51と、急速ろ過池61と、本発明の実施形態にかかる水処理用反応槽71と、活性炭吸着池91と、浄水池101とを備え、これらは、水道管11を介して着水井21が設置されている上流側から順番に配設されている。被処理水は、水道管11を通って着水井21に流入して処理を施され、次いで混和池31から浄水池101まで水道管11を通って順に処理を施され、最終的には処理水となって、浄水池101が設置されている下流側の水道管11から排出される。なお、本発明の水処理システム1を構成する設備の種類および設置数は、図1に示す例に限定されない。   FIG. 1 is a block diagram showing an overall configuration of a water treatment system to which a water treatment reaction tank according to a first embodiment of the present invention is applied. As shown in FIG. 1, the water treatment system 1 according to the present embodiment includes a water pipe 11 through which treated water or treated water flows, a landing well 21, a mixing basin 31, a flock formation basin 41, and a sedimentation basin 51. And a rapid filtration basin 61, a water treatment reaction tank 71 according to an embodiment of the present invention, an activated carbon adsorption basin 91, and a water purification basin 101, which are installed by a landing well 21 via a water pipe 11. They are arranged in order from the upstream side. The water to be treated flows through the water pipe 11 to the landing well 21 and is treated, and then the water is treated sequentially from the mixing basin 31 to the water purification basin 101 through the water pipe 11, and finally the treated water. It is discharged from the water pipe 11 on the downstream side where the water purification tank 101 is installed. In addition, the kind of installation and the number of installation which comprise the water treatment system 1 of this invention are not limited to the example shown in FIG.

次に、上記各設備の構成について説明する((社)日本水道協会編『水道用語辞典(第二版)』(東京、(社)日本水道協会、1996年))。なお、本発明の実施形態にかかる水処理用反応槽71の詳細については後述する。   Next, the configuration of each facility will be described (Japan Waterworks Association, “Waterworks Dictionary (Second Edition)” (Tokyo, Japan Waterworks Association, 1996)). In addition, the detail of the reaction tank 71 for water treatment concerning embodiment of this invention is mentioned later.

着水井21は、浄水場等へ流入する原水の水位動揺を安定させ、水位調節と流入量測定を行うために設ける池、あるいはマス(桝)のことである。   The landing well 21 is a pond or a trout (basin) provided to stabilize the fluctuation of the raw water level flowing into the water purification plant or the like and to adjust the water level and measure the amount of inflow.

混和池31は、凝集剤を注入した後に、直ちに急速な撹拌を与えて凝集剤を原水中に均一にいきわたらせるための混和装置のことである。   The mixing basin 31 is a mixing device for giving a rapid stirring immediately after injecting the flocculant so that the flocculant is uniformly distributed in the raw water.

フロック形成池41は、沈澱処理の前処理としてフロック形成を行うための池である。   The flock formation pond 41 is a pond for performing flock formation as a pretreatment for the precipitation process.

沈殿池51は、水よりも重い粒子が静水中やきわめて静かな流れの中では、沈降して水と分離するという原理を利用して、原水を静かに流れる広い池に流入させて原水中の粒子を分離する池のことである。   The sedimentation basin 51 uses the principle that particles that are heavier than water settle and separate from water in still water or in a very quiet flow. A pond that separates particles.

急速ろ過池61は、凝集沈殿処理を行った後に、残りの濁質をろ過して除去するためのろ過槽のことである。   The rapid filtration basin 61 is a filtration tank for filtering and removing the remaining turbid matter after performing the coagulation sedimentation treatment.

活性炭吸着池91は、活性炭の優れた吸着能力を利用して、また、活性炭表面に成育した微生物の分解作用を利用して、異臭味、色度、陰イオン界面活性剤、フェノール類等の有機物を除去するものである。   The activated carbon adsorption pond 91 utilizes the excellent adsorption ability of activated carbon, and utilizes the decomposition action of microorganisms grown on the activated carbon surface, so that organic substances such as off-flavors, chromaticity, anionic surfactants, and phenols are used. Is to be removed.

浄水池101は、浄水場内において、浄水処理の運転管理上生じるろ過水量と送水量との間の不均衛を緩和するとともに、事故時または水質異常時における水量変動の対応などのために浄水を貯留するものである。   In the water purification plant 101, the water purification basin 101 relieves the non-uniformity between the filtered water volume and the water volume that occurs in the operation management of the water purification process, and supplies purified water to cope with the fluctuation of the water volume at the time of accident or water quality abnormality. It is to be stored.

次に、本発明の第1の実施形態にかかる水処理用反応槽について説明するが、各水処理用反応槽は後述する構成要素を複数含んでいてもよく、また、構成要素以外の構成要素を含んでいてもよく、あるいは、後述する構成要素のうちの一部が含まれていなくてもよい。また、各構成要素の設置場所については、本発明が意図するように機能すれば、特に限定されるものではない。なお、各水処理用反応槽で同様の機能を有する部分については、説明の重複を避けるため第1の実施形態のみその説明を行い、第2の実施形態以降はその説明を省略する。   Next, the water treatment reaction tank according to the first embodiment of the present invention will be described. Each water treatment reaction tank may contain a plurality of constituent elements to be described later, and the constituent elements other than the constituent elements. May be included, or some of the components described below may not be included. Further, the installation location of each component is not particularly limited as long as the present invention functions as intended. In addition, about the part which has the same function in each reaction tank for water treatment, the description is abbreviate | omitted only in 1st Embodiment in order to avoid duplication of description, and the description after 2nd Embodiment is abbreviate | omitted.

図2は、本発明の第1の実施形態にかかる水処理用反応槽を示すブロック図である。図2に示すとおり、本発明の水処理用反応槽71は、散気管式又はディフューザ式反応槽と呼ばれるものである。ここで、散気管式反応槽とは、底部(本発明においては、反応槽211の底部)から多孔質の散気管(本発明においては、オゾンガス注入管221)を用いて、オゾンガスを吹き込む方式のものである。これは、少流量から大流量の処理に対応でき、また、操作の融通性もあることから、オゾンを用いた水処理において、最も一般的に使用されている(宗宮功編著『オゾンハンドブック』(横浜、サンユー書房、2004年)、宗宮功編著『オゾン利用水処理技術』(公害対策技術同友会、1989年))。本実施形態においては、水道管11を流れる被処理水を貯水する反応槽211と、オゾンガスを発生させるオゾンガス発生装置(図示せず)と、オゾンガスを反応槽211中に注入し、被処理水と接触させるオゾンガス注入管221と、被処理水中の溶存オゾンの濃度を計測する溶存オゾン濃度計231と、溶存オゾン濃度に基づいて過酸化水素の注入量を決定し、過酸化水素注入装置251に伝え、その注入量を制御するフィードバック制御装置241と、フィードバック制御装置241からの信号を受けて、過酸化水素を過酸化水素注入管261に注入する過酸化水素注入装置251と、過酸化水素を水道管に流入する水道管11とで構成されている。被処理水は、水道管11を通って反応槽211に流入して適量を貯水された後、オゾンガス注入管221からオゾンガスが注入され、被処理水と接触して溶存オゾンが生成され、反応槽211の出口側に設置された溶存オゾン濃度計231により測定される。この溶存オゾン濃度に基づいて、フィードバック制御装置241より過酸化水素の注入量が決定され、次いで、過酸化水素注入装置251から過酸化水素注入管261を通って過酸化水素が反応槽211に流入して浄水処理が施され、反応槽211の出口側に設置された水道管11から排出される。   FIG. 2 is a block diagram showing a water treatment reactor according to the first embodiment of the present invention. As shown in FIG. 2, the water treatment reaction tank 71 of the present invention is a so-called diffuser type or diffuser type reaction tank. Here, the diffuser type reaction tank is a system in which ozone gas is blown from the bottom (in the present invention, the bottom of the reaction tank 211) using a porous diffuser (in the present invention, the ozone gas injection pipe 221). Is. This is the most commonly used water treatment using ozone because it can handle small to large flow rates and is flexible in operation (Ozone Handbook, written by Isao Somiya) ( (Yokohama, Sanyu Shobo, 2004), Isao Munemiya, “Ozone-Used Water Treatment Technology” (Pollution Control Technology Doyukai, 1989)). In the present embodiment, a reaction tank 211 that stores treated water flowing through the water pipe 11, an ozone gas generator (not shown) that generates ozone gas, and ozone gas is injected into the reaction tank 211, and the treated water and An ozone gas injection pipe 221 to be contacted, a dissolved ozone concentration meter 231 that measures the concentration of dissolved ozone in the water to be treated, and an injection amount of hydrogen peroxide are determined based on the dissolved ozone concentration and transmitted to the hydrogen peroxide injection device 251 A feedback control device 241 for controlling the injection amount, a hydrogen peroxide injection device 251 for injecting hydrogen peroxide into the hydrogen peroxide injection pipe 261 in response to a signal from the feedback control device 241, and hydrogen peroxide for water supply It is comprised with the water pipe 11 which flows in into a pipe | tube. The water to be treated flows into the reaction tank 211 through the water pipe 11 and is stored in an appropriate amount, and then ozone gas is injected from the ozone gas injection pipe 221 to generate dissolved ozone in contact with the water to be treated. It is measured by a dissolved ozone concentration meter 231 installed on the outlet side of 211. Based on this dissolved ozone concentration, the amount of hydrogen peroxide injected is determined by the feedback control device 241, and then hydrogen peroxide flows into the reaction tank 211 from the hydrogen peroxide injector 251 through the hydrogen peroxide injection pipe 261. Then, the water is purified and discharged from the water pipe 11 installed on the outlet side of the reaction tank 211.

次に、本発明の過酸化水素の注入量の制御方法について、水処理原理を踏まえて説明する。   Next, the method for controlling the injection amount of hydrogen peroxide according to the present invention will be described based on the principle of water treatment.

通常のオゾン処理では、図3に示すように、溶存オゾンによる反応(図中の(B))と、溶存オゾンが分解して生成したヒドロキシルラジカルによる反応(図中の(D))との、二つの経路により処理対象物質の酸化分解が行われている。この場合、溶存オゾンにより処理対象物質が分解される速度(図中の(B))と溶存オゾンが自己分解する速度(図中の(C)、自己分解にともない一部がヒドロキシルラジカルへと変換)との和が、オゾンガスが被処理水中に溶解して溶存オゾンを生成させる速度(図中の(A))と比較して非常に遅いために、反応槽中に溶存オゾンが蓄積されるので、上記(A)の生成速度が低下する。従って、通常のオゾン処理では、全体のマスバランスを考えると、図4に示すように、オゾンガスが溶解して生成された溶存オゾンの一部が消費されずに反応槽中に残存するだけでなく、未溶解のオゾンガス(図中の未使用オゾンガス)も残存するので、全体的な処理効率は低下する。   In normal ozone treatment, as shown in FIG. 3, a reaction by dissolved ozone ((B) in the figure) and a reaction by hydroxyl radicals generated by decomposition of dissolved ozone ((D) in the figure) Oxidative decomposition of the material to be treated is performed by two routes. In this case, the rate at which the substance to be treated is decomposed by dissolved ozone ((B) in the figure) and the rate at which dissolved ozone self-decomposes ((C) in the figure, partly converted to hydroxyl radicals due to self-decomposition) )) Is very slow compared to the rate at which ozone gas dissolves in the water to be treated and generates dissolved ozone ((A) in the figure), so dissolved ozone accumulates in the reaction tank. The production speed of (A) is reduced. Therefore, in the normal ozone treatment, considering the entire mass balance, as shown in FIG. 4, not only a part of the dissolved ozone generated by dissolving the ozone gas remains in the reaction tank without being consumed. Since undissolved ozone gas (unused ozone gas in the figure) also remains, the overall processing efficiency decreases.

そこで、例えば特開平9−276882号公報(第11項、図1)や特開平10−165971号公報(第8項、図1)に開示されている水処理用反応槽のように、ヒドロキシルラジカルの供給源であるオゾンガスに過酸化水素を添加する、促進酸化処理法を導入し、処理効率を向上させる試みがなされている。図5に示すように、促進酸化処理法では、オゾンガスとして注入されたオゾンが被処理水へと溶け込み、その後添加された過酸化水素と反応してヒドロキシルラジカルを生成し、処理対象物質が分解される。しかし、この場合、過酸化水素の添加量が最適化されていないため過酸化水素が不足していると、溶存オゾンが分解される速度(図中の(B)と(C)の和)は、オゾンガスが被処理水中に溶解して溶存オゾンを生成させる速度(図中の(A))と比較して遅いため、通常のオゾン処理と同様に、反応槽中に溶存オゾンが蓄積されるので、上記(A)の生成速度が低下する。従って、促進酸化処理法では、全体のマスバランスを考えると、図6に示すように、通常のオゾン処理を行った場合と比較すると、残存溶存オゾン量は低減するものの、未溶解のオゾンガスと共に残存するので、全体的な処理効率は低下する。   Thus, hydroxyl radicals such as those disclosed in JP-A-9-276882 (Section 11, FIG. 1) and JP-A-10-165971 (Section 8, FIG. 1) are disclosed. Attempts have been made to improve treatment efficiency by introducing an accelerated oxidation treatment method in which hydrogen peroxide is added to ozone gas, which is a supply source of the above. As shown in FIG. 5, in the accelerated oxidation treatment method, ozone injected as ozone gas dissolves in the water to be treated and then reacts with the added hydrogen peroxide to generate hydroxyl radicals, and the substance to be treated is decomposed. The However, in this case, if the amount of hydrogen peroxide is not optimized and hydrogen peroxide is insufficient, the rate at which dissolved ozone is decomposed (the sum of (B) and (C) in the figure) is Since ozone gas dissolves in the water to be treated and is slower than the rate at which dissolved ozone is generated ((A) in the figure), dissolved ozone accumulates in the reaction tank as in normal ozone treatment. The production speed of (A) is reduced. Therefore, in the accelerated oxidation treatment method, considering the overall mass balance, as shown in FIG. 6, the amount of residual dissolved ozone is reduced as compared with the case of performing normal ozone treatment, but it remains together with undissolved ozone gas. As a result, the overall processing efficiency decreases.

一方、本発明においては、図7に示すように、上記と同様に促進酸化処理法を適用し、過酸化水素を添加している。この場合、過酸化水素添加量を最適化しているため、オゾンガスが被処理水中に溶解して溶存オゾンを生成させる速度(図中の(A))と、溶存オゾンが分解される速度(図中の(B)と(C)の和)とは同等の速度であり、溶存オゾンは蓄積されない。また、溶存オゾンは過酸化水素と主に反応しているため、生成したヒドロキシルラジカルによって対象物質は主に分解されている。従って、上記(A)の生成速度は常に最大の速度を保つことができ、全体のマスバランスを考えると、図8に示すように、未溶解のオゾンガスもほとんど残存しないので、全体的な処理効率は向上する。   On the other hand, in the present invention, as shown in FIG. 7, the accelerated oxidation treatment method is applied in the same manner as described above, and hydrogen peroxide is added. In this case, since the amount of hydrogen peroxide added is optimized, the rate at which ozone gas dissolves in the water to be treated to generate dissolved ozone ((A) in the figure) and the rate at which dissolved ozone is decomposed (in the figure) (Sum of (B) and (C)) is equivalent speed, and dissolved ozone is not accumulated. Since dissolved ozone mainly reacts with hydrogen peroxide, the target substance is mainly decomposed by the generated hydroxyl radicals. Therefore, the generation rate of the above (A) can always keep the maximum rate, and considering the overall mass balance, almost no undissolved ozone gas remains as shown in FIG. Will improve.

すなわち、両者の差は全体のマスバランスの制御方法にある。従来技術の促進酸化処理における制御方法は、図9に示すように、オゾンガスと過酸化水素の比率により決定され、この比率は、上記両従来技術共に予め設定した数値である。従って、実験室規模で算出した数値を実際の施設において導入したとしても微調整が必要であり、また、実際の被処理水の水質や装置の形状等によっては、この数値を用いて処理ができない可能性もあり、作業者の労力や時間を費やし、全体的な処理効率が低下することが予想される。   That is, the difference between the two lies in the overall mass balance control method. As shown in FIG. 9, the control method in the accelerated oxidation treatment of the prior art is determined by the ratio of ozone gas and hydrogen peroxide, and this ratio is a numerical value set in advance for both the prior arts. Therefore, even if the numerical value calculated at the laboratory scale is introduced in an actual facility, fine adjustment is necessary, and depending on the actual water quality of the treated water, the shape of the apparatus, etc., it is not possible to perform processing using this numerical value. There is also a possibility that it will take the labor and time of the operator, and the overall processing efficiency is expected to decrease.

しかしながら、本発明の促進酸化処理における制御方法は、図10に示すように、溶存オゾン濃度を指標として過酸化水素の注入量を最適化するため、実験室規模での予備実験はもとより、実際の施設でも微調整に労力と時間を費やす必要はない。ここで、過酸化水素の注入量の最適化とは、未知濃度のオゾンガスを反応槽内に注入した際に、オゾンガスの溶解量が最大となる条件、すなわち、良好な処理効率を得るための条件を決定し、その条件から過酸化水素の注入量を算出することである。反応槽中のオゾンガス濃度の変化は、下記数式(I)   However, as shown in FIG. 10, the control method in the accelerated oxidation treatment of the present invention optimizes the injection amount of hydrogen peroxide using dissolved ozone concentration as an index. There is no need to spend effort and time fine-tuning the facility. Here, optimization of the injection amount of hydrogen peroxide is a condition that maximizes the dissolved amount of ozone gas when ozone gas of unknown concentration is injected into the reaction tank, that is, a condition for obtaining good treatment efficiency. And the injection amount of hydrogen peroxide is calculated from the conditions. The change in ozone gas concentration in the reaction tank is expressed by the following formula (I)

Figure 0005061320
Figure 0005061320

(式中、[O]gas(mg/L)はオゾンガス濃度を、KLa(1/s)は総括オゾン移動容量係数を、[O]liq(mg/L)は溶存オゾン濃度を、[O]* liq(mg/L)は飽和溶存オゾン濃度を示す。)により表わされる。注入したオゾンガスが最大限に利用される条件とは、経過時間ごとのオゾンガスの減少量(被処理水への溶解量)が最大となる条件でもある。式(I)より、溶存オゾン濃度が低い場合には、オゾンガスの被処理水への溶解速度が大きいことがわかり、溶存オゾンは過酸化水素水と反応してヒドロキシルラジカルを生成するが、その生成速度は過酸化水素濃度が高い場合に大きくなる。よって、経過時間ごとの全溶存オゾンと反応する量の過酸化水素が反応槽中に存在していれば、オゾンガスの溶解速度は常に最大となる。 ( Where [O 3 ] gas (mg / L) is the ozone gas concentration, K La (1 / s) is the overall ozone transfer capacity coefficient, [O 3 ] liq (mg / L) is the dissolved ozone concentration, [O 3 ] * liq (mg / L) represents a saturated dissolved ozone concentration.) The condition that the injected ozone gas is utilized to the maximum is also the condition that the amount of decrease in ozone gas (the amount dissolved in the water to be treated) for each elapsed time is maximized. From the formula (I), it can be seen that when the dissolved ozone concentration is low, the dissolution rate of the ozone gas into the water to be treated is high, and the dissolved ozone reacts with the hydrogen peroxide solution to generate hydroxyl radicals. The rate increases when the hydrogen peroxide concentration is high. Therefore, if an amount of hydrogen peroxide that reacts with the total dissolved ozone for each elapsed time is present in the reaction tank, the dissolution rate of the ozone gas is always maximized.

従って、上述した通常のオゾン処理では、反応槽の出口の溶存オゾン濃度が最も高くなることから、上述したオゾンガスの溶解速度を常に最大にするためには、反応槽の出口において溶存オゾンが検出されなければ、反応槽の他の地点からも検出されないと考えられる。よって、図2に示すように、溶存オゾン濃度計231は、反応槽211の出口に設置することが望ましい。   Therefore, in the above-described normal ozone treatment, the dissolved ozone concentration at the outlet of the reaction tank becomes the highest, so that dissolved ozone is detected at the outlet of the reaction tank in order to always maximize the dissolution rate of the ozone gas described above. If not, it is considered that it is not detected from other points in the reaction tank. Therefore, as shown in FIG. 2, the dissolved ozone concentration meter 231 is desirably installed at the outlet of the reaction tank 211.

また、フィードバック制御装置241は、溶存オゾン濃度計231で検出された溶存オゾン濃度を基にして、好ましくは、溶存オゾンの量を低減するように、さらに好ましくは、溶存オゾンの量が最小になるように制御可能に設計されることが望ましい。なお、過酸化水素は過剰になると処理効率が低下し、さらに経済的負担を増加させるという観点から注入量が少ないことが望ましいので、フィードバック制御装置241は、オゾンガスの溶解速度を常に最大にするために必要な注入量、好ましくは必要最低限の注入量を条件として設定されても構わない。また、他の観点から添加する過酸化水素量の上限又は下限を設定する必要性が生じた場合にも、状況に応じて適宜設計変更されてもよい。さらに、溶存オゾン濃度計231の精度差により、設置する溶存オゾン濃度計231の精度が低い場合には、検出限界値より低い溶存オゾン濃度を基にして、過酸化水素の注入量を制御可能に設計されてもよい。   Further, the feedback control device 241 preferably reduces the amount of dissolved ozone based on the dissolved ozone concentration detected by the dissolved ozone concentration meter 231. More preferably, the amount of dissolved ozone is minimized. It is desirable to be designed to be controllable. In addition, since it is desirable that the injection amount is small from the viewpoint of reducing the processing efficiency and increasing the economic burden when hydrogen peroxide is excessive, the feedback control device 241 always maximizes the ozone gas dissolution rate. May be set on condition that the necessary injection amount, preferably the minimum necessary injection amount. Moreover, even when it becomes necessary to set the upper limit or the lower limit of the amount of hydrogen peroxide to be added from another viewpoint, the design may be changed as appropriate according to the situation. Furthermore, when the accuracy of the dissolved ozone concentration meter 231 to be installed is low due to the difference in accuracy of the dissolved ozone concentration meter 231, the injection amount of hydrogen peroxide can be controlled based on the dissolved ozone concentration lower than the detection limit value. May be designed.

次に、本発明の水処理用反応槽の他の実施形態について説明するが、これらは第1の実施形態にかかる水処理用反応槽と同様に、例えば図1に示すような水処理システムに適用可能である。   Next, other embodiments of the water treatment reactor according to the present invention will be described. These are similar to the water treatment reactor according to the first embodiment, for example, in a water treatment system as shown in FIG. Applicable.

図11は、本発明の第2の実施形態にかかる水処理用反応槽を示すブロック図である。図11に示すとおり、本発明の水処理用反応槽72は、本発明の第1の実施形態の水処理用反応槽と異なり、複数の反応槽211a、211b、211cを直列につなぐ多段型の反応槽である。被処理水中の溶存オゾンの濃度を計測するための溶存オゾン濃度計231は、反応槽211cの出口に設置され、フィードバック制御装置241は、溶存オゾン濃度計231により計測された反応槽211c中の溶存オゾン濃度に基づいて、過酸化水素の注入量を制御可能に構成されている。すなわち、本実施形態においては、第1の実施形態と同様に過酸化水素の注入個所が1ヶ所であるので、反応槽211c中の溶存オゾン濃度を計測することにより、反応槽211a〜211c中の溶存オゾン濃度を計測しているのに等しい。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 11: is a block diagram which shows the reaction tank for water treatment concerning the 2nd Embodiment of this invention. As shown in FIG. 11, the water treatment reaction tank 72 of the present invention is different from the water treatment reaction tank of the first embodiment of the present invention, and is a multistage type in which a plurality of reaction tanks 211a, 211b, 211c are connected in series. It is a reaction tank. A dissolved ozone concentration meter 231 for measuring the concentration of dissolved ozone in the water to be treated is installed at the outlet of the reaction vessel 211c, and the feedback control device 241 is dissolved in the reaction vessel 211c measured by the dissolved ozone concentration meter 231. Based on the ozone concentration, the injection amount of hydrogen peroxide can be controlled. That is, in this embodiment, since there is one injection site of hydrogen peroxide as in the first embodiment, the dissolved ozone concentration in the reaction tank 211c is measured to measure the concentration of dissolved ozone in the reaction tanks 211a to 211c. Equivalent to measuring the dissolved ozone concentration. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図12は、本発明の第3の実施形態にかかる水処理用反応槽を示すブロック図である。図12に示すとおり、本発明の水処理用反応槽73は、本発明の第2の実施形態の水処理用反応槽と同様に、複数の反応槽211a、211b、211cを直列につなぐ多段型の反応槽であり、被処理水中の溶存オゾンの濃度を計測するための溶存オゾン濃度計231は、反応槽211cの出口に設置されている。しかし、本発明の第2の実施形態の水処理用反応槽とは異なり、フィードバック制御装置241a〜241cは、溶存オゾン濃度計231で計測された被処理水中の溶存オゾンの濃度に基づいて、それぞれ反応槽211a〜211cへの過酸化水素の注入量を制御可能に構成されている。すなわち、本実施形態は、第2の実施形態と比較すると、それぞれの反応槽211a〜211cに過酸化水素注入装置251a〜251cがあるため、前段の反応槽211aにおいて、それ以降の反応槽211b、211cに必要となる過酸化水素を過剰に注入する必要がなく、それぞれの反応槽211a〜211cで必要最小限の過酸化水素を注入すればよい。このとき、過酸化水素の注入量は、それぞれの過酸化水素注入装置251a〜251cについて制御することも、そのうちの特定の過酸化水素注入装置のみについて注入量を制御することも可能である。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 12 is a block diagram showing a water treatment reactor according to the third embodiment of the present invention. As shown in FIG. 12, the water treatment reaction tank 73 of the present invention is a multistage type in which a plurality of reaction tanks 211a, 211b, and 211c are connected in series, similarly to the water treatment reaction tank of the second embodiment of the present invention. A dissolved ozone concentration meter 231 for measuring the concentration of dissolved ozone in the water to be treated is installed at the outlet of the reaction tank 211c. However, unlike the water treatment reactor of the second embodiment of the present invention, the feedback control devices 241a to 241c are each based on the concentration of dissolved ozone in the water to be treated measured by the dissolved ozone concentration meter 231. The injection amount of hydrogen peroxide into the reaction vessels 211a to 211c is configured to be controllable. That is, compared with the second embodiment, this embodiment has hydrogen peroxide injection devices 251a to 251c in the respective reaction tanks 211a to 211c. Therefore, in the previous reaction tank 211a, the subsequent reaction tanks 211b, It is not necessary to inject excessive hydrogen peroxide necessary for 211c, and it is sufficient to inject a minimum amount of hydrogen peroxide in each of the reaction tanks 211a to 211c. At this time, the injection amount of hydrogen peroxide can be controlled for each of the hydrogen peroxide injection devices 251a to 251c, or the injection amount can be controlled only for a specific hydrogen peroxide injection device. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図13は、本発明の第4の実施形態にかかる水処理用反応槽を示すブロック図である。図13に示すとおり、本発明の水処理用反応槽74は、本発明の第2の実施形態の水処理用反応槽と同様に、複数の反応槽211a、211b、211cを直列につなぐ多段型の反応槽である。しかし、本発明の第2の実施形態の水処理用反応槽と異なり、被処理水中の溶存オゾンの濃度を計測するための溶存オゾン濃度計231a、231b、231cは、反応槽211a、211b、211cの出口にそれぞれ設置されており、溶存オゾン濃度計231aで計測された被処理水中の溶存オゾンの濃度と、溶存オゾン濃度計231bで計測された被処理水中の溶存オゾンの濃度と、溶存オゾン濃度計231cで計測された被処理水中の溶存オゾンの濃度とに基づいて、フィードバック制御装置241aとフィードバック制御装置241bとフィードバック制御装置241cとが、反応槽211aへの過酸化水素の注入量を制御可能に構成されている。この際、過酸化水素注入装置251は、両制御装置が算出したそれぞれの過酸化水素の注入量を、別個に又は一度に、過酸化水素注入管261へ注入可能に構成されてもよい。すなわち、本実施形態のように、複数の反応槽211a〜211cが直列につながっている場合、それぞれの反応槽211a〜211cでオゾンガスの注入率を変える場合がある。このとき、オゾンガスの注入率が高い反応槽の出口の溶存オゾン濃度は、最終的な出口(本実施形態においては、反応槽211cの出口)の溶存オゾン濃度より、高くなる可能性もある。本実施形態では、それぞれの反応槽211a〜211cの出口に溶存オゾン濃度計231a〜231cが設置してあるため、それぞれの反応槽211a〜211cでオゾンガス注入率等の処理条件が異なる場合においても、それぞれの反応槽211a〜211cにおいて最適な処理条件で処理を行うことができる。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 13: is a block diagram which shows the reaction tank for water treatment concerning the 4th Embodiment of this invention. As shown in FIG. 13, the water treatment reaction tank 74 of the present invention is a multistage type in which a plurality of reaction tanks 211a, 211b, and 211c are connected in series, similarly to the water treatment reaction tank of the second embodiment of the present invention. It is a reaction tank. However, unlike the water treatment reaction tank of the second embodiment of the present invention, the dissolved ozone concentration meters 231a, 231b, and 231c for measuring the concentration of dissolved ozone in the water to be treated are reaction tanks 211a, 211b, and 211c. The concentration of dissolved ozone in the treated water measured by the dissolved ozone concentration meter 231a, the concentration of dissolved ozone in the treated water measured by the dissolved ozone concentration meter 231b, and the dissolved ozone concentration The feedback control device 241a, the feedback control device 241b, and the feedback control device 241c can control the injection amount of hydrogen peroxide into the reaction tank 211a based on the concentration of dissolved ozone in the treated water measured by the total 231c. It is configured. At this time, the hydrogen peroxide injection device 251 may be configured to be able to inject the hydrogen peroxide injection amounts calculated by the two control devices into the hydrogen peroxide injection pipe 261 separately or at a time. That is, as in this embodiment, when a plurality of reaction vessels 211a to 211c are connected in series, the ozone gas injection rate may be changed in each reaction vessel 211a to 211c. At this time, the dissolved ozone concentration at the outlet of the reaction tank where the injection rate of ozone gas is high may be higher than the dissolved ozone concentration at the final outlet (in this embodiment, the outlet of the reaction tank 211c). In this embodiment, since the dissolved ozone concentration meters 231a to 231c are installed at the outlets of the reaction vessels 211a to 211c, even when the processing conditions such as the ozone gas injection rate are different in the reaction vessels 211a to 211c, In each reaction tank 211a-211c, it can process on optimal process conditions. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図14は、本発明の第5の実施形態にかかる水処理用反応槽を示すブロック図である。図14に示すとおり、本発明の水処理用反応槽75は、本発明の第2の実施形態の水処理用反応槽と同様に、複数の反応槽211a、211b、211cを直列につなぐ多段型の反応槽である。しかし、本発明の第2の実施形態の水処理用反応槽と異なり、被処理水中の溶存オゾンの濃度を計測するための溶存オゾン濃度計231a、231b、231cは、反応槽211a、211b、211cの出口にそれぞれ設置されており、フィードバック制御装置241a、241b、241cは、溶存オゾン濃度計231a、231b、231cでそれぞれ計測された被処理水中の溶存オゾンの濃度に基づいて、反応槽211a、211b、211cへの過酸化水素の注入量を、それぞれ制御している。すなわち、本実施形態は、第3の実施形態と第4の実施形態とを組み合わせた構成となっているため、多段反応槽のそれぞれの反応槽211a〜211cで、オゾンガス注入率等の反応条件が異なる場合でも、それぞれの反応槽211a〜211cに必要最小限の過酸化水素を注入することができる。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 14: is a block diagram which shows the reaction tank for water treatment concerning the 5th Embodiment of this invention. As shown in FIG. 14, the water treatment reaction tank 75 of the present invention is a multistage type in which a plurality of reaction tanks 211a, 211b, and 211c are connected in series, similarly to the water treatment reaction tank of the second embodiment of the present invention. It is a reaction tank. However, unlike the water treatment reaction tank of the second embodiment of the present invention, the dissolved ozone concentration meters 231a, 231b, and 231c for measuring the concentration of dissolved ozone in the water to be treated are reaction tanks 211a, 211b, and 211c. The feedback control devices 241a, 241b, and 241c are respectively installed at the outlets of the reaction tanks 211a, 211b based on the concentrations of dissolved ozone in the water to be treated measured by the dissolved ozone concentration meters 231a, 231b, 231c. , 211c, the amount of hydrogen peroxide injected is controlled. That is, since this embodiment has a configuration in which the third embodiment and the fourth embodiment are combined, reaction conditions such as an ozone gas injection rate in each of the reaction tanks 211a to 211c of the multistage reaction tank. Even if they are different from each other, the minimum hydrogen peroxide can be injected into each of the reaction vessels 211a to 211c. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図15は、本発明の第6の実施形態にかかる水処理用反応槽を示すブロック図である。図15に示すとおり、本発明の水処理用反応槽76は、本発明の第2の実施形態の水処理用反応槽と同様に、複数の反応槽211a、211b、211cを直列につなぐ多段型の反応槽であり、被処理水中の溶存オゾンの濃度を計測するための溶存オゾン濃度計231は、反応槽211cの出口に設置されている。しかし、本発明の第2の実施形態の水処理用反応槽とは異なり、過酸化水素注入装置251は反応槽211bの入口に設置され、フィードバック制御装置241は、溶存オゾン濃度計231により計測された反応槽211c中の溶存オゾン濃度に基づいて、過酸化水素の注入量を制御可能に構成されている。すなわち、被処理水中には、オゾンと反応性が高い成分がある程度存在している。本実施形態では、最初の反応槽211aではオゾン処理により、オゾンと反応性が高い成分が優先的に分解され、その後の反応槽211b、211cで残りの難オゾン反応性の成分がオゾン/過酸化水素処理によって分解されることとなる。よって、本実施形態の構成の場合には、最初の反応槽211aで、不必要な過酸化水素を注入する必要がない。なお、1段目の反応槽211aの出口に溶存オゾン濃度計を設置し、溶存オゾン濃度を制御することも可能である。後段のオゾン/過酸化水素処理の構成は、第2の実施形態と同様であり、反応槽211cの出口の溶存オゾン濃度により、反応槽211b、211c中の溶存オゾン濃度を制御していることとなる。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 15: is a block diagram which shows the reaction tank for water treatment concerning the 6th Embodiment of this invention. As shown in FIG. 15, the water treatment reaction tank 76 of the present invention is a multistage type in which a plurality of reaction tanks 211a, 211b, and 211c are connected in series, similarly to the water treatment reaction tank of the second embodiment of the present invention. A dissolved ozone concentration meter 231 for measuring the concentration of dissolved ozone in the water to be treated is installed at the outlet of the reaction tank 211c. However, unlike the water treatment reactor of the second embodiment of the present invention, the hydrogen peroxide injector 251 is installed at the inlet of the reactor 211b, and the feedback controller 241 is measured by the dissolved ozone concentration meter 231. The injection amount of hydrogen peroxide can be controlled based on the dissolved ozone concentration in the reaction tank 211c. That is, a component having high reactivity with ozone exists to some extent in the water to be treated. In the present embodiment, components that are highly reactive with ozone are preferentially decomposed in the first reaction tank 211a by ozone treatment, and the remaining hardly ozone-reactive components are ozone / peroxidized in the subsequent reaction tanks 211b and 211c. It will be decomposed by hydrogen treatment. Therefore, in the case of the configuration of this embodiment, it is not necessary to inject unnecessary hydrogen peroxide in the first reaction tank 211a. It is also possible to control the dissolved ozone concentration by installing a dissolved ozone concentration meter at the outlet of the first-stage reaction tank 211a. The configuration of the subsequent ozone / hydrogen peroxide treatment is the same as in the second embodiment, and the dissolved ozone concentration in the reaction vessels 211b and 211c is controlled by the dissolved ozone concentration at the outlet of the reaction vessel 211c. Become. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図16は、本発明の第7の実施形態にかかる水処理用反応槽を示すブロック図である。図16に示すとおり、本発明の水処理用反応槽77は、本発明の第2の実施形態の水処理用反応槽と同様に、複数の反応槽211a、211b、211cを直列につなぐ多段型の反応槽であり、被処理水中の溶存オゾンの濃度を計測するための溶存オゾン濃度計231は、反応槽211cの出口に設置されている。しかし、本発明の第2の実施形態の水処理用反応槽とは異なり、フィードバック制御装置241a、241bは、溶存オゾン濃度計231で計測された被処理水中の溶存オゾンの濃度に基づいて、それぞれ反応槽211b、211cへの過酸化水素の注入量を制御可能に構成されている。すなわち、本実施形態は、第3の実施形態と第6の実施形態を組み合わせた構成となっている。このため、最初の反応槽211aではオゾン処理により、オゾンと反応性が高い成分が優先的に分解され、その後の反応槽211b、211cで残りの難オゾン反応性の成分がオゾン/過酸化水素処理によって分解されることとなる。本実施形態の構成の場合、最初の反応槽211aで、不必要な過酸化水素を注入する必要がない。なお、第6の実施形態の場合と同様に、1段目の反応槽211aの出口に溶存オゾン濃度計を設置し、溶存オゾン濃度を制御することも可能である。後段のオゾン/過酸化水素処理では、第3の実施形態と同様に、前段の反応槽211bにおいて、それ以降の反応槽211cで必要となる過酸化水素を過剰に注入する必要がない。このとき、過酸化水素の注入量は、各過酸化水素注入装置251a、251bについて制御することも、そのうちの特定の過酸化水素注入装置のみについて注入量を制御することも可能である。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 16: is a block diagram which shows the reaction tank for water treatment concerning the 7th Embodiment of this invention. As shown in FIG. 16, the water treatment reaction tank 77 of the present invention is a multistage type in which a plurality of reaction tanks 211a, 211b, and 211c are connected in series, similarly to the water treatment reaction tank of the second embodiment of the present invention. A dissolved ozone concentration meter 231 for measuring the concentration of dissolved ozone in the water to be treated is installed at the outlet of the reaction tank 211c. However, unlike the water treatment reactor of the second embodiment of the present invention, the feedback control devices 241a and 241b are respectively based on the concentration of dissolved ozone in the water to be treated measured by the dissolved ozone concentration meter 231. The amount of hydrogen peroxide injected into the reaction vessels 211b and 211c can be controlled. That is, this embodiment has a configuration in which the third embodiment and the sixth embodiment are combined. For this reason, in the first reaction tank 211a, components having high reactivity with ozone are preferentially decomposed by ozone treatment, and in the subsequent reaction tanks 211b and 211c, remaining ozone-reactive components are treated with ozone / hydrogen peroxide. It will be decomposed by. In the case of the configuration of this embodiment, it is not necessary to inject unnecessary hydrogen peroxide in the first reaction tank 211a. As in the case of the sixth embodiment, a dissolved ozone concentration meter can be installed at the outlet of the first-stage reaction tank 211a to control the dissolved ozone concentration. In the subsequent ozone / hydrogen peroxide treatment, as in the third embodiment, it is not necessary to excessively inject the hydrogen peroxide required in the subsequent reaction tank 211c in the previous reaction tank 211b. At this time, the injection amount of hydrogen peroxide can be controlled for each of the hydrogen peroxide injection devices 251a and 251b, or the injection amount can be controlled only for a specific hydrogen peroxide injection device. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図17は、本発明の第8の実施形態にかかる水処理用反応槽を示すブロック図である。図17に示すとおり、本発明の水処理用反応槽78は、本発明の第2の実施形態の水処理用反応槽と同様に、複数の反応槽211a、211b、211cを直列につなぐ多段型の反応槽である。しかし、本発明の第2の実施形態の水処理用反応槽とは異なり、被処理水中の溶存オゾンの濃度を計測するための溶存オゾン濃度計231a、231bは、反応槽211b、211cの出口にそれぞれ設置されており、溶存オゾン濃度計231aで計測された被処理水中の溶存オゾンの濃度と、溶存オゾン濃度計231bで計測された被処理水中の溶存オゾンの濃度とに基づいて、フィードバック制御装置241aとフィードバック制御装置241bとが、反応槽211bへの過酸化水素の注入量を制御可能に構成されている。この際、過酸化水素注入装置251は、両制御装置が算出したそれぞれの過酸化水素の注入量を、別個に又は一度に、過酸化水素注入管261へ注入可能に構成されてもよい。すなわち、本実施形態は、第4の実施形態と第6の実施形態を組み合わせた構成となっている。このため、最初の反応槽211aではオゾン処理により、オゾンと反応性が高い成分が優先的に分解され、その後の反応槽211b、211cで残りの難オゾン反応性の成分がオゾン/過酸化水素処理によって分解されることとなる。本実施形態の構成の場合、最初の反応槽211aで、不必要な過酸化水素を注入する必要がない。なお、第6の実施形態の場合と同様に、1段目の反応槽211aの出口に溶存オゾン濃度計を設置し、溶存オゾン濃度を制御することも可能である。後段のオゾン/過酸化水素処理では、それぞれの反応槽211b、211cでオゾンガス注入率等の処理条件を変える場合、ある反応槽の出口の溶存オゾン濃度は、最終的な出口(本実施形態においては、反応槽211cの出口)の溶存オゾン濃度より、高くなる可能性もある。第6の実施形態の構成では、第4の実施形態と同様に、それぞれのオゾン反応槽211b、211cの出口に溶存オゾン濃度計231a、231bが設置してあるため、このようにそれぞれのオゾン反応槽211b、211cで処理条件が異なる場合においても、それぞれのオゾン反応槽211b、211cにおいて最適な処理条件で処理を行うことができる。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 17: is a block diagram which shows the reaction tank for water treatment concerning the 8th Embodiment of this invention. As shown in FIG. 17, the water treatment reaction tank 78 of the present invention is a multistage type in which a plurality of reaction tanks 211a, 211b, and 211c are connected in series, similarly to the water treatment reaction tank of the second embodiment of the present invention. It is a reaction tank. However, unlike the water treatment reaction tank of the second embodiment of the present invention, the dissolved ozone concentration meters 231a and 231b for measuring the concentration of dissolved ozone in the water to be treated are provided at the outlets of the reaction tanks 211b and 211c. A feedback control device is installed based on the concentration of dissolved ozone in the treated water measured by the dissolved ozone concentration meter 231a and the concentration of dissolved ozone in the treated water measured by the dissolved ozone concentration meter 231b. The 241a and the feedback control device 241b are configured to be able to control the injection amount of hydrogen peroxide into the reaction tank 211b. At this time, the hydrogen peroxide injection device 251 may be configured to be able to inject the hydrogen peroxide injection amounts calculated by the two control devices into the hydrogen peroxide injection pipe 261 separately or at a time. That is, this embodiment has a configuration in which the fourth embodiment and the sixth embodiment are combined. For this reason, in the first reaction tank 211a, components having high reactivity with ozone are preferentially decomposed by ozone treatment, and in the subsequent reaction tanks 211b and 211c, remaining ozone-reactive components are treated with ozone / hydrogen peroxide. It will be decomposed by. In the case of the configuration of this embodiment, it is not necessary to inject unnecessary hydrogen peroxide in the first reaction tank 211a. As in the case of the sixth embodiment, a dissolved ozone concentration meter can be installed at the outlet of the first-stage reaction tank 211a to control the dissolved ozone concentration. In the subsequent ozone / hydrogen peroxide treatment, when the treatment conditions such as the ozone gas injection rate are changed in the respective reaction vessels 211b and 211c, the dissolved ozone concentration at the exit of a certain reaction vessel is the final exit (in this embodiment, The concentration of dissolved ozone at the outlet of the reaction tank 211c may be higher. In the configuration of the sixth embodiment, similarly to the fourth embodiment, the dissolved ozone concentration meters 231a and 231b are installed at the outlets of the respective ozone reaction tanks 211b and 211c. Even when the processing conditions are different between the tanks 211b and 211c, the treatment can be performed under the optimal processing conditions in the respective ozone reaction tanks 211b and 211c. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図18は、本発明の第9の実施形態にかかる水処理用反応槽を示すブロック図である。図18に示すとおり、本発明の水処理用反応槽79は、本発明の第2の実施形態の水処理用反応槽と同様に、複数の反応槽211a、211b、211cを直列につなぐ多段型の反応槽である。しかし、本発明の第2の実施形態の水処理用反応槽とは異なり、被処理水中の溶存オゾンの濃度を計測するための溶存オゾン濃度計231a、231bは、反応槽211b、211cの出口にそれぞれ設置されており、フィードバック制御装置241a、241bは、溶存オゾン濃度計231a、231bでそれぞれ計測された被処理水中の溶存オゾンの濃度に基づいて、反応槽211b、211cへの過酸化水素の注入量を、それぞれ制御可能に構成されている。すなわち、本実施形態は、第5の実施形態と第6の実施形態を組み合わせた構成となっている。このため、最初の反応槽211aではオゾン処理により、オゾンと反応性が高い成分が優先的に分解され、その後の反応槽211b、211cで残りの難オゾン反応性の成分がオゾン/過酸化水素処理によって分解されることとなる。本実施形態の構成の場合、最初の反応槽211aで、不必要な過酸化水素を注入する必要がない。なお、第6の実施形態の場合と同様に、1段目のオゾン反応槽211aの出口に溶存オゾン濃度計を設置し、溶存オゾン濃度を制御することも可能である。後段のオゾン/過酸化水素処理では、第5の実施形態と同様に、それぞれの反応槽211b、211cで、オゾンガス注入率等の反応条件が異なる場合でも、それぞれの反応槽211b、211cに必要最小限の過酸化水素を注入することができる。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 18: is a block diagram which shows the reaction tank for water treatment concerning the 9th Embodiment of this invention. As shown in FIG. 18, the water treatment reaction tank 79 of the present invention is a multistage type in which a plurality of reaction tanks 211a, 211b, and 211c are connected in series, similarly to the water treatment reaction tank of the second embodiment of the present invention. It is a reaction tank. However, unlike the water treatment reaction tank of the second embodiment of the present invention, the dissolved ozone concentration meters 231a and 231b for measuring the concentration of dissolved ozone in the water to be treated are provided at the outlets of the reaction tanks 211b and 211c. The feedback control devices 241a and 241b are respectively installed, and the hydrogen peroxide is injected into the reaction tanks 211b and 211c based on the concentration of dissolved ozone in the water to be treated measured by the dissolved ozone concentration meters 231a and 231b, respectively. Each amount is configured to be controllable. That is, this embodiment has a configuration in which the fifth embodiment and the sixth embodiment are combined. For this reason, in the first reaction tank 211a, components having high reactivity with ozone are preferentially decomposed by ozone treatment, and in the subsequent reaction tanks 211b and 211c, remaining ozone-reactive components are treated with ozone / hydrogen peroxide. It will be decomposed by. In the case of the configuration of this embodiment, it is not necessary to inject unnecessary hydrogen peroxide in the first reaction tank 211a. As in the case of the sixth embodiment, a dissolved ozone concentration meter can be installed at the outlet of the first-stage ozone reaction tank 211a to control the dissolved ozone concentration. In the subsequent ozone / hydrogen peroxide treatment, as in the fifth embodiment, even if the reaction conditions such as the ozone gas injection rate differ between the reaction tanks 211b and 211c, the minimum necessary for each reaction tank 211b and 211c. A limited amount of hydrogen peroxide can be injected. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図19は、本発明の第10の実施形態にかかる水処理用反応槽を示すブロック図である。図19に示すとおり、本発明の水処理用反応槽80は、本発明の第2の実施形態の水処理用反応槽と異なり、エゼクタ式反応槽又はインクジェット式反応槽と呼ばれるものである。エゼクタ式反応槽とは、過酸化水素を添加した被処理水をノズル(図示せず)へ送り、ノズルでの圧力差を利用してオゾンガス注入管221を介してオゾンガスを吸引し、水道管11をとおって反応槽211中へ分散させる方式の反応槽である。すなわち、本発明の実施の形態は、オゾンガス及び過酸化水素を反応槽211へ注入させる手段が、本発明の第1〜9の実施形態にかかる水処理用反応槽とは異なるものである。エゼクタ271は、コンパクトな装置であり、分散気泡は微細で気液の混合が激しく、大きな物質移動係数が得られ、また、ディフューザ(本発明の第1〜9の実施形態にかかる水処理用反応槽に用いられている方式)のような深い水深を必要とせず、短時間で高オゾン溶解効率が得られる。よって、小規模な場合には有効な方式とされ、上下水道の高度処理に適用されている。また、エゼクタ式反応槽である水処理用反応槽80では、オゾンガスの溶解はエゼクタ271で行われるが、残存オゾンガスは反応槽211でも吸収される。したがって、本実施形態では、反応槽211中の溶存オゾン濃度を計測することにより、エゼクタ271および反応槽211における溶存オゾン濃度を計測及び制御していることになる。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 19: is a block diagram which shows the reaction tank for water treatment concerning the 10th Embodiment of this invention. As shown in FIG. 19, the water treatment reaction tank 80 of the present invention is called an ejector reaction tank or an ink jet reaction tank, unlike the water treatment reaction tank of the second embodiment of the present invention. The ejector-type reaction tank feeds water to be treated to which hydrogen peroxide has been added to a nozzle (not shown), sucks ozone gas through the ozone gas injection pipe 221 using the pressure difference at the nozzle, and supplies the water pipe 11 It is the reaction tank of the type disperse | distributed in the reaction tank 211 through. That is, in the embodiment of the present invention, the means for injecting ozone gas and hydrogen peroxide into the reaction tank 211 is different from the water treatment reaction tank according to the first to ninth embodiments of the present invention. The ejector 271 is a compact device, the dispersed bubbles are fine, the gas-liquid mixture is intense, a large mass transfer coefficient is obtained, and the diffuser (reaction for water treatment according to the first to ninth embodiments of the present invention). High ozone dissolution efficiency can be obtained in a short time without the need for deep water depth as in the method used in the tank. Therefore, it is an effective method for a small scale, and is applied to advanced water and sewage treatment. Further, in the water treatment reaction tank 80 which is an ejector type reaction tank, the ozone gas is dissolved in the ejector 271, but the residual ozone gas is also absorbed in the reaction tank 211. Therefore, in this embodiment, the dissolved ozone concentration in the ejector 271 and the reaction vessel 211 is measured and controlled by measuring the dissolved ozone concentration in the reaction vessel 211. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図20は、本発明の第11の実施形態にかかる水処理用反応槽を示すブロック図である。図20に示すとおり、本発明の水処理用反応槽81は、本発明の第10の実施形態にかかる水処理用反応槽と同様に、エゼクタ式反応槽又はインクジェット式反応槽と呼ばれるものである。しかし、本発明の第10の実施形態にかかる水処理用反応槽とは異なり、エゼクタ271と反応槽211との間に溶存オゾン濃度計231を配設している。また、エゼクタ式反応槽である水処理用反応槽81の場合、エゼクタ271の性能やオゾン注入量によっては、注入したオゾンガスは全てエゼクタ271で溶け込み可能な場合がある。この場合、溶存オゾン濃度は、エゼクタ271の出口で最も高くなると考えられる。本実施形態では、エゼクタ271に特化して溶存オゾン濃度を計測及び制御していることとなる。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 20 is a block diagram showing a water treatment reactor according to the eleventh embodiment of the present invention. As shown in FIG. 20, the water treatment reaction tank 81 of the present invention is called an ejector-type reaction tank or an ink jet reaction tank, similarly to the water treatment reaction tank according to the tenth embodiment of the present invention. . However, unlike the water treatment reaction tank according to the tenth embodiment of the present invention, a dissolved ozone concentration meter 231 is disposed between the ejector 271 and the reaction tank 211. Further, in the case of the water treatment reaction tank 81 which is an ejector-type reaction tank, depending on the performance of the ejector 271 and the ozone injection amount, all of the injected ozone gas may be dissolved by the ejector 271. In this case, the dissolved ozone concentration is considered to be highest at the exit of the ejector 271. In this embodiment, the dissolved ozone concentration is measured and controlled specifically for the ejector 271. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図21は、本発明の第12の実施形態にかかる水処理用反応槽を示すブロック図である。図21に示すとおり、本発明の水処理用反応槽82は、本発明の第10の実施形態にかかる水処理用反応槽と同様に、エゼクタ式反応槽又はインクジェット式反応槽と呼ばれるものであり、被処理水中の溶存オゾンの濃度を計測するための溶存オゾン濃度計231は、反応槽211の出口に設置されている。しかし、本発明の第10の実施形態にかかる水処理用反応槽とは異なり、フィードバック制御装置241a、241bは、溶存オゾン濃度計231で計測された被処理水中の溶存オゾンの濃度に基づいて、それぞれエゼクタ271及び反応槽211への過酸化水素の注入量を、それぞれ制御している。すなわち、本実施形態は、第10の実施形態と比較すると、エゼクタ271及び反応槽211のそれぞれに、過酸化水素注入装置251a、251bが、過酸化水素が注入可能に配設されているため、エゼクタ271及び反応槽211のそれぞれに対して必要最小量の過酸化水素を注入することが可能となり、エゼクタ271での反応において過剰な過酸化水素を注入する必要がない。このとき、過酸化水素の注入量は、それぞれの過酸化水素注入装置251a、251bについて制御することも、そのうちの特定の過酸化水素注入装置のみについて注入量を制御することも可能である。   FIG. 21 is a block diagram showing a water treatment reactor according to a twelfth embodiment of the present invention. As shown in FIG. 21, the water treatment reaction tank 82 according to the present invention is called an ejector reaction tank or an ink jet reaction tank, similarly to the water treatment reaction tank according to the tenth embodiment of the present invention. A dissolved ozone concentration meter 231 for measuring the concentration of dissolved ozone in the water to be treated is installed at the outlet of the reaction tank 211. However, unlike the water treatment reactor according to the tenth embodiment of the present invention, the feedback control devices 241a and 241b are based on the concentration of dissolved ozone in the treated water measured by the dissolved ozone concentration meter 231. The amounts of hydrogen peroxide injected into the ejector 271 and the reaction tank 211 are respectively controlled. That is, in the present embodiment, compared to the tenth embodiment, the hydrogen peroxide injection devices 251a and 251b are disposed in the ejector 271 and the reaction tank 211, respectively, so that hydrogen peroxide can be injected. It becomes possible to inject a minimum amount of hydrogen peroxide into each of the ejector 271 and the reaction tank 211, and it is not necessary to inject excess hydrogen peroxide in the reaction in the ejector 271. At this time, the injection amount of hydrogen peroxide can be controlled for each of the hydrogen peroxide injection devices 251a and 251b, or the injection amount can be controlled only for a specific hydrogen peroxide injection device.

図22は、本発明の第13の実施形態にかかる水処理用反応槽を示すブロック図である。図22に示すとおり、本発明の水処理用反応槽83は、本発明の第10の実施形態にかかる水処理用反応槽と同様に、エゼクタ式反応槽又はインクジェット式反応槽と呼ばれるものである。しかし、本発明の第10の実施形態にかかる水処理用反応槽とは異なり、エゼクタ271と反応槽211との間と、反応槽211の出口とに溶存オゾン濃度計231a、231bをそれぞれ配設し、溶存オゾン濃度計231aにより計測された被処理水中の各溶存オゾンの濃度と、溶存オゾン濃度計231bにより計測された被処理水中の各溶存オゾンの濃度とに基づいて、フィードバック制御装置241aとフィードバック制御装置241bとが、反応槽211への過酸化水素の注入量を制御可能に構成されている。この際、過酸化水素注入装置251は、両制御装置が算出したそれぞれの過酸化水素の注入量を、別個に又は一度に、過酸化水素注入管261へ注入可能に構成されてもよい。また、本実施形態では、エゼクタ271およびオゾン反応槽211のそれぞれに溶存オゾン濃度計231a、231bが設置してあり、第10の実施形態と第11の実施形態とを合わせた構成となっている。上述したように、エゼクタ271の性能や処理条件によっては、オゾンガスはエゼクタ271のみで水中に溶け込む場合と、エゼクタ271と反応槽211の両方で水中に溶け込む場合がある。本実施形態の構成では、そのいずれの場合についても対応可能なように、溶存オゾン濃度を計測及び制御していることとなる。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 22 is a block diagram showing a water treatment reactor according to a thirteenth embodiment of the present invention. As shown in FIG. 22, the water treatment reaction tank 83 of the present invention is called an ejector-type reaction tank or an ink jet reaction tank, similarly to the water treatment reaction tank according to the tenth embodiment of the present invention. . However, unlike the water treatment reaction tank according to the tenth embodiment of the present invention, dissolved ozone concentration meters 231a and 231b are disposed between the ejector 271 and the reaction tank 211 and at the outlet of the reaction tank 211, respectively. Based on the concentration of each dissolved ozone in the treated water measured by the dissolved ozone concentration meter 231a and the concentration of each dissolved ozone in the treated water measured by the dissolved ozone concentration meter 231b, The feedback control device 241b is configured to be able to control the amount of hydrogen peroxide injected into the reaction vessel 211. At this time, the hydrogen peroxide injection device 251 may be configured to be able to inject the hydrogen peroxide injection amounts calculated by the two control devices into the hydrogen peroxide injection pipe 261 separately or at a time. In the present embodiment, dissolved ozone concentration meters 231a and 231b are installed in the ejector 271 and the ozone reaction tank 211, respectively, and the tenth embodiment and the eleventh embodiment are combined. . As described above, depending on the performance and processing conditions of the ejector 271, ozone gas may be dissolved in water only by the ejector 271, or may be dissolved in water by both the ejector 271 and the reaction tank 211. In the configuration of the present embodiment, the dissolved ozone concentration is measured and controlled so as to be able to cope with either case. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図23は、本発明の第14の実施形態にかかる水処理用反応槽を示すブロック図である。図23に示すとおり、本発明の水処理用反応槽84は、本発明の第10の実施形態にかかる水処理用反応槽と同様に、エゼクタ式反応槽又はインクジェット式反応槽と呼ばれるものである。しかし、本発明の第10の実施形態にかかる水処理用反応槽とは異なり、被処理水中の溶存オゾンの濃度を計測するための溶存オゾン濃度計231a、231bは、エゼクタ271と反応槽211との間と、反応槽211の出口とにそれぞれ設置されており、フィードバック制御装置241a、241bは、溶存オゾン濃度計231a、231bでそれぞれ計測された被処理水中の溶存オゾンの濃度に基づいて、エゼクタ271及び反応槽211への過酸化水素の注入量を、それぞれ制御している。また、図23では、エゼクタ271と反応槽211それぞれに溶存オゾン濃度計231a、231bと過酸化水素注入装置251a、251bが設置してある。このため、第13の実施形態の場合と同様に、エゼクタ271の性能や処理条件によらず、溶存オゾン濃度が高くなる地点の溶存オゾン濃度を計測及び制御できる。また、第12の実施形態の場合と同様に、エゼクタ271、反応槽211のそれぞれに対して必要最小量の過酸化水素を注入することが可能となり、エゼクタ271での反応において過剰な過酸化水素を注入する必要がない。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 23 is a block diagram showing a water treatment reactor according to a fourteenth embodiment of the present invention. As shown in FIG. 23, the water treatment reaction tank 84 of the present invention is called an ejector-type reaction tank or an ink jet reaction tank, similarly to the water treatment reaction tank according to the tenth embodiment of the present invention. . However, unlike the water treatment reaction tank according to the tenth embodiment of the present invention, the dissolved ozone concentration meters 231a and 231b for measuring the concentration of dissolved ozone in the water to be treated include an ejector 271 and a reaction tank 211. The feedback control devices 241a and 241b are respectively installed at the outlet of the reaction tank 211 and based on the concentration of dissolved ozone in the water to be treated measured by the dissolved ozone concentration meters 231a and 231b. 271 and the amount of hydrogen peroxide injected into the reaction tank 211 are controlled. In FIG. 23, dissolved ozone concentration meters 231a and 231b and hydrogen peroxide injectors 251a and 251b are installed in the ejector 271 and the reaction tank 211, respectively. For this reason, similarly to the case of the thirteenth embodiment, the dissolved ozone concentration at the point where the dissolved ozone concentration becomes high can be measured and controlled regardless of the performance and processing conditions of the ejector 271. Further, as in the case of the twelfth embodiment, it becomes possible to inject a minimum amount of hydrogen peroxide into each of the ejector 271 and the reaction tank 211, and excess hydrogen peroxide in the reaction in the ejector 271. There is no need to inject. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図24は、本発明の第15の実施形態にかかる水処理用反応槽を示すブロック図である。図24に示すとおり、本発明の水処理用反応槽85は、Uチューブ式反応槽又は下方注入式反応槽と呼ばれるものであり、一般的に、散気管式反応槽と比べて水深が深いため、オゾン分圧が高くなるので、オゾンガスの吸収速度が大きいといわれている(宗宮功編著『オゾンハンドブック』(横浜、サンユー書房、2004年))。本実施形態においては、反応槽212は、水深20m〜35mの垂直円筒形の閉管内に内管281を配した二重管により構成され、内管281は水道管11に接続されており、被処理水は内管281を通って流入する。オゾンガス注入管221は内管281内に設置されており、オゾンガスはそこで被処理水中に引き込まれる。内管281の底部に下降した被処理水とオゾンガスは外周の環状帯に導かれ、上向きの流れに変換されて上昇し、下向管の上部に設けられた流出槽291に越流する。ここで、残オゾンガスは排オゾン管(図示せず)から排出され、処理水は水道管11より流出する。フィードバック制御装置241は、溶存オゾン濃度計231が流出槽291中の処理水の溶存オゾン濃度を計測した溶存オゾン濃度を基づいて、反応槽212への過酸化水素の注入量を制御している。また、Uチューブ式反応槽である水処理用反応槽85は、内管281と反応槽212のそれぞれにおいて、異なるオゾン吸収特性でオゾンガスは水中へと溶解しているが、本実施形態では、反応槽212出口に溶存オゾン濃度計231を1つ設置することで、内管281と反応槽212における溶存オゾン濃度を制御していることとなる。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 24 is a block diagram showing a water treatment reaction tank according to the fifteenth embodiment of the present invention. As shown in FIG. 24, the water treatment reaction tank 85 of the present invention is called a U tube type reaction tank or a downward injection type reaction tank, and generally has a deeper water depth than a diffuser type reaction tank. It is said that the absorption rate of ozone gas is high because the ozone partial pressure becomes high (Ozone Handbook, edited by Isao Somiya (Yokohama, Sanyu Shobo, 2004)). In the present embodiment, the reaction tank 212 is constituted by a double pipe in which an inner pipe 281 is arranged in a vertical cylindrical closed pipe having a water depth of 20 m to 35 m, and the inner pipe 281 is connected to the water pipe 11, The treated water flows through the inner pipe 281. The ozone gas injection pipe 221 is installed in the inner pipe 281, and the ozone gas is drawn into the water to be treated there. The water to be treated and the ozone gas descending to the bottom of the inner pipe 281 are guided to the outer annular band, converted into an upward flow, rise, and overflow into an outflow tank 291 provided at the upper part of the downward pipe. Here, the residual ozone gas is discharged from an exhaust ozone pipe (not shown), and the treated water flows out from the water pipe 11. The feedback controller 241 controls the injection amount of hydrogen peroxide into the reaction tank 212 based on the dissolved ozone concentration obtained by measuring the dissolved ozone concentration of the treated water in the outflow tank 291 by the dissolved ozone concentration meter 231. Further, in the water treatment reaction tank 85 which is a U tube type reaction tank, ozone gas is dissolved in water with different ozone absorption characteristics in each of the inner tube 281 and the reaction tank 212. By installing one dissolved ozone concentration meter 231 at the outlet of the tank 212, the dissolved ozone concentration in the inner tube 281 and the reaction tank 212 is controlled. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図25は、本発明の第16の実施形態にかかる水処理用反応槽を示すブロック図である。図25に示すとおり、本発明の水処理用反応槽86は、Uチューブ式反応槽又は下方注入式反応槽と呼ばれるものである。Uチューブ式反応槽である水処理用反応槽86は、内管281の通過時に、水深が大きくなるのにともなってオゾンガスの溶け込み速度が大きくなるため、オゾンガスの注入率によっては、内管281出口においてオゾンガスが全て水中に溶解する場合もある。本実施形態では、内管281出口に溶存オゾン濃度計231が設置されており、このような処理条件に対応するため、内管281に特化して溶存オゾン濃度を計測及び制御していることとなる。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 25 is a block diagram showing a water treatment reaction tank according to the sixteenth embodiment of the present invention. As shown in FIG. 25, the water treatment reaction tank 86 of the present invention is called a U-tube reaction tank or a downward injection reaction tank. The water treatment reaction tank 86, which is a U-tube reaction tank, has a higher ozone gas penetration rate as the water depth increases as it passes through the inner pipe 281. Therefore, depending on the ozone gas injection rate, the outlet of the inner pipe 281 is increased. In ozone, all ozone gas may be dissolved in water. In the present embodiment, a dissolved ozone concentration meter 231 is installed at the outlet of the inner tube 281. In order to cope with such processing conditions, the dissolved ozone concentration is measured and controlled exclusively for the inner tube 281. Become. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図26は、本発明の第17の実施形態にかかる水処理用反応槽を示すブロック図である。図26に示すとおり、本発明の水処理用反応槽87は、Uチューブ式反応槽又は下方注入式反応槽と呼ばれるものである。本実施形態では、Uチューブ式反応槽である水処理用反応槽87の内管281と反応槽212のそれぞれに過酸化水素注入装置251a、251bが設置してある。このため、内管281、反応槽212のそれぞれに対して必要最小量の過酸化水素を注入することが可能となり、内管281での反応において過剰な過酸化水素を注入する必要がない。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 26 is a block diagram showing a water treatment reaction tank according to the seventeenth embodiment of the present invention. As shown in FIG. 26, the water treatment reaction tank 87 of the present invention is called a U-tube reaction tank or a downward injection reaction tank. In this embodiment, hydrogen peroxide injection devices 251a and 251b are installed in the inner tube 281 and the reaction vessel 212 of the water treatment reaction vessel 87, which is a U tube type reaction vessel. For this reason, it is possible to inject a minimum amount of hydrogen peroxide into each of the inner tube 281 and the reaction tank 212, and it is not necessary to inject excess hydrogen peroxide in the reaction in the inner tube 281. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図27は、本発明の第18の実施形態にかかる水処理用反応槽を示すブロック図である。図27に示すとおり、本発明の水処理用反応槽88は、Uチューブ式反応槽又は下方注入式反応槽と呼ばれるものである。本実施形態では、Uチューブ式反応槽の内管281と反応槽212のそれぞれの出口に溶存オゾン濃度計231a、231bが設置してあり、第15の実施形態と第16の実施形態とを合わせた構成となっている。上述したように、処理条件によっては、オゾンガスは内管281のみで水中に溶け込む場合と、内管281と反応槽212の両方で水中に溶け込む場合がある。本実施形態の構成では、そのいずれの場合についても対応可能なように、溶存オゾン濃度を計測及び制御していることとなる。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 27 is a block diagram showing a water treatment reaction tank according to the eighteenth embodiment of the present invention. As shown in FIG. 27, the water treatment reaction tank 88 of the present invention is called a U-tube reaction tank or a downward injection reaction tank. In this embodiment, dissolved ozone concentration meters 231a and 231b are installed at the outlets of the inner tube 281 and the reaction vessel 212 of the U-tube reaction vessel, and the fifteenth embodiment and the sixteenth embodiment are combined. It becomes the composition. As described above, depending on the processing conditions, ozone gas may be dissolved in water only by the inner pipe 281 or may be dissolved in water by both the inner pipe 281 and the reaction tank 212. In the configuration of the present embodiment, the dissolved ozone concentration is measured and controlled so as to be able to cope with either case. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

図28は、本発明の第19の実施形態にかかる水処理用反応槽を示すブロック図である。図28に示すとおり、本発明の水処理用反応槽89は、Uチューブ式反応槽又は下方注入式反応槽と呼ばれるものである。本実施形態では、Uチューブ式反応槽である水処理用反応槽89の内管281と反応槽212のそれぞれに溶存オゾン濃度計231a、231bと過酸化水素注入装置251a、251bが設置してある。このため、第18の実施形態と同様に、処理条件によらず、溶存オゾン濃度が高くなる地点の溶存オゾン濃度を計測及び制御できる。また、第17の実施形態と同様に、内管281、反応槽212のそれぞれに対して必要最小量の過酸化水素を注入することが可能となり、内管281での反応において過剰な過酸化水素を注入する必要がない。なお、その他の構成、オゾン及び過酸化水素の注入量の制御方法及び水処理原理については、本発明の第1の実施形態の水処理用反応槽と同様である。   FIG. 28 is a block diagram showing a water treatment reaction tank according to the nineteenth embodiment of the present invention. As shown in FIG. 28, the water treatment reaction tank 89 of the present invention is called a U-tube reaction tank or a downward injection reaction tank. In this embodiment, dissolved ozone concentration meters 231a and 231b and hydrogen peroxide injectors 251a and 251b are installed in the inner tube 281 and the reaction vessel 212 of the water treatment reactor 89, which is a U-tube reaction vessel. . For this reason, similarly to the eighteenth embodiment, the dissolved ozone concentration at the point where the dissolved ozone concentration becomes high can be measured and controlled regardless of the processing conditions. Similarly to the seventeenth embodiment, it is possible to inject a minimum amount of hydrogen peroxide into each of the inner tube 281 and the reaction tank 212, and excess hydrogen peroxide in the reaction in the inner tube 281. There is no need to inject. In addition, about the other structure, the control method of the injection amount of ozone and hydrogen peroxide, and the water treatment principle, it is the same as that of the reaction tank for water treatment of the 1st Embodiment of this invention.

本発明においては、オゾンガスの接触方式は、特に制限をされるものではなく、例えば、タービン式(機械攪拌式)、マイクロバブル発生システム等を用いることができ、何れかを目的に合わせて適宜選択すればよい。また、オゾンガスの注入量の制御方法についても特に制限されず、例えば、既知の制御方法である被処理水の全有機炭素量や、紫外線吸光度に対する比率による制御方法等を適用してもよい。   In the present invention, the ozone gas contact method is not particularly limited, and for example, a turbine type (mechanical stirring type), a microbubble generation system, or the like can be used, and either one is appropriately selected according to the purpose. do it. Further, the control method of the injection amount of ozone gas is not particularly limited, and for example, a control method based on the total organic carbon amount of the water to be treated and the ratio to the ultraviolet absorbance, which is a known control method, may be applied.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, this invention is not limited to the said embodiment, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

次に、本発明の水処理用反応槽及び水処理方法について、実施例によりさらに詳細に説明する。   Next, the water treatment reactor and the water treatment method of the present invention will be described in more detail with reference to examples.

図2に示した水処理用反応槽71とほぼ同様の構成による水処理用反応槽(反応槽容量39L、φ100mm×5000mm)を用い、処理対象物質としてマロン酸イオン2.0〜2.3mg/Lを添加した地下水(18℃、pH7.7)を被処理水として水量3L/minで流通させ、オゾンガスを17mg/L(流量3L/min)で注入ながら処理を行った。過酸化水素を、0、13、32及び64mg/Lの添加量で添加して、各添加量における被処理水中の溶存オゾン濃度及びマロン酸イオン分解率を測定した。なお、溶存オゾン濃度は、反応槽の出口側に設置された溶存オゾン濃度計(信頼測定範囲0.005〜0.2mg/L)により測定した。また、マロン酸イオン分解率は、イオンクロマトグラフを用いて反応槽の入口側及び出口側のマロン酸イオン濃度を測定することにより求めた。これらの結果を、それぞれ図29及び図30に示した。   A water treatment reaction tank (reaction tank capacity: 39 L, φ100 mm × 5000 mm) having a configuration substantially similar to that of the water treatment reaction tank 71 shown in FIG. 2 is used, and malonate ions are 2.0 to 2.3 mg / kg as a treatment target substance. Groundwater (18 ° C., pH 7.7) to which L was added was circulated as water to be treated at a water volume of 3 L / min, and treatment was performed while injecting ozone gas at 17 mg / L (flow rate: 3 L / min). Hydrogen peroxide was added at addition amounts of 0, 13, 32 and 64 mg / L, and the dissolved ozone concentration and malonate ion decomposition rate in the treated water at each addition amount were measured. In addition, the dissolved ozone concentration was measured with the dissolved ozone concentration meter (reliable measurement range 0.005-0.2 mg / L) installed in the exit side of the reaction tank. Moreover, the malonate ion decomposition rate was calculated | required by measuring the malonate ion density | concentration of the entrance side and exit side of a reaction tank using an ion chromatograph. These results are shown in FIGS. 29 and 30, respectively.

図29及び図30から明らかなとおり、溶存オゾン濃度が最小値(0mg/L)になる過酸化水素の最小添加量32mg/Lで、マロン酸イオン分解率が最大値(58%)となることがわかった。これにより、被処理水中の溶存オゾン濃度が最小となるように過酸化水素の注入量を制御することにより、水処理用反応槽の浄化処理効率が最大となることが確認された。   As is clear from FIGS. 29 and 30, the malonate ion decomposition rate becomes the maximum value (58%) at the minimum hydrogen peroxide addition amount of 32 mg / L at which the dissolved ozone concentration becomes the minimum value (0 mg / L). I understood. Thus, it was confirmed that the purification treatment efficiency of the water treatment reaction tank was maximized by controlling the injection amount of hydrogen peroxide so that the dissolved ozone concentration in the treated water was minimized.

本発明の水処理用反応槽、水処理システム及び水処理方法は、被処理水の水質及びその変動、オゾンガスの注入率、反応装置の形状等の外的因子によらず、良好な処理効率を得ることができるので、上下水、工場等の産業排水等の様々な水処理に適用することができる。   The water treatment reaction tank, water treatment system and water treatment method of the present invention have good treatment efficiency regardless of external factors such as the quality of the water to be treated and its fluctuation, the injection rate of ozone gas, the shape of the reactor, etc. Since it can be obtained, it can be applied to various water treatments such as water and sewage and industrial wastewater from factories.

本発明の第1の実施形態にかかる水処理用反応槽が適用された水処理システムの全体構成を示すブロック図である。It is a block diagram showing the whole water treatment system composition to which the reaction tank for water treatment concerning a 1st embodiment of the present invention was applied. 本発明の第1の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 1st Embodiment of this invention. 通常のオゾン処理の概略を模式的に示した概念図である。It is the conceptual diagram which showed the outline of the normal ozone process typically. 通常のオゾン処理の最終的なマスバランスを示した模式的に示した概念図である。It is the conceptual diagram shown typically which showed the final mass balance of normal ozone treatment. 従来技術の促進酸化処理の概略を模式的に示した概念図である。It is the conceptual diagram which showed the outline of the accelerated oxidation process of a prior art typically. 従来技術の促進酸化処理の最終的なマスバランスを示した模式的に示した概念図である。It is the conceptual diagram shown typically which showed the final mass balance of the accelerated oxidation process of a prior art. 本発明の促進酸化処理の概略を模式的に示した概念図である。It is the conceptual diagram which showed the outline of the accelerated oxidation process of this invention typically. 本発明の促進酸化処理の最終的なマスバランスを示した模式的に示した概念図である。It is the conceptual diagram shown typically which showed the final mass balance of the accelerated oxidation process of this invention. 従来技術の促進酸化処理におけるマスバランスの制御方法を模式的に示した概念図である。It is the conceptual diagram which showed typically the control method of the mass balance in the accelerated oxidation process of a prior art. 本発明の促進酸化処理におけるマスバランスの制御方法を模式的に示した概念図である。It is the conceptual diagram which showed typically the control method of the mass balance in the accelerated oxidation process of this invention. 本発明の第2の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 2nd Embodiment of this invention. 本発明の第3の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 3rd Embodiment of this invention. 本発明の第4の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 4th Embodiment of this invention. 本発明の第5の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 5th Embodiment of this invention. 本発明の第6の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 6th Embodiment of this invention. 本発明の第7の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 7th Embodiment of this invention. 本発明の第8の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 8th Embodiment of this invention. 本発明の第9の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 9th Embodiment of this invention. 本発明の第10の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 10th Embodiment of this invention. 本発明の第11の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 11th Embodiment of this invention. 本発明の第12の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 12th Embodiment of this invention. 本発明の第13の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 13th Embodiment of this invention. 本発明の第14の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 14th Embodiment of this invention. 本発明の第15の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 15th Embodiment of this invention. 本発明の第16の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 16th Embodiment of this invention. 本発明の第17の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 17th Embodiment of this invention. 本発明の第18の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 18th Embodiment of this invention. 本発明の第19の実施形態にかかる水処理用反応槽を示すブロック図である。It is a block diagram which shows the reaction tank for water treatment concerning the 19th Embodiment of this invention. 実施例により得られた結果(過酸化水素添加量と溶存オゾン濃度の関係)を示すグラフである。It is a graph which shows the result (relationship of hydrogen peroxide addition amount and dissolved ozone density | concentration) obtained by the Example. 実施例により得られた結果(過酸化水素添加量とマロン酸イオン分解率の関係)を示すグラフである。It is a graph which shows the result (relationship of hydrogen peroxide addition amount and malonate ion decomposition rate) obtained by the Example.

1 水処理システム
11 水道管
21 着水井
31 混和池
41 フロック形成池
51 沈殿池
61 急速ろ過池
71〜89 水処理用反応槽
91 活性炭吸着池
101 浄水池
211,212 反応槽
221 オゾンガス注入管
231 溶存オゾン濃度計
241 フィードバック制御装置
251 過酸化水素注入装置
261 過酸化水素注入管
271 エゼクタ
281 内管
291 流出槽
DESCRIPTION OF SYMBOLS 1 Water treatment system 11 Water pipe 21 Irrigation well 31 Mixing basin 41 Flock formation pond 51 Sedimentation basin 61 Rapid filtration basin 71-89 Water treatment reactor 91 Activated carbon adsorption basin 101 Water purification tank 211,212 Reaction tank 221 Ozone gas injection pipe 231 Dissolved Ozone concentration meter 241 Feedback control device 251 Hydrogen peroxide injection device 261 Hydrogen peroxide injection tube 271 Ejector 281 Inner tube 291 Outflow tank

Claims (6)

オゾンガスを被処理水に注入するオゾンガス注入手段と、
過酸化水素を前記被処理水に注入する過酸化水素注入手段と、
前記被処理水中の溶存オゾンの濃度を計測する溶存オゾン濃度計測手段と、
を有する水処理用反応槽であって、
前記過酸化水素注入手段は、前記溶存オゾン濃度計測手段により計測された溶存オゾン濃度が信頼測定範囲の下限値未満となるように前記過酸化水素の注入量を制御することを特徴とする、前記水処理用反応槽。
Ozone gas injection means for injecting ozone gas into the water to be treated;
Hydrogen peroxide injection means for injecting hydrogen peroxide into the water to be treated;
Dissolved ozone concentration measuring means for measuring the concentration of dissolved ozone in the treated water;
A water treatment reactor to have a,
Said hydrogen peroxide injection means, characterized in that the dissolved ozone concentration measured by the dissolved ozone concentration measuring means for controlling the injection amount of the hydrogen peroxide to be less than the lower limit of the confidence measurement range, the Water treatment reactor.
前記過酸化水素注入手段は、前記過酸化水素の前記注入量が最小となるように制御することを特徴とする、請求項1に記載の水処理用反応槽。 The water treatment reactor according to claim 1, wherein the hydrogen peroxide injection unit controls the injection amount of the hydrogen peroxide to be a minimum . 水処理用反応槽を少なくとも1つ備えてなり、前記水処理用反応槽は、
オゾンガスを被処理水に注入するオゾンガス注入手段と、
過酸化水素を前記被処理水に注入する過酸化水素注入手段と、
前記被処理水中の溶存オゾンの濃度を計測する溶存オゾン濃度計測手段と、
を有する水処理システムであって、
前記過酸化水素注入手段は、前記溶存オゾン濃度計測手段により計測された溶存オゾン濃度が信頼測定範囲の下限値未満となるように前記過酸化水素の注入量を制御することを特徴とする、前記水処理システム。
It comprises at least one water treatment reaction tank, and the water treatment reaction tank comprises:
Ozone gas injection means for injecting ozone gas into the water to be treated;
Hydrogen peroxide injection means for injecting hydrogen peroxide into the water to be treated;
Dissolved ozone concentration measuring means for measuring the concentration of dissolved ozone in the treated water;
A water treatment system to have a,
Said hydrogen peroxide injection means, characterized in that the dissolved ozone concentration measured by the dissolved ozone concentration measuring means for controlling the injection amount of the hydrogen peroxide to be less than the lower limit of the confidence measurement range, the Water treatment system.
前記過酸化水素注入手段は、前記過酸化水素の前記注入量が最小となるように制御することを特徴とする、請求項に記載の水処理システム。 The water treatment system according to claim 3 , wherein the hydrogen peroxide injection unit controls the injection amount of the hydrogen peroxide to be a minimum . オゾンガスを被処理水に注入するオゾンガス注入工程と、
過酸化水素を前記被処理水に注入する過酸化水素注入工程と、
前記被処理水中の溶存オゾンの濃度を計測する溶存オゾン濃度計測工程と、
を有する水処理方法であって、
前記過酸化水素注入工程は、前記溶存オゾン濃度計測工程により計測された前記溶存オゾンの濃度が信頼測定範囲の下限値未満となるように前記過酸化水素の注入量を制御することを特徴とする、前記水処理方法。
An ozone gas injection step of injecting ozone gas into the water to be treated;
Hydrogen peroxide injection step of injecting hydrogen peroxide into the treated water;
A dissolved ozone concentration measuring step for measuring the concentration of dissolved ozone in the treated water;
A water treatment method to have a,
The hydrogen peroxide injection step controls the injection amount of the hydrogen peroxide so that the concentration of the dissolved ozone measured by the dissolved ozone concentration measurement step is less than a lower limit value of a reliability measurement range. the water treatment method.
前記過酸化水素注入工程は、前記過酸化水素の前記注入量が最小となるように制御することを特徴とする、請求項に記載の水処理方法。 6. The water treatment method according to claim 5 , wherein the hydrogen peroxide injection step is controlled so that the injection amount of the hydrogen peroxide is minimized .
JP2008131700A 2007-05-21 2008-05-20 Water treatment reactor, water treatment system, and water treatment method Active JP5061320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131700A JP5061320B2 (en) 2007-05-21 2008-05-20 Water treatment reactor, water treatment system, and water treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007133596 2007-05-21
JP2007133596 2007-05-21
JP2008131700A JP5061320B2 (en) 2007-05-21 2008-05-20 Water treatment reactor, water treatment system, and water treatment method

Publications (2)

Publication Number Publication Date
JP2009000677A JP2009000677A (en) 2009-01-08
JP5061320B2 true JP5061320B2 (en) 2012-10-31

Family

ID=40317645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131700A Active JP5061320B2 (en) 2007-05-21 2008-05-20 Water treatment reactor, water treatment system, and water treatment method

Country Status (1)

Country Link
JP (1) JP5061320B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744362B (en) * 2013-12-05 2017-01-18 铸神科技无锡有限公司 Wastewater electrochemical treatment process intelligent control system and intelligent control method thereof
JP6703881B2 (en) 2016-04-05 2020-06-03 メタウォーター株式会社 Accelerated oxidation treatment method and accelerated oxidation treatment device
JP6952640B2 (en) * 2018-04-12 2021-10-20 株式会社東芝 Accelerated oxidized water treatment system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3523751B2 (en) * 1996-04-18 2004-04-26 株式会社明電舎 Pressurized downward injection type ozone contact tank and its control method
EP1021377B1 (en) * 1997-08-08 2003-01-08 Applied Process Technology, Inc. Process and apparatus for water decontamination
JPH11290878A (en) * 1998-02-16 1999-10-26 Japan Organo Co Ltd Control method for removing toc component

Also Published As

Publication number Publication date
JP2009000677A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
Chu et al. Enhanced treatment of practical textile wastewater by microbubble ozonation
US6921476B2 (en) UV-assisted advanced-ozonation water treatment system and advanced-ozonation module
KR101847055B1 (en) Advanced oxidation process appratus of sewage and the method by using the same
EP3774006B1 (en) Methods and systems for producing high concentration of dissolved ozone in liquid media
KR101292731B1 (en) The gas captured type gas-liquid reactor and the water treatment apparatus, gas purification apparatus using thereof
CN104876375A (en) Deep oxidization water treatment method and deep oxidization water treatment device
CN103833166B (en) A kind of methyldiethanolamine (MDEA) process for treating industrial waste water
JP6921503B2 (en) Water treatment equipment, water treatment system and water treatment method
KR100866510B1 (en) Water purification apparatus and methods using hybrid process of advanced oxidation process and microfiltration membrane process
JP5061320B2 (en) Water treatment reactor, water treatment system, and water treatment method
KR101459376B1 (en) Water treatment apparatus having control system and water treatment process using thereof
WO2017195764A1 (en) Method and device for treating wastewater containing organic matter
JP4897255B2 (en) Water treatment apparatus and method
JP6911002B2 (en) Water treatment controller and water treatment system
JP4334404B2 (en) Water treatment method and water treatment system
JPH09290280A (en) Ozone contact tank and control method therefor
JP2008194558A (en) Water treatment system and method
JP2011041868A (en) Method and apparatus for treating organic substance-containing water
WO2007058285A1 (en) Fluid cleaning method and fluid cleaning apparatus
JP4331048B2 (en) Ozone water treatment control system
JP5075907B2 (en) Water treatment equipment
Adirajasaa et al. Study of Application Advanced Oxidation Process (AOP) using Nano-Micro Bubble Ozone for Batik Industry Waste Water Treatment
JPH10165971A (en) Pressure downward injection type multistage ozone contact tank and control thereof
KR101678107B1 (en) Watertreatment device
JP3543531B2 (en) Pressurized ozone treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5061320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350