KR100720909B1 - Impulse turbine with rotor blade for prevention against clearance flow loss - Google Patents

Impulse turbine with rotor blade for prevention against clearance flow loss Download PDF

Info

Publication number
KR100720909B1
KR100720909B1 KR1020050054238A KR20050054238A KR100720909B1 KR 100720909 B1 KR100720909 B1 KR 100720909B1 KR 1020050054238 A KR1020050054238 A KR 1020050054238A KR 20050054238 A KR20050054238 A KR 20050054238A KR 100720909 B1 KR100720909 B1 KR 100720909B1
Authority
KR
South Korea
Prior art keywords
duct
fixed
rotor blade
rotor
blades
Prior art date
Application number
KR1020050054238A
Other languages
Korean (ko)
Other versions
KR20060134507A (en
Inventor
김기섭
홍석원
이영연
현범수
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to KR1020050054238A priority Critical patent/KR100720909B1/en
Priority to GB0724405A priority patent/GB2441270B/en
Priority to JP2008518031A priority patent/JP2008546947A/en
Priority to PCT/KR2006/002402 priority patent/WO2006137696A1/en
Publication of KR20060134507A publication Critical patent/KR20060134507A/en
Application granted granted Critical
Publication of KR100720909B1 publication Critical patent/KR100720909B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/026Impact turbines with buckets, i.e. impulse turbines, e.g. Pelton turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/006Sealing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/40Flow geometry or direction
    • F05B2210/404Flow geometry or direction bidirectional, i.e. in opposite, alternating directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/40Flow geometry or direction
    • F05D2210/44Flow geometry or direction bidirectional, i.e. in opposite, alternating directions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

본 발명은 임펄스터빈의 회전부인 로터의 성능향상에 관한 것으로서, 일실시예로서 더욱 상세하게는, 원형 덕트내의 일측에 덕트홈이 형성되며, 상기 덕트의 중심축에 제1고정축의 외주연에 다수개의 제1고정익을 형성하는 제1고정익부가 위치하며, 상기 제1고정익부의 일측에 접하며, 상기 덕트의 중심축에 회전축의 외주연에 다수개의 회전익을 형성하는 회전익부가 위치하며, 상기 회전익부의 일측에 접하며, 상기 덕트의 중심축에 제2고정축의 외주연에 다수개의 제2고정익을 형성하는 제2고정익부가 위치하며, 상기 덕트홈에 대응되도록 형성되며, 회전익의 외주연의 끝단에 실린더형상의 너비링이 부착되도록 이루어 진 회전익 날개 끝 간극유동 손실 방지용 임펄스 터빈에 관한 것이다. The present invention relates to improved performance of a rotor, which is a rotating part of an impulse turbine, and more specifically, as an embodiment, a duct groove is formed at one side in a circular duct, and a plurality of outer peripheries of a first fixed shaft are formed on a central axis of the duct. A first fixed blade portion forming two first fixed blades, which is in contact with one side of the first fixed blade portion, a rotor blade portion forming a plurality of rotary blades on the outer periphery of the rotary shaft on a central axis of the duct, and on one side of the rotary blade portion A second fixed blade portion formed in contact with the central axis of the duct and forming a plurality of second fixed blades on the outer circumference of the second fixed shaft, and formed to correspond to the duct groove, and having a cylindrical width at the end of the outer circumference of the rotor blade; The present invention relates to an impulse turbine for preventing the loss of flow loss in a rotor blade wing configured to attach a ring.

종래의 임펄스 터빈의 회전익은 덕트내에서 회전운동시에 회전익의 끝단에 유동간극을 가지게 되며, 이러한 유동간극을 통하여 유동유체가 누출되어 효율의 저감을 발생되는 것이다.The rotor blade of the conventional impulse turbine has a flow gap at the end of the rotor blade during the rotational movement in the duct, through which the flow fluid leaks to reduce the efficiency.

본 발명에서는 이를 해결하기 위하여 덕트내에 임펄스터빈의 회전익에 대응되는 덕트홈을 형성하여, 회전익을 덕트 내부로 삽입시켜 유동간극을 최소화하여 임펄스터빈의 효율의 증가를 제공하는 임펄스터빈을 제공하고자 하는 것이다.The present invention is to provide an impulse turbine to provide an increase in the efficiency of the impulse turbine by forming a duct groove corresponding to the rotor blade of the impulse turbine in the duct, inserting the rotor blade into the duct to minimize the flow gap. .

임펄스 터빈, 회전익, 고정익, 간극유동, 효율 Impulse Turbine, Rotary Wing, Fixed Wing, Gap Flow, Efficiency

Description

회전익 날개 끝 간극유동 손실 방지용 임펄스 터빈{IMPULSE TURBINE WITH ROTOR BLADE FOR PREVENTION AGAINST CLEARANCE FLOW LOSS}IMPULSE TURBINE WITH ROTOR BLADE FOR PREVENTION AGAINST CLEARANCE FLOW LOSS}

도 1은 진동수주형 챔버(Oscillating Water Column)를 이용한 파력발전장치도.1 is a wave power generation device using an oscillating water column (Oscillating Water Column).

도 2는 종래의 파력발전용 임펄스 터빈을 나타낸 개략도.Figure 2 is a schematic diagram showing a conventional impulse turbine for wave power generation.

도 3은 본 발명에 따른 제1실시예를 나타낸 개략도.3 is a schematic view showing a first embodiment according to the present invention;

도 4는 본 발명에 따른 제2실시예를 나타낸 개략도.4 is a schematic view showing a second embodiment according to the present invention;

도 5는 본 발명에 따른 제3실시예를 나타낸 개략도.5 is a schematic view showing a third embodiment according to the present invention.

도 6은 본 발명에 따른 제4실시예를 나타낸 개략도.       6 is a schematic view showing a fourth embodiment according to the present invention;

도 7은 본 발명의 제1실시예 및 제2실시예에 따른 너비링을        7 is a width ring according to the first and second embodiments of the present invention.

나타낸 사시도.              Shown perspective view.

도 8은 본 발명의 제1실시예 및 제2실시예에 따른 너비링이 장착된 사시도       8 is a perspective view of the width ring is mounted according to the first and second embodiments of the present invention

도 9는 본 발명에 따른 고정익부를 나타낸 개략도.       9 is a schematic view showing a fixed blade portion according to the present invention.

도 10은 본 발명에 따른 날개판을 나타낸 개략도.       10 is a schematic view showing a wing plate according to the present invention.

도 11은 종래의 터빈과 본 발명에 따른 실시예에 의한 유선을 나타낸        11 shows a conventional turbine and a streamline according to an embodiment according to the present invention.

시뮬레이션 결과도.        Simulation results also.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1: 덕트 2: 제1고정익, 제2고정익,고정익1: duct 2: 1st fixed wing, 2nd fixed wing, fixed wing

3: 회전익 4: 회전축3: rotor blade 4: rotary shaft

5: 제1고정축, 제2고정축, 고정축 6:덕트홈 5: 1st fixed shaft, 2nd fixed shaft, fixed shaft 6: Duct groove

7: 너비링 8:날개판7: width ring 8: wing plate

9:제1고정익부 10:제2고정익부9: first fixed wing unit 10: second fixed wing unit

11: 회전익부 11: rotor blade

12 : 입력파 수면 13: 진동수주형 챔버내 수면12: Sleep in the input wave 13: Sleep in the oscillation chamber

14 : 진동수주형 챔버(Oscillating Water Column) 14: Oscillating Water Column

15 : 공기유동 16: 임펄스터빈 15: air flow 16: impulse turbine

본 발명은 임펄스터빈의 회전부인 로터의 성능향상에 관한 것으로서, 더욱 상세하게는, 원형 덕트내의 일측에 덕트홈이 형성되며, 상기 덕트의 중심축에 제1고정축의 외주연에 다수개의 제1고정익을 형성하는 제1고정익부가 위치하며, 상기 제1고정익부의 일측에 접하며, 상기 덕트의 중심축에 회전축의 외주연에 다수개의 회전익을 형성하는 회전익부가 위치하며, 상기 회전익부의 일측에 접하며, 상기 덕트의 중심축에 제2고정축의 외주연에 다수개의 제2고정익을 형성하는 제2고정익부가 위치하며, 상기 덕트홈에 대응되도록 형성되며, 회전익의 외주연의 끝단에 형성된 너비링이 부착되도록 이루어 진 회전익 날개 끝 간극유동 손실 방지용 임펄스 터빈에 관한 것이다.The present invention relates to improved performance of a rotor, which is a rotating part of an impulse turbine, and more particularly, a duct groove is formed at one side in a circular duct, and a plurality of first fixed blades on the outer circumference of the first fixed shaft at the central axis of the duct. A first fixed blade portion is formed to form a contact, the rotor blade contacting one side of the first fixed blade portion, a plurality of rotor blades to form a plurality of rotary blades on the outer periphery of the rotary shaft is located on the central axis of the duct, the rotor blade contact the one side, the duct The second fixed blade portion is formed to form a plurality of second fixed blades on the outer periphery of the second fixed shaft in the central axis of the, is formed to correspond to the duct groove, the width ring formed on the end of the outer peripheral edge of the rotor blades The present invention relates to an impulse turbine for preventing rotor blade gap clearance loss.

도 1은 진동수주형 챔버(Oscillating Water Column)를 이용한 파력발전장치도로서, 통상의 입력파 수면(12)이 형성되는 일면에 진동수주형 챔버(14)가 형성되며, 상기 챔버(14)에 의하여 그 내부에는 진동수주형 챔버내의 수면(13)이 발생되는 것이다.1 is a wave power generation device using an oscillating water column (Oscillating Water Column), the oscillating water chamber 14 is formed on one surface where the conventional input wave surface 12 is formed, by the chamber 14 Inside, the water surface 13 in the oscillation chamber is generated.

상기 진동수주형 챔버내의 수면(13)의 일측 상단에 임펄스터빈(16)이 장착됨으로 인하여 수면(13)의 수위상승변화에 의하여 임펄스터빈(16)이 회전하며, 파랑의 에너지로부터 사용가능한 기계적 혹인 전기적 에너지를 추출해내는 장치로서 보통 1차 변환장치와 2차 변화장치로 나누어진다. 1차 변환장치는 파랑에너지를 공기에너지로 바꾸어 주는 장치로서 진동수주형챔버(OWC, Oscillating Water Column)를 일컫는다.Since the impulse turbine 16 is mounted on the upper end of one side of the water surface 13 in the oscillation chamber, the impulse turbine 16 is rotated by the change in the water level of the water surface 13, and the mechanical or electrical available from the blue energy It is a device that extracts energy and is usually divided into a primary converter and a secondary converter. The primary conversion device is a device for converting wave energy into air energy and refers to an oscillating water column (OWC).

2차 변환장치는 공기에너지를 전기적 에너지로 바꾸어주는 터빈과 발전기를 의미한다. 본 발명에서는 이 파력발전 장치 중 터빈의 효율향상을 위한 로터의 형상개선에 대한 내용을 다룬다.Secondary converters are turbines and generators that convert air energy into electrical energy. The present invention deals with the improvement of the shape of the rotor for improving the efficiency of the turbine of the wave power generator.

임펄스 터빈 이전에 파력발전용 장치로 널리 사용되던 Wells터빈은 익형의 날개로 양력을 이용하므로 이에 따른 항력에 의하여 구동축의 베어링에 큰 부하를 발생시키고, 고효율을 이용할 수 있는 작동영역이 작고, 작동영역에서 로터가 고회전하여 이에 따른 소음발생이 심하며, 스톨현상에 의한 급격한 효율저감이 생기고, 초기 기동의 문제로 인하여 보조 전동기를 필요로 하는 문제들이 있었다. 이를 극 복하기 위한 장치로서 지난 10여 년 동안 일본과 아일랜드 등지에서 임펄스 터빈이 연구되어 왔으며, 인도에는 1.0m 크기의 실해역 발전장치가 설치되기도 하였다. Wells turbine, which was widely used as a wave power generation device before impulse turbine, uses lift force as a blade of airfoil so that a large load is applied to the bearing of the drive shaft by the drag force, and the operating area that can use high efficiency is small. Due to the high rotation of the rotor at the high noise, rapid efficiency reduction due to the stall phenomenon, there is a problem that requires the auxiliary motor due to the problem of the initial start. As a device to overcome this problem, impulse turbines have been studied in Japan and Ireland for the past 10 years, and a 1.0m real sea power plant has been installed in India.

도 2는 도 1의 파랑발전장치등에 많이 사용되는 종래의 파력발전용 임펄스 터빈을 나타낸 개략도로서, 진동수주형챔버(OWC)에서 압축된 공기는 도 2의 덕트(1)와 회전축(4)과 고정축(5)사이로 유입되고 이는 고정익(2)을 통하면서 공기유동의 직진성분이 회전성분으로 바뀌게 된다. 회전성분의 공기는 회전익(3)과 충돌하며, 그 반대급부로 로터는 충돌에너지를 얻어서 회전력을 얻는다. 회전익은 회전하는 부분이므로 어떤 가공을 하더라도 회전익의 날개 끝 부분과 덕트 사이에는 간극이 발생하게 되며, 이 간극을 통하여 회전익 날개면과 충돌해야 하는 공기가 누출되어 회전익에 가해지는 에너지가 감소한다.FIG. 2 is a schematic view showing a conventional impulse turbine for wave power generation, which is widely used in the wave power generator of FIG. 1, wherein the compressed air in the oscillation chamber OWC is fixed to the duct 1 and the rotating shaft 4 of FIG. 2. It flows in between the shafts (5), which is the straight component of the air flow is changed to the rotating component through the fixed blade (2). The air of the rotating component collides with the rotor blade 3, and on the contrary, the rotor obtains the collision energy to obtain the rotational force. Since the rotor blade is a rotating part, a gap is generated between the blade tip and the duct of the rotor blade under any process, and air that must collide with the rotor blade surface leaks, thereby reducing energy applied to the rotor blade.

이렇게 충동형 형태의 터빈을 사용하여 Wells 터빈에서 발생하던 단점을 극복하게 되었다. 터빈의 고정익은 공기의 운동방향을 바꾸어 주는 동시에 터빈의 지지를 위해 사용되므로 고정되어 있다. 그러나 회전익은 회전운동을 하는 장치로서 제조상의 한계에 의하여 회전익 날개의 끝 부분은 일정한 간극을 가지게 된다. 기존의 연구에서는 이 회전익 날개 끝 간극의 영향을 알아보고, 이를 줄이기 위한 노력을 하였다.       This impulse type turbine was used to overcome the shortcomings of the Wells turbine. The fixed wing of the turbine is fixed because it is used to support the turbine while changing the direction of movement of the air. However, the rotor blade is a device that rotates, due to manufacturing limitations the tip of the rotor blade has a certain gap. Existing studies have investigated the influence of the rotor blade tip clearance and have tried to reduce it.

일펄스 터빈의 고정익과 회전익의 형상에 대한 연구로는 일본 사가대학의 T. Setoguchi 교수가 많은 업적을 가지고 있다. 초기 효율 극대화를 위하여 고정익도 고정이 아니라 유동의 방향에 따라서 회전익의 앞쪽에서는 노즐의 역할을 하고, 회전익의 뒤쪽에 놓일 때는 디퓨저의 역할을 하도록 하여, 고정익의 체계적인 형상변 화 연구를 수행하였고, 회전익의 형상 또한 체계적인 변화에 의하여 최적화를 수행하였다. 이와 함께 고정익의 운동을 회전익 앞뒤에서 동기화시키기 위하여 링크도 고안하였다. 그러나 이런 효율 향상 노력에도 불구하고 움직이는 고정익은 계속되는 작동에 의하여 고장의 원인이 되었다. 그 후로는 고정익을 고정하여 효율은 감소하더라도 유지보수를 줄여서 안정적인 발전을 수행하도록 하였다. 이런 개발단계를 거치면서 고정익과 회전익의 형상 및 위치와 각각의 개수에 대한 최적화 과정을 모형시험을 통하여 수행하였다.Professor T. Setoguchi of Saga University of Japan has many achievements in the study of the shape of fixed and rotary blades of a single-pulse turbine. In order to maximize the initial efficiency, the fixed wing is not fixed but the nozzle acts as the front of the rotor according to the direction of flow, and when it is located behind the rotor, it acts as a diffuser. The shape of was also optimized by systematic change. In addition, a link was devised to synchronize the movement of the fixed blades in front of and behind the rotor blades. However, despite these efforts to improve efficiency, the moving fixed wing caused failures by continued operation. Since then, fixed blades have been fixed to maintain stable power generation with reduced maintenance even though efficiency is reduced. Through these development stages, model tests were performed to optimize the shape, position and number of fixed and rotor blades.

이런 최적화 과정을 거친 임펄스 터빈은 좋은 성능을 보이고 있으나 회전익 날개 끝 간극에서의 공기의 누출에 대한 문제는 간극을 줄이는 방법 이외에는 그 대안을 마련하지 못하고 있다. Impulse turbines that have undergone this optimization have shown good performance, but the problem of air leakage in the rotor blade gap has no alternative but to reduce the gap.

이에 본 발명은 상기와 같은 종래의 제반 문제점을 해소하기 위해 안출된 것으로, 임펄스 터빈의 회전익 날개 끝과 덕트 사이의 간극에 의하여 공기가 누출되어 날개의 압력면에서의 압력손실에 의하여 발전기 축에 가해지는 토크 감소를 방지하기 위하여 회전익 끝단에 너비링을 덧대서 회전익 끝에서 발생하는 공기의 누출을 막아 임펄스 터빈의 효율 증가를 꽤하는 회전익 날개 끝 간극유동 손실 방지용 임펄스 터빈을 제공하는 데 있다.Accordingly, the present invention has been made to solve the conventional problems as described above, air is leaked by the gap between the rotor blade tip and the duct of the impulse turbine is applied to the generator shaft by the pressure loss in the pressure surface of the blade The present invention provides an impulse turbine for preventing rotor blade gap clearance flow loss, by adding a width ring to the rotor blade tip to prevent loss of losing torque, thereby preventing air leakage from the rotor blade tip, thereby increasing the efficiency of the impulse turbine.

삭제delete

본 발명은 상기의 목적을 달성하기 위해 아래의 특징을 갖는다.
본 발명에 따른 일실시예는 원형 덕트내의 일측에 덕트홈이 형성되며, 상기 덕트의 중심축에 제1고정축의 외주연에 다수개의 제1고정익을 형성하는 제1고정익부가 위치하며, 상기 제1고정익부의 일측에 접하며, 상기 덕트의 중심축에 회전축의 외주연에 다수개의 회전익을 형성하는 회전익부가 위치하며, 상기 회전익부의 일측에 접하며, 상기 덕트의 중심축에 제2고정축의 외주연에 다수개의 제2고정익을 형성하는 제2고정익부가 위치하며, 상기 덕트홈에 대응되도록 형성되며, 에어포일 형상을 가지는 상기 다수개의 회전익 외주연의 끝단에 상기 회전익과 동일한 너비의 크기 또는 상대적으로 큰 너비의 크기로 형성된 실린더형상의 너비링이 부착되어 있으며, 상기 너비링만이 덕트홈에 대응되며 삽입장착되어 이루어지는 것을 특징으로 한다.
또한, 본 발명의 또 다른 일실시예는 원형 덕트내의 일측에 덕트홈이 형성되며 상기 덕트의 중심축에 제1고정축의 외주연에 다수개의 제1고정익을 형성하는 제1고정익부가 위치하며, 상기 제1고정익부의 일측에 접하며, 상기 덕트의 중심축에 회전축의 외주연에 다수개의 회전익을 형성하는 회전익부가 위치하며, 상기 회전익부의 일측에 접하며, 상기 덕트의 중심축에 제2고정축의 외주연에 다수개의 제2고정익을 형성하는 제2고정익부가 위치하며, 상기 회전익부의 개개의 회전익의 끝단은 상기 회전익의 형상보다 상대적으로 큰 크기로 형성된 날개판이 덕트홈에 대응되도록 부착되어 상기 덕트홈의 내부로 삽입되어 이루어지는 것을 특징으로 한다.
이하, 상기와 같이 구성된 본 발명은 회전익 날개 끝 간극유동 손실 방지용 임펄스 터빈으로서, 실시예를 도면을 참조하여 상세히 설명하면 다음과 같다.
도 3은 본 발명에 따른 제1실시예를 나타낸 개략도로서, 원형 덕트(1)내의 일측에 덕트홈(6)이 형성되며, 상기 덕트(1)의 중심축에 제1고정축(5)의 외주연에 다수개의 제1고정익(2)을 형성하는 제1고정익부(9)가 위치하며, 상기 제1고정익부(9)의 일측에 접하며, 상기 덕트(1)의 중심축에 회전축(4)의 외주연에 다수개의 회전익(3)을 형성하는 회전익부(11)가 위치하며, 상기 회전익부(11)의 일측에 접하며, 상기 덕트(1)의 중심축에 제2고정축(5)의 외주연에 다수개의 제2고정익(2)을 형성하는 제2고정익부(10)가 위치하며, 상기 덕트홈(6)에 대응되도록 형성되며, 회전익(3)의 외주연의 끝단의 너비의 동일한 크기로 형성된 실린더형상의 너비링(7)이 부착되도록 이루어 진 것이다.
The present invention has the following features to achieve the above object.
According to an embodiment of the present invention, a duct groove is formed at one side in a circular duct, and a first fixed blade portion is formed at a central axis of the duct to form a plurality of first fixed blades on an outer circumference of the first fixed shaft. The rotor blade portion is in contact with one side of the fixed blade portion, the rotor blade to form a plurality of rotor blades on the outer periphery of the rotary shaft on the central axis of the duct, the one side of the rotor blade portion, a plurality of on the outer periphery of the second fixed shaft on the central axis of the duct A second fixed blade portion forming a second fixed blade is located, and formed to correspond to the duct groove, the same width of the rotor blades or the size of a relatively large width at the ends of the outer peripheral edge of the plurality of rotor blades having an airfoil shape A cylindrical width ring formed as is attached, and the width ring corresponds to the duct groove, characterized in that the insertion is made.
In addition, another embodiment of the present invention is a duct groove is formed on one side in the circular duct and the first fixed blade portion is formed to form a plurality of first fixed blades on the outer periphery of the first fixed shaft on the central axis of the duct, The rotor blade portion is in contact with one side of the first fixed blade portion, the rotor blades forming a plurality of rotor blades on the outer periphery of the rotary shaft on the central axis of the duct, is in contact with one side of the rotor blade portion, on the outer periphery of the second fixed shaft on the central axis of the duct A second fixed blade portion is formed to form a plurality of second fixed blades, the end of each of the rotor blades of the rotor blades is attached to the wing plate formed in a relatively larger size than the shape of the rotor blades to correspond to the duct groove to the inside of the duct groove It is characterized by being inserted.
Hereinafter, the present invention configured as described above is an impulse turbine for preventing the loss of gap flow loss in a rotor blade, which will be described in detail with reference to embodiments.
3 is a schematic view showing a first embodiment according to the present invention, in which a duct groove 6 is formed at one side in the circular duct 1, and the first fixed shaft 5 is formed at the central axis of the duct 1. A first fixed blade portion 9 is formed on the outer periphery to form a plurality of first fixed blades 2, which is in contact with one side of the first fixed blade portion 9, and has a rotation axis 4 on a central axis of the duct 1. Rotor blade portion 11 forming a plurality of rotor blades (3) on the outer periphery of the) is located, in contact with one side of the rotor blade portion 11, the second fixed shaft (5) on the central axis of the duct (1) The second fixed blade portion 10 is formed on the outer periphery of the plurality of second fixed blade (2) is formed to correspond to the duct groove 6, the width of the end of the outer periphery of the rotor blades (3) The cylindrical width ring 7 formed in the same size is made to be attached.

도 7은 본 발명의 제1실시예 및 제2실시예에 따른 너비링을 나타낸 사시도이며, 도 8은 본 발명의 제1실시예 및 제2실시예에 따른 너비링을 나타낸 평면도로서, 회전익의 외주연에 실린더 형상의 링 형상의 너비링이 부착된 것을 더욱 상세히 나타낸 것으로서, 이는 본 발명의 일실시예 따라 실린더 형태의 너비링이 회전익 끝단에 부착되며, 상기 너비링은 덕트의 일측에 형성된 덕트홈에 대응되어 삽입되어 회전하도록 형성된 개략도이다. 7 is a perspective view showing a width ring according to the first and second embodiments of the present invention, Figure 8 is a plan view showing a width ring according to the first and second embodiments of the present invention, As shown in more detail that the ring-shaped width ring of the cylindrical shape is attached to the outer periphery, which is a cylindrical width ring is attached to the end of the rotor blade according to an embodiment of the present invention, the width ring is a duct formed on one side of the duct It is a schematic diagram formed to rotate in correspondence with the groove.

본 발명의 제1실시예에서는 회전익 끝단에 부착된 실린더형 링이 덕트의 일측 내주연에 형성된 덕트홈내부에 삽입되도록 하여 너비링과 덕트 사이의 간극에 의한 공기의 누출을 막고, 덕트 벽면에서의 유동 박리를 최소한으로 감소하고자 하는 것이다.In the first embodiment of the present invention, the cylindrical ring attached to the end of the rotor blade is inserted into the duct groove formed at one inner circumference of the duct to prevent the leakage of air due to the gap between the width ring and the duct, To minimize flow separation.

실린더 형태의 링으로 이루어진 너비링이 회전익 끝단에 부착되면 회전익에 서 발생한 공기의 회전에너지는 회전익 끝을 통하여 유동간극손실이 없기 때문에 향상된 터빈효율을 갖는다.When a width ring consisting of a cylindrical ring is attached to the end of the rotor blade, the rotational energy of air generated from the rotor blade has improved turbine efficiency because there is no flow gap loss through the rotor blade tip.

도 4는 본 발명에 따른 제2실시예를 나타낸 개략도로서, 상기 제1실시예의 실린더 형상의 너비링은 회전익 끝단의 너비크기와 동일하며, 이를 변형한 제2실시예의 너비링(7)은 회전익(3)의 외주연의 끝단의 너비보다 크도록 형성되어 부착되도록 이루어 진 것이다. Figure 4 is a schematic view showing a second embodiment according to the present invention, the width ring of the cylindrical shape of the first embodiment is the same as the width size of the end of the rotor blade, the width ring 7 of the second embodiment modified this is a rotor blade It is made to be formed and attached to be larger than the width of the end of the outer periphery of (3).

본 발명은 상기 제1실시예를 변형하여 제3실시예 및 제4실시예의 개략도에 보는 바와 같이. 회전익의 끝단에 실린더형 링이 아닌 회전익 각각의 끝단에 개별로 판을 덧대는 형태로서 날개판을 부착하여 유체의 누출을 막는 임펄스 터빈을 도 5 및 도 6에 보는바와 같이 제공하고자 한다.The present invention is modified from the first embodiment as shown in the schematic diagrams of the third and fourth embodiments. 5 and 6 to provide an impulse turbine that attaches a vane to prevent the leakage of fluid by attaching a vane to the ends of the rotor blades individually, instead of a cylindrical ring at the end of the rotor blades.

도 5는 본 발명에 따른 제3실시예를 나타낸 개략도로서, 원형 덕트(1)의 중심축에 제1고정축(5)의 외주연에 다수개의 제1고정익(2)을 형성하는 제1고정익부(9)가 위치하며, 상기 제1고정익부(9)의 일측에 접하며, 상기 덕트(1)의 중심축에 회전축(4)의 외주연에 다수개의 회전익(3)을 형성하는 회전익부(11)가 위치하며, 상기 회전익부(11)의 일측에 접하며, 상기 덕트(1)의 중심축에 제2고정축(5)의 외주연에 다수개의 제2고정익(2)을 형성하는 제2고정익부(10)가 위치하며, 상기 회전익부(11)의 개개의 회전익(3)의 끝단에 상기 회전익(3)의 크기보다 크도록 형성된 날개판(8)이 부착되어 이루어 진 것이다. FIG. 5 is a schematic view showing a third embodiment according to the present invention, wherein a first fixed vane forming a plurality of first fixed vanes 2 on the outer periphery of the first fixed shaft 5 on the central axis of the circular duct 1. Rotor blade portion (9) is located, in contact with one side of the first fixed blade portion (9), to form a plurality of rotary blades (3) on the outer periphery of the rotary shaft (4) on the central axis of the duct ( 11 is positioned, the second contacting with one side of the rotor blade portion 11, to form a plurality of second fixed blade (2) on the outer periphery of the second fixed shaft (5) on the central axis of the duct (1) The fixed blade portion 10 is located, the wing plate 8 formed to be larger than the size of the rotor blades 3 is attached to the end of the individual rotor blades 3 of the rotary blade portion 11 is made.

도 6은 본 발명에 따른 제4실시예를 나타낸 개략도로서, 원형 덕트(1)내의 일측에 덕트홈(6)이 형성되며 상기 덕트(1)의 중심축에 제1고정축(5)의 외주연에 다수개의 제1고정익(2)을 형성하는 제1고정익부(9)가 위치하며, 상기 제1고정익부(9)의 일측에 접하며, 상기 덕트(1)의 중심축에 회전축(4)의 외주연에 다수개의 회전익(3)을 형성하는 회전익부(11)가 위치하며, 상기 회전익부(11)의 일측에 접하며, 상기 덕트(1)의 중심축에 제2고정축(5)의 외주연에 다수개의 제2고정익(2)을 형성하는 제2고정익부(10)가 위치하며, 상기 회전익부(11)의 개개의 회전익(3)의 끝단에 상기 회전익(3)의 형상보다 상대적으로 큰 크기로 형성된 날개판(8)이 덕트홈(6)에 대응되도록 부착되어 이루어진 것이다.6 is a schematic view showing a fourth embodiment according to the present invention, in which a duct groove 6 is formed on one side of the circular duct 1 and the outer side of the first fixed shaft 5 on the central axis of the duct 1. A first fixed blade portion 9 is formed on the periphery to form a plurality of first fixed blades 2, which is in contact with one side of the first fixed blade portion 9, and the rotation axis 4 on the central axis of the duct 1. The rotor blade portion 11 forming a plurality of rotor blades (3) on the outer periphery of the position is in contact with one side of the rotor blade portion 11, the central axis of the duct (1) of the second fixed shaft (5) The second fixed blade portion 10 which forms a plurality of second fixed blades 2 on the outer periphery is located, and at the ends of the individual rotary blades 3 of the rotary blade portion 11, relative to the shape of the rotary blades 3 Wing plate (8) formed in a large size to be made to correspond to the duct groove (6).

이는 회전축의 외주연에 다수개로 형성된 개개의 회전익 끝단에 각각의 날개판을 부착하고, 상기 날개판은 덕트내주연에 형성된 덕트홈에 삽입되는 구성으로서, 회전익의 회전운동시에 회전익과 덕트 내주연사이의 간극에서 발생되는 유동손실을 최소화하여 터빈효율을 증가하고자 하는 것이다.      It attaches each wing plate to the end of each rotor blade formed in plural on the outer circumference of the rotating shaft, the wing plate is inserted into the duct groove formed in the duct inner circumference, the rotor blades and the duct inner circumference during the rotary movement of the rotor blade It is to increase the turbine efficiency by minimizing the flow loss generated in the gap between.

도 10은 본 발명에 따른 날개판를 나타낸 개략도에 보는 바와 같이, 제4실시예에서는 개개의 회전익 끝단에 각각의 날개판을 부착하고, 상기 날개판은 덕트홈이 형성되지 않은 통상의 덕트내주연 내에서 회전익의 회전운동과 함께 회전운동하면서 회전익과 덕트 내주연사이의 간극에서 발생되는 유동손실을 최소화하여 터빈효율을 증가하고자 하는 것이다. 10 is a schematic view showing a wing plate according to the present invention, in the fourth embodiment, each wing plate is attached to the end of the individual rotor blades, the wing plate is in the normal duct inner circumference where the duct groove is not formed In order to increase the turbine efficiency by minimizing the flow loss generated in the gap between the rotor blades and the circumference of the duct while the rotor blades rotate together with the rotor blades.

도 9는 본 발명에 따른 고정익부를 나타낸 개략도로서, 상기 제1실시예 내지 제4실시예의 제1고정익 및 제2고정익(2)의 유출각은 유입각에 비하여 회전익의 회전운동 방향으로 경사지도록 형성되는 것이다. 이는 회전익의 회전운동과 함께 회전익과 인접한 회전익사이로 유입되어 유출되는 유체의 유선이 회전방향으로 소정의 경사각도로서 경사지게 이루어지기 때문에, 상기 경사각도에 대응되는 경사각도로서 고정익이 이루어짐으로 인하여, 유동손실이 최소화하여 터빈효율을 증가하기 위한 것이다.
즉, 제 1고정익 및 제 2고정익(2)으로 유입된 유체의 유선은 회전익의 회전운동으로 인하여 상기 회전익의 회전방향으로 방향이 기울어지게 되는데, 이때, 제 1고정익 및 제 2고정익(2)의 유출각이 유입각과 동일하다면 상기 회전익을 지나오면서 회전익의 회전방향으로 방향이 경사지게 된 유체는, 기울어진 유선 방향이 유입될 때의 방향으로 억지로 바뀌며 배출되어 유동손실이 일어나기 때문에, 상기 제 1고정익 및 제 2고정익(2)의 유출각은 회전익의 회전으로 인해 소정의 경사각도를 갖게 된 유체의 유선에 대응되도록, 상기 제 1고정익 및 제 2고정익(2)의 유입각에 비하여 상기 회전익의 회전방향으로 경사지게 형성되도록 함으로써 유동손실이 최소화시키는 것이다.
9 is a schematic view showing a fixed blade unit according to the present invention, wherein the outflow angles of the first fixed blade and the second fixed blade 2 in the first to fourth embodiments are formed to be inclined in the rotational motion direction of the rotor blade relative to the inflow angle. Will be. This is because the streamline of the fluid flowing in and out between the rotor blades and the adjacent rotor blades is inclined at a predetermined inclination angle in the rotational direction along with the rotational movement of the rotor blades, so that the fixed blade is made as the inclination angle corresponding to the inclination angle, so that the flow loss is lost. This is to minimize and increase the turbine efficiency.
That is, the streamline of the fluid flowing into the first fixed blade and the second fixed blade (2) is inclined in the direction of rotation of the rotary blade due to the rotary motion of the rotary blade, wherein, the first fixed blade and the second fixed blade (2) If the outflow angle is the same as the inflow angle, the fluid inclined in the direction of rotation of the rotor blade while passing through the rotor blade is forcibly changed in the direction when the inclined streamline flows in and is discharged so that the flow loss occurs. The outflow angle of the second fixed blade 2 is in the rotational direction of the rotor blade relative to the inflow angle of the first fixed blade and the second fixed blade 2 so as to correspond to the streamline of the fluid having a predetermined inclination angle due to the rotation of the rotor blades It is to be formed to be inclined to minimize the flow loss.

더 나아가, 회전익의 회전운동으로 인하여 회전익으로 유입되는 유체의 유입각도와 유출되는 유출각도는 각각 다르게 형성되는데, 상기 회전익에 유체를 유입하고 회전익을 통과한 유체를 유출하는 상기 제 1고정익 및 제 2고정익(2) 각각의 유출각을 동일하게 형성하게 되면 유체의 효율이 감소하는 것은 당연할 것이다. 이에, 상기 제1고정익 및 제2고정익(2)의 각각의 유출각은 서로 상이하도록 형성하여, 유체효율을 증가하도록 하기 위한 것이다. Furthermore, the inflow angle and the outflow angle of the fluid flowing into the rotor blade due to the rotary motion of the rotor blade are different from each other. The first fixed blade and the second fixed blade for introducing the fluid into the rotor blade and the fluid passing through the rotor blade are discharged. It will be apparent that the efficiency of the fluid will be reduced if the fixed angles of the fixed blades 2 are made equal. Accordingly, the outflow angles of the first fixed vane and the second fixed vane 2 are formed to be different from each other, so as to increase the fluid efficiency.

도 11은 종래의 터빈과 본 발명에 따른 실시예에 의한 유선을 나타낸 시뮬레이션 결과도로서, 좌측은 종래기술이며, 우측은 본 발명에 의한 회전익의 회전운동에 의한 유선특성을 컴퓨퍼시뮬레이션으로 나타낸 결과도이다. 도 11에 보는바와 같이, 종래기술에서는 유동간극손실이 매우 크다는 것을 알 수 있으며, 본 발명에서는 유동간극손실이 상대적으로 매우 감소되어 있음을 알 수 있다.11 is a simulation result diagram showing a conventional turbine and a streamline according to an embodiment according to the present invention, the left side is a prior art, and the right side is a result showing the streamline characteristics due to the rotational motion of the rotor blade according to the present invention in a computer simulation. It is also. As shown in Figure 11, it can be seen that the flow gap loss is very large in the prior art, it can be seen that the flow gap loss is relatively reduced in the present invention.

이상에서 본 바와 같이, 본 발명에 의한 회전익 날개 끝 간극유동 손실 방지용 임펄스 터빈은 회전익 끝단의 간극을 통한 유체의 누출에 의하여 회전익에서의 압력 감소를 막아 유체효율을 증가하는 임펄스 터빈을 제공하고자 하는 것이다.As described above, the impulse turbine for preventing rotor blade gap flow loss according to the present invention is to provide an impulse turbine to increase the fluid efficiency by preventing a pressure drop in the rotor blade by the leakage of fluid through the gap of the rotor blade tip. .

Claims (6)

원형 덕트(1)내의 일측에 덕트홈(6)이 형성되며, 상기 덕트(1)의 중심축에 제1고정축(5)의 외주연에 다수개의 제1고정익(2)을 형성하는 제1고정익부(9)가 위치하며, 상기 제1고정익부(9)의 일측에 접하며, 상기 덕트(1)의 중심축에 회전축(4)의 외주연에 다수개의 회전익(3)을 형성하는 회전익부(11)가 위치하며, 상기 회전익부(11)의 일측에 접하며, 상기 덕트(1)의 중심축에 제2고정축(5)의 외주연에 다수개의 제2고정익(2)을 형성하는 제2고정익부(10)가 위치하며, 상기 덕트홈(6)에 대응되도록 형성되며, 에어포일 형상을 가지는 상기 다수개의 회전익(3) 외주연의 끝단에 상기 회전익(3)과 동일한 너비의 크기 또는 상대적으로 큰 너비의 크기로 형성된 실린더형상의 너비링(7)이 부착되어 있으며, 상기 너비링(7)만이 덕트홈(6)에 대응되며 삽입장착되어 이루어지는 것을 특징으로 하는 회전익 날개 끝 간극유동 손실 방지용 임펄스 터빈. A first duct groove 6 is formed at one side in the circular duct 1, and a plurality of first fixed blades 2 are formed at the outer circumference of the first fixed shaft 5 at the central axis of the duct 1. The rotor blade portion 9 is positioned, the rotor blade contacting one side of the first fixed blade portion 9, and forms a plurality of rotor blades (3) on the outer periphery of the rotary shaft 4 on the central axis of the duct (1) (11) is positioned, the first contacting with one side of the rotor blade portion 11, the second to form a plurality of second fixed blade (2) on the outer periphery of the second fixed shaft (5) on the central axis of the duct (1) 2, the fixed blade portion 10 is located, formed to correspond to the duct groove 6, the size of the same width as the rotary blades 3 at the ends of the outer periphery of the plurality of rotary blades (3) having an airfoil shape or A cylindrical width ring (7) formed with a relatively large width is attached, and only the width ring (7) corresponds to the duct groove (6) and is inserted and mounted. Impeller turbine for preventing the loss of rotor blade gap gap flow. 원형 덕트(1)내의 일측에 덕트홈(6)이 형성되며 상기 덕트(1)의 중심축에 제1고정축(5)의 외주연에 다수개의 제1고정익(2)을 형성하는 제1고정익부(9)가 위치하며, 상기 제1고정익부(9)의 일측에 접하며, 상기 덕트(1)의 중심축에 회전축(4)의 외주연에 다수개의 회전익(3)을 형성하는 회전익부(11)가 위치하며, 상기 회전익부(11)의 일측에 접하며, 상기 덕트(1)의 중심축에 제2고정축(5)의 외주연에 다수개의 제2고정익(2)을 형성하는 제2고정익부(10)가 위치하며, 상기 회전익부(11)의 개개의 회전익(3)의 끝단은 상기 회전익(3)의 형상보다 상대적으로 큰 크기로 형성된 날개판(8)이 덕트홈(6)에 대응되도록 부착되어 상기 덕트홈(6)의 내부로 삽입되어 이루어지는 것을 특징으로 하는 회전익 날개 끝 간극유동 손실 방지용 임펄스 터빈.A first fixed vane having a duct groove 6 formed on one side of the circular duct 1 and forming a plurality of first fixed vanes 2 on the outer periphery of the first fixed shaft 5 on the central axis of the duct 1. Rotor blade portion (9) is located, in contact with one side of the first fixed blade portion (9), to form a plurality of rotary blades (3) on the outer periphery of the rotary shaft (4) on the central axis of the duct ( 11 is positioned, the second contacting with one side of the rotor blade portion 11, to form a plurality of second fixed blade (2) on the outer periphery of the second fixed shaft (5) on the central axis of the duct (1) The fixed blade portion 10 is located, the end of each of the rotor blades 3 of the rotor blades 11 has a wing plate (8) formed of a relatively larger size than the shape of the rotor blades (3) duct groove (6) The impeller turbine for preventing the loss of gap flow loss of the rotor blades, characterized in that is attached to correspond to the insert is inserted into the interior of the duct groove (6). 제 1항 또는 제 2항에 있어서, The method according to claim 1 or 2, 상기 제1고정익 및 제2고정익(2)의 유출각은 유입각에 비하여 회전익의 회전운동 방향으로 경사진 것을 특징으로 하는 회전익 날개 끝 간극유동 손실 방지용 임펄스 터빈.Outflow angle of the first fixed blade and the second fixed blade (2) impulse turbine blade gap clearance loss prevention impulse turbine, characterized in that inclined in the direction of the rotational motion of the rotor blade compared to the inlet angle. 제 3항에 있어서, The method of claim 3, wherein 상기 제1고정익 및 제2고정익(2)의 각각의 유출각은 서로 상이하도록 이루어진 것을 특징으로 하는 회전익 날개 끝 간극유동 손실 방지용 임펄스 터빈.An impulse turbine for preventing rotor blade gap clearance flow loss, wherein each of the outflow angles of the first fixed blade and the second fixed blade is different from each other. 삭제delete 삭제delete
KR1020050054238A 2005-06-23 2005-06-23 Impulse turbine with rotor blade for prevention against clearance flow loss KR100720909B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020050054238A KR100720909B1 (en) 2005-06-23 2005-06-23 Impulse turbine with rotor blade for prevention against clearance flow loss
GB0724405A GB2441270B (en) 2005-06-23 2006-06-22 Impulse turbine with rotor blade for prevention clearance flow loss
JP2008518031A JP2008546947A (en) 2005-06-23 2006-06-22 Impulse turbine for preventing gap flow loss at rotor blade tip
PCT/KR2006/002402 WO2006137696A1 (en) 2005-06-23 2006-06-22 Impulse turbine with rotor blade for prevention clearance flow loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050054238A KR100720909B1 (en) 2005-06-23 2005-06-23 Impulse turbine with rotor blade for prevention against clearance flow loss

Publications (2)

Publication Number Publication Date
KR20060134507A KR20060134507A (en) 2006-12-28
KR100720909B1 true KR100720909B1 (en) 2007-05-22

Family

ID=37570673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050054238A KR100720909B1 (en) 2005-06-23 2005-06-23 Impulse turbine with rotor blade for prevention against clearance flow loss

Country Status (4)

Country Link
JP (1) JP2008546947A (en)
KR (1) KR100720909B1 (en)
GB (1) GB2441270B (en)
WO (1) WO2006137696A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140056486A (en) * 2012-10-26 2014-05-12 주식회사 에이치케이터빈 Reaction type turbine system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2440344A (en) * 2006-07-26 2008-01-30 Christopher Freeman Impulse turbine design
DE102009057511A1 (en) 2009-12-10 2011-06-16 Voith Patent Gmbh Power generation plant with an air turbine
DE102009057513B4 (en) 2009-12-10 2013-01-03 Voith Patent Gmbh Diffuser for the air turbine of a wave power plant
US11596783B2 (en) 2018-03-06 2023-03-07 Indiana University Research & Technology Corporation Blood pressure powered auxiliary pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726904A (en) * 1993-07-12 1995-01-27 Ishikawajima Harima Heavy Ind Co Ltd Blade tip structure of rotating machine
JPH10288139A (en) 1997-04-14 1998-10-27 Toshio Hatakeyama Unidirectional turbine and wave activated generator
JPH10311205A (en) 1997-05-14 1998-11-24 Toshiba Corp Axial flow turbine
KR20030094022A (en) * 2002-05-31 2003-12-11 제너럴 일렉트릭 캄파니 Covers for turbine buckets and methods of assembly
US20050111967A1 (en) 2003-11-20 2005-05-26 General Electric Company Seal assembly for turbine, bucket/turbine including same, method for sealing interface between rotating and stationary components of a turbine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR662453A (en) * 1928-10-17 1929-08-07 Pneumatic turbine using the wave motion of sea or lake water
GB662453A (en) * 1948-02-09 1951-12-05 Philips Nv Improvements in or relating to electric arc-welding
JPS5617547B2 (en) * 1974-04-22 1981-04-23
JPS5361548U (en) * 1976-01-31 1978-05-25
JPS54159536A (en) * 1978-06-05 1979-12-17 Tideland Signal Corp Apparatus for converting water wave energy to electric power
JPH01151800A (en) * 1987-12-07 1989-06-14 Yoshiko Fujii Ring fan
JPH0264270A (en) * 1988-08-31 1990-03-05 Saga Univ Impulse turbine with self-variable pitch guide vanes
JP2761960B2 (en) * 1990-03-30 1998-06-04 財団法人鉄道総合技術研究所 Wind turbine generator for magnetic levitation vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726904A (en) * 1993-07-12 1995-01-27 Ishikawajima Harima Heavy Ind Co Ltd Blade tip structure of rotating machine
JPH10288139A (en) 1997-04-14 1998-10-27 Toshio Hatakeyama Unidirectional turbine and wave activated generator
JPH10311205A (en) 1997-05-14 1998-11-24 Toshiba Corp Axial flow turbine
KR20030094022A (en) * 2002-05-31 2003-12-11 제너럴 일렉트릭 캄파니 Covers for turbine buckets and methods of assembly
US20050111967A1 (en) 2003-11-20 2005-05-26 General Electric Company Seal assembly for turbine, bucket/turbine including same, method for sealing interface between rotating and stationary components of a turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140056486A (en) * 2012-10-26 2014-05-12 주식회사 에이치케이터빈 Reaction type turbine system

Also Published As

Publication number Publication date
KR20060134507A (en) 2006-12-28
JP2008546947A (en) 2008-12-25
GB2441270B (en) 2011-06-15
WO2006137696A1 (en) 2006-12-28
GB2441270A (en) 2008-02-27
GB0724405D0 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
US8684694B2 (en) Wheel for a hydraulic machine, a hydraulic machine including such a wheel, and an energy conversion installation equipped with such a hydraulic machine
EP2538070B1 (en) Turbine with radial inlet and outlet rotor for use in bidirectional flows
KR100720909B1 (en) Impulse turbine with rotor blade for prevention against clearance flow loss
RU2391554C1 (en) Low head orthogonal turbine
JP2013507573A (en) Energy conversion assembly
JP2010156339A (en) Clocking of turbine aerofoil
US9976536B2 (en) Air turbine for applications in wave energy conversion
JP4184847B2 (en) Windmill device and wind power generator using the same
EP2769083B1 (en) Compact blade for runner of francis turbine and method for configuring runner
CN108361145B (en) Self-pitching control blade type turbine optimized based on traditional Wils type turbine
US20160201571A1 (en) Turbomachine having a gas flow aeromechanic system and method
RU2355910C2 (en) Fluid medium turbine
JPH11159433A (en) Hydraulic machinery
JP2015175247A (en) Shroud, moving blade body and rotary machine
RU2392486C1 (en) Wind turbine rotor
CN114876865A (en) Supercritical carbon dioxide compressor impeller sealing structure and compressor
WO2022032643A1 (en) Water turbine and hydroelectric generator
KR20080113895A (en) Structure for inlet guide vane of vertical wind power generation system
KR100812136B1 (en) Turbine for generator
CN219888110U (en) Centripetal turbine
RU83545U1 (en) LOW-PRESSURE ORTHOGONAL TURBINE
CN212296693U (en) Tidal current through-flow type double-rotating-wheel combined water turbine
JP2004068777A (en) Power generating device
JP2005127264A (en) Group of moving blades of turbine for driving machine and turbine for driving machine
KR101507352B1 (en) Hydro Turbines of Wave Power Generation Breakwater

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130503

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140313

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160401

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170403

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190402

Year of fee payment: 13