KR100720106B1 - Foam of the copper-zinc alloy with excellent corrosion resistance and thereof manufacturing method - Google Patents

Foam of the copper-zinc alloy with excellent corrosion resistance and thereof manufacturing method Download PDF

Info

Publication number
KR100720106B1
KR100720106B1 KR1020050061891A KR20050061891A KR100720106B1 KR 100720106 B1 KR100720106 B1 KR 100720106B1 KR 1020050061891 A KR1020050061891 A KR 1020050061891A KR 20050061891 A KR20050061891 A KR 20050061891A KR 100720106 B1 KR100720106 B1 KR 100720106B1
Authority
KR
South Korea
Prior art keywords
copper
zinc
porous body
corrosion resistance
alloy
Prior art date
Application number
KR1020050061891A
Other languages
Korean (ko)
Other versions
KR20070006500A (en
Inventor
남기석
김경일
Original Assignee
한국기계연구원
주식회사 포어텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원, 주식회사 포어텍 filed Critical 한국기계연구원
Priority to KR1020050061891A priority Critical patent/KR100720106B1/en
Publication of KR20070006500A publication Critical patent/KR20070006500A/en
Application granted granted Critical
Publication of KR100720106B1 publication Critical patent/KR100720106B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Abstract

본 발명은 3차원 망상 구조의 구리 금속 다공체에 아연을 합금화시켜 내식성과 항균 탈취력을 증대시킴은 물론 사용수명을 연장시킬 수 있도록 한 내식성이 우수한 구리-아연 합금 다공체 및 그 제조방법에 관한 것이다.The present invention relates to a copper-zinc alloy porous body having excellent corrosion resistance to alloy zinc with a copper metal porous body having a three-dimensional network structure to increase corrosion resistance and antibacterial deodorizing power, as well as to extend its service life.

본 발명은 구리 다공체 모재에, 15∼35중량%의 아연을 합금화시켜 3차원 망상 구조를 갖도록 한 내식성이 우수한 구리-아연 합금 다공체를 제조하여 제공함에 그 특징이 있다.The present invention is characterized in that a copper-zinc alloy porous body having excellent corrosion resistance to alloy with 15 to 35% by weight of zinc to have a three-dimensional network structure is provided.

본 발명에 따르면 구리-아연 합금 다공체는 우수한 내식성을 가지면서 구리 다공체 고유의 우수한 열전도 및 항균 탈취력보다 우수한 특성을 가짐으로 인해 열저장체, 열교환기, 공기정화 및 조화장치, 수처리장치 등 다양한 용도 및 환경에 널리 사용될 수 있는 장점이 있다.According to the present invention, the copper-zinc alloy porous body has excellent corrosion resistance and excellent properties than the excellent thermal conductivity and antibacterial deodorizing power inherent to the copper porous body, and thus, various applications such as heat storage, heat exchanger, air purification and conditioning apparatus, water treatment apparatus, and the like. There is an advantage that can be widely used in the environment.

구리, 아연, 합금, 항균, 다공체 Copper, Zinc, Alloy, Antibacterial, Porous

Description

내식성이 우수한 구리-아연 합금 다공체 및 그 제조방법{FOAM OF THE COPPER-ZINC ALLOY WITH EXCELLENT CORROSION RESISTANCE AND THEREOF MANUFACTURING METHOD}Copper-zinc alloy porous body with excellent corrosion resistance and its manufacturing method {FOAM OF THE COPPER-ZINC ALLOY WITH EXCELLENT CORROSION RESISTANCE AND THEREOF MANUFACTURING METHOD}

도 1은 본 발명의 일실시예에 따른 구리-아연 합금 다공체의 예시적인 사진,1 is an exemplary photograph of a copper-zinc alloy porous body according to an embodiment of the present invention,

도 2는 본 발명에 따른 구리-아연 합금 다공체의 실시예에 따른 부식정도를 보여 주는 그래프.Figure 2 is a graph showing the degree of corrosion according to the embodiment of the copper-zinc alloy porous body according to the present invention.

본 발명은 내식성이 우수한 구리-아연 합금 다공체에 관한 것으로, 보다 상세하게는 3차원 망상 구조의 구리 금속 다공체에 아연을 합금화시켜 내식성과 항균 탈취력을 증대시킴은 물론 사용수명을 연장시킬 수 있도록 한 내식성이 우수한 구리-아연 합금 다공체 및 그 제조방법에 관한 것이다.The present invention relates to a copper-zinc alloy porous body excellent in corrosion resistance, and more particularly, to alloy zinc in a copper metal porous body having a three-dimensional network structure to increase corrosion resistance and antibacterial deodorizing power, as well as to extend service life. The excellent copper-zinc alloy porous body and its manufacturing method are provided.

일반적으로, 금속 다공체란 개구 또는 폐쇄 기공을 가진 금속을 일컫는 것으로서 주로 금속분말을 소결하여 제조되며, 베어링이나 여과용 필터(공기정화필터, 정수필터, 가스필터 등)를 비롯하여 화학분석기기, 에너지 흡수체, 촉매지지체, 흡음체, 열교환 및 열저장체, 연료전지의 전주판, 건재, 통기성 금속주형, 방향금속 등과 같이 다양한 용도로 활용되고 있다.Generally, the porous metal body refers to a metal having open or closed pores. The metal porous body is mainly manufactured by sintering a metal powder, and includes a bearing or a filtration filter (air purifying filter, a water filter, a gas filter, etc.), a chemical analysis device, and an energy absorber. , Catalyst support, sound absorber, heat exchanger and heat storage, fuel cell electric plate, building material, breathable metal mold, aromatic metal, etc.

예컨대, 구리, 니켈, 은, 철계 초내열합금 등의 금속을 주조, 소결, 도금, 물리화학증착 기술을 통해 단위체적당 표면적이 매우 큰 3차원 망상 구조를 갖는 다공체로 제조하여 상술한 바와 같은 다양한 분야에서 활용하고 있다.For example, metals such as copper, nickel, silver, and iron-based super heat-resistant alloys are manufactured into a porous body having a three-dimensional network structure having a very large surface area per unit volume through casting, sintering, plating, and physical chemical vapor deposition techniques. Is utilized by.

특히, 구리(Cu)는 적색 광택을 가지는 금속으로 전기 및 열전도도가 우수하고, 은ㆍ아연 등과 함께 항균 탈취기능을 가지고 있으며, 전기도금이 용이한 특성을 가지고 있어 3차원 망상 구조의 구리 다공체로 제조된 뒤 열저장체, 열교환기, 공기정화 및 조화장치, 수처리장치 등에 활발히 활용되고 있다.In particular, copper (Cu) is a metal with red luster, has excellent electrical and thermal conductivity, has antibacterial and deodorizing function with silver and zinc, and is easy to electroplating. After being manufactured, it is actively used in heat storage, heat exchanger, air purifying and conditioning equipment, and water treatment equipment.

그러나, 상기 구리 다공체는 수분을 비롯한 부식성 매체와 산화분위기에 노출될 경우 청녹이 발생하고 색상이 변질되는 등 쉽게 산화되어 그 용도가 매우 제한되는 단점을 가진다.However, the copper porous body is easily oxidized, such as blue rust and color changes when exposed to corrosive media and oxidation atmosphere, including water, has a disadvantage that its use is very limited.

나아가, 상기 구리 다공체는 적색의 광택만을 가지고 있기 때문에 산화 및 부식에 따른 색상변화가 뚜렷하여 다양한 제품에 적용키 어려울 뿐만 아니라 제품의 외관품위를 해치게 되어 제품가치를 비롯한 제품에 대한 신뢰도를 급격히 저하시키는 단점도 가지고 있었다.Furthermore, since the copper porous body has only a red gloss, the color change due to oxidation and corrosion is obvious, so that it is difficult to apply to various products, and it also hurts the appearance of the product, thereby rapidly lowering the reliability of the product including product value. It also had its drawbacks.

본 발명은 상술한 바와 같은 종래 기술이 갖는 제반 문제점을 감안하여 이를 해결하고자 창출한 것으로, 내식성이 약한 구리로 제조된 다공체 모재에 아연을 하금화시켜 내식성을 급격히 향상시킴은 물론 구리 다공체 고유의 항균, 탈취력을 더욱 향상시켜 부식환경하에서도 그 사용수명을 연장시키도록 함과 동시에 사용자의 경제적부담을 줄이고, 색상변질을 최소화시켜 외관품위를 높임으로써 제품의 신뢰도를 향상시키며, 제품의 활용범위를 극대화시킬 수 있도록 한 내식성이 우수한 구리-아연 합금 다공체 및 그 제조방법을 제공함에 그 주된 목적이 있다.The present invention was created in view of the above-described problems of the prior art as described above, and by lowering zinc to a porous base material made of copper having low corrosion resistance, it dramatically improves corrosion resistance as well as inherent antimicrobial inherent to the copper porous body. In addition, the deodorizing power is further improved to extend the service life even in a corrosive environment, to reduce the economic burden on the user, to minimize the color change, to enhance the appearance of the product, to improve the reliability of the product, and to maximize the range of use of the product. The main object of the present invention is to provide a copper-zinc alloy porous body having excellent corrosion resistance and a method of manufacturing the same.

본 발명은 상기한 기술적 과제를 달성하기 위하여, 구리 다공체 모재에, 15∼35중량%의 아연을 합금화시켜 3차원 망상 구조를 갖도록 한 내식성이 우수한 구리-아연 합금 다공체를 제공함에 그 기술적 특징이 있다.In order to achieve the above technical problem, the present invention provides a copper-zinc alloy porous body having excellent corrosion resistance to alloy a copper porous substrate with 15 to 35% by weight of zinc to have a three-dimensional network structure. .

또한, 본 발명은 3차원 망상 구조의 구리 다공체를, 2∼25중량%의 아연 또는 아연더스트(Zinc dust) 분말, 0.5∼5%중량의 염화암모늄(NH4Cl) 분말, 잔부 알루미나(A2lO3) 분말로 이루어진 혼합분말중에 묻어 350∼750℃의 온도범위에서 10∼120분 동안 가열 확산침투시켜 합금화시키는 것을 특징으로 하는 내식성이 우수한 구리-아연 합금 다공체 제조방법을 제공한다.In addition, the present invention is a copper porous body of a three-dimensional network structure, 2 to 25% by weight of zinc or zinc dust powder, 0.5 to 5% by weight of ammonium chloride (NH 4 Cl) powder, balance alumina (A 2 It is a copper-zinc alloy porous body manufacturing method having excellent corrosion resistance characterized in that it is buried in a mixed powder made of 100 3 powder and alloyed by heat diffusion impregnation for 10 to 120 minutes in the temperature range of 350 ~ 750 ℃.

이하에서는, 첨부도면을 참고하여 본 발명에 따른 바람직한 실시예에 대해 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment according to the present invention.

도 1은 본 발명의 일실시예에 따른 구리-아연 합금 다공체의 예시적인 사진이고, 도 2는 본 발명에 따른 구리-아연 합금 다공체의 실시예에 따른 부식정도를 보여 주는 그래프이다.1 is an exemplary photograph of a copper-zinc alloy porous body according to an embodiment of the present invention, Figure 2 is a graph showing the degree of corrosion according to an embodiment of the copper-zinc alloy porous body according to the present invention.

본 발명은 구리(Cu)로 제조된 다공체 모재에 아연(Zn)을 합금화하여 내식성을 부여함과 동시에 구리 다공체 고유의 우수한 열전도, 항균 및 탈취력을 보다 향 상시키도록 한 것이다.The present invention is to alloy zinc (Zn) to a porous base material made of copper (Cu) to impart corrosion resistance and to improve the excellent thermal conductivity, antibacterial and deodorization inherent in the copper porous body.

이때, 아연은 은(Ag) 다음으로 그리고 구리(Cu)보다 한층 더 우수한 살균, 탈취 능력을 가지고 있으며, 표면에 ZnO의 산화피막을 형성하여 항균, 탈취 및 내식성을 부여하게 되는 금속소재이다.At this time, zinc has a better sterilization and deodorization ability after silver (Ag) and copper (Cu), and forms an oxide film of ZnO on the surface to impart antimicrobial, deodorization and corrosion resistance.

또한, 상기 아연을 구리 다공체 모재에 합금화할 때에 용해법, 도금법, 분말소결법, 확산침투법, 박막증착법 등과 같은 합금화 방법 중에서 선택된 어느 하나의 방법으로 합금화됨이 바람직하다.In addition, when the zinc is alloyed to the copper porous substrate, it is preferable to alloy the zinc by any one of alloying methods such as dissolution method, plating method, powder sintering method, diffusion penetration method, and thin film deposition method.

뿐만 아니라, 상기 아연을 상기 구리 다공체 모재에 합금시킬 때에 아연의 함유량은 15∼30중량%의 범위내로 포함되도록 함이 바람직하다.In addition, the zinc content is preferably contained within the range of 15 to 30% by weight when alloying the zinc to the copper porous base material.

이는, 아연이 15중량% 미만으로 함유되게 되면 내식성이 향상되지 않기 때문이며, 또한 30중량%를 초과하게 되면 마찬가지로 내식성이 향상되지 않기 때문에 상기 함량의 범위로 첨가됨이 바람직하다.This is because the corrosion resistance does not improve when zinc is contained in less than 15% by weight, and if it exceeds 30% by weight, the corrosion resistance does not improve in the same manner, and therefore it is preferably added in the above range.

이때, 상기 아연을 용해법, 도금법, 분말소결법, 확산침투법, 박막증착법과 같은 방법중의 하나로 구리 다공체에 합금화시킬 때에 구리 다공체 자체가 가지는 3차원 망상의 구조는 그대로 유지되도록 함이 특히 바람직하다.In this case, it is particularly preferable to maintain the three-dimensional network structure of the copper porous body itself when alloying the zinc with the copper porous body by one of a method such as dissolution method, plating method, powder sintering method, diffusion penetration method, and thin film deposition method.

이와 같이, 아연의 합금화를 통해 제조된 구리 다공체는 도 1에 도시된 사진과 같은 3차원 망상의 구조를 갖게 되며, 구리 다공체 표면에 ZnO 산화피막이 형성됨으로써 내식성이 급격히 향상되고, 또한 항균 탈취력도 배가되며, 나아가 다공체의 사용수명도 급격히 연장되게 된다.As described above, the copper porous body manufactured through the alloying of zinc has a three-dimensional network structure as shown in FIG. 1, and a ZnO oxide film is formed on the surface of the copper porous body, thereby rapidly improving corrosion resistance and doubling antibacterial deodorizing power. In addition, the service life of the porous body is also rapidly extended.

이러한 다공체를 제조하기 위해서는, 먼저 3차원 망상 구조를 갖는 구리 다공체를 준비한다.In order to manufacture such a porous body, the copper porous body which has a three-dimensional network structure is prepared first.

그런 다음, 2∼25중량%의 아연 또는 아연더스트(Zinc dust) 분말과 0.5∼5%중량의 염화암모늄(NH4Cl) 분말 및 잔부 알루미나(A2lO3) 분말로 이루어진 혼합분말을 준비한 후 이들 혼합분말중에 상기 구리 다공체를 묻어 350∼750℃의 온도범위에서 10∼120분 동안 가열하면서 확산침투시켜 합금화시키는 것에 의해 제조된다.Then, a mixed powder consisting of 2 to 25% by weight of zinc or zinc dust powder, 0.5 to 5% by weight of ammonium chloride (NH 4 Cl) powder, and the balance of alumina (A 2 lO 3 ) powder was prepared. The copper porous body is buried in these mixed powders, and is produced by diffusion impregnation and alloying while heating for 10 to 120 minutes in the temperature range of 350 to 750 ° C.

여기에서, 상기 아연 또는 아연더스트의 함량 2~25중량%는 혼합분말에 대한 중량비를 말하며, 본 발명 다공체의 성분조성에서 말하고 있는 아연(15~30중량%)과는 다르고, 또한 아연더스트 분말이란 아연욕조(Zinc Pot)에서 포집된 더스트(Dust)들을 잘게 부수어 분말화시킨 것을 말한다.Here, the content of 2 to 25% by weight of zinc or zinc dust refers to the weight ratio to the mixed powder, and is different from zinc (15 to 30% by weight) in the composition of the porous body of the present invention. The dust collected in the zinc pot is finely crushed and powdered.

나아가, 상기 염화암모늄 분말은 아연 또는 아연더스트에 포함된 아연의 합금화를 촉진시키는 작용을 하게 되며, 알루미나는 혼합분말에 대해 70~97.5중량%를 차지하게 되는 것으로 분말들이 서로 결합되어 엉키는 것을 방지하는 작용을 하게 된다.Furthermore, the ammonium chloride powder acts to promote the alloying of zinc contained in zinc or zinc dust, and the alumina occupies 70 to 97.5 weight% of the mixed powder to prevent the powders from being entangled with each other. It works.

그리고, 상기에서 처리온도를 350~750℃로 한정하는 이유는 적합한 처리두께 및 합금조성, 즉 아연의 농도를 얻기 위함이며, 또한 처리시간을 10~120분으로 한정하는 경우도 마찬가지의 이유에서이다.In addition, the reason for limiting the treatment temperature to 350 to 750 ° C. is to obtain a suitable treatment thickness and alloy composition, that is, the concentration of zinc, and also for the same reason to limit the treatment time to 10 to 120 minutes. .

이하, 실시예에 대하여 설명하기로 한다.Hereinafter, the embodiment will be described.

[실시예]EXAMPLE

본 발명 실시예는 구리(Cu) 다공체 고유의 우수한 열전도도, 항균, 탈취 기능을 잃지 않으면서 우수한 내식성을 가질 수 있는 농도 범위로 아연을 함유하는 구리-아연 합금 다공체를 제조하였다.Example of the present invention prepared a copper-zinc alloy porous body containing zinc in a concentration range that can have excellent corrosion resistance without losing the excellent thermal conductivity, antibacterial, and deodorizing function inherent to the copper (Cu) porous body.

즉, 구리-아연 합금 다공체의 제조를 위해 구리(Cu) 다공체를 아연더스트 분말, 활성화제인 NH4Cl 분말, 그리고 나머지 알루미나 분말로 구성된 혼합분말중에 배치하여 420℃을 유지한 채 50분간 열처리하여 분말중의 아연 성분을 확산침투시켜 구리(Cu) 다공체 표면에 일정량의 아연이 합금화된 구리-아연 합금 다공체를 제조하였으며, 그 실시에 관한 구리와 아연간의 성분조성에 관한 예는 하기한 표 1에 발명예 1, 2, 3, 4 및 비교예 1, 2로 나타내었다.That is, in order to produce a copper-zinc alloy porous body, a copper (Cu) porous body is placed in a mixed powder composed of zinc dust powder, NH 4 Cl powder as an activator, and the remaining alumina powder, and heat-treated for 50 minutes while maintaining the temperature at 420 ° C. The zinc component was diffused and penetrated to produce a copper-zinc alloy porous body in which a predetermined amount of zinc was alloyed on the surface of the copper (Cu) porous body. Examples of the composition of copper and zinc components related to the implementation are shown in Table 1 below. Honors 1, 2, 3, 4 and Comparative Examples 1, 2 are shown.

구분  division 비교예1 Comparative Example 1 발명예1 Inventive Example 1 발명예2 Inventive Example 2 발명예3 Inventive Example 3 발명예4 Inventive Example 4 비교예2 Comparative Example 2 원료분말 Raw material powder Zn dust: 30% NH4Cl:1% Al2O3:69%Zn dust: 30% NH 4 Cl: 1% Al 2 O 3 : 69% Zn dust:25% NH4Cl:1% Al2O3:74%Zn dust: 25% NH 4 Cl: 1% Al 2 O 3 : 74% Zn dust:15% NH4Cl:1% Al2O3:84%Zn dust: 15% NH 4 Cl: 1% Al 2 O 3 : 84% Zn dust:5% NH4Cl:1% Al2O3:94%Zn dust: 5% NH 4 Cl: 1% Al 2 O 3 : 94% Zn dust:2% NH4Cl:1% Al2O3:97%Zn dust: 2% NH 4 Cl: 1% Al 2 O 3 : 97% Zn dust:1% NH4Cl:1% Al2O3:98%Zn dust: 1% NH 4 Cl: 1% Al 2 O 3 : 98% 구리  Copper 52중량% 52 wt% 78중량% 78% by weight 73중량% 73% by weight 70중량% 70 wt% 82중량% 82% by weight 92중량% 92% by weight 아연  zinc 48중량% 48 wt% 22중량% 22% by weight 27중량% 27% by weight 30중량% 30 wt% 18중량% 18 wt% 8중량% 8% by weight

상기 표 1에서와 같은 각각의 조성비를 가지는 구리-아연 합금 다공체를 3.5%의 염화나트륨(NaCl) 수용액중에서 분극시험하여 부식특성을 조사한 결과를 도 2에 그래프로 나타내었다.Copper-zinc alloy porous bodies having respective composition ratios as shown in Table 1 were polarized in 3.5% aqueous sodium chloride (NaCl) solution to investigate the corrosion characteristics.

그래프에서와 같이, 100% 아연(Zn)이 가장 낮은 내식성을 보였으며, 비교예 1, 6은 그 내식성이 100%구리가 갖는 내식성과 유사하였고, 발명예 1, 2, 3, 4의 경우는 내식성이 크게 향상되었음을 확인할 수 있었다.As shown in the graph, 100% zinc (Zn) showed the lowest corrosion resistance, Comparative Examples 1 and 6 were similar to the corrosion resistance of 100% copper, In the case of Inventive Examples 1, 2, 3, 4 It was confirmed that the corrosion resistance was greatly improved.

즉, 아연(Zn)의 함유량이 15∼35%인 경우 내식성이 현저히 향상됨을 확인하였고, 이것을 통해 구리-아연 합금 다공체의 경우 아연이 함량이 15∼35% 범위로 첨가될 때 최적의 내식성을 나타냄이 입증되었다.That is, it was confirmed that the corrosion resistance is remarkably improved when the content of zinc (Zn) is 15 to 35%. Through this, the copper-zinc alloy porous body shows the optimum corrosion resistance when the zinc content is added in the range of 15 to 35%. This has been proven.

이상에서 상세히 설명한 바와 같이, 본 발명에 따르면 구리-아연 합금 다공체는 우수한 내식성을 가지면서 구리 다공체 고유의 우수한 열전도도 및 항균,탈취력보다 우수한 특성을 가짐으로 인해 열저장체, 열교환기, 공기정화 및 조화장치, 수처리장치 등 다양한 용도 및 환경에 널리 사용될 수 있는 장점이 있다.As described in detail above, according to the present invention, the copper-zinc alloy porous body has excellent corrosion resistance and excellent thermal conductivity, antibacterial, and deodorizing property inherent to the copper porous body, resulting in heat storage, heat exchanger, air purification, and the like. There is an advantage that can be widely used in various applications and environments, such as a harmonizer, a water treatment device.

Claims (2)

구리 다공체 모재에,On copper porous body substrate, 15∼35중량%의 아연을 합금화시켜 3차원 망상 구조를 갖도록 한 내식성이 우수한 구리-아연 합금 다공체.Copper-zinc alloy porous body excellent in corrosion resistance which alloyed 15-35 weight% zinc and has a three-dimensional network structure. 3차원 망상 구조의 구리 다공체를,      Copper porous body of three-dimensional network structure, 2∼25중량%의 아연 또는 아연더스트 분말, 0.5∼5%중량의 염화암모늄(NH4Cl) 분말 및 잔부 알루미나(A2lO3) 분말로 이루어진 혼합분말중에 묻어 350∼750℃의 온도범위에서 10∼120분 동안 가열 확산침투시켜 합금화시키는 것을 특징으로 하는 내식성이 우수한 구리-아연 합금 다공체 제조방법.Buried in a mixed powder consisting of 2 to 25% by weight of zinc or zinc dust powder, 0.5 to 5% by weight of ammonium chloride (NH 4 Cl) powder and the balance of alumina (A 2 lO 3 ) powder, in the temperature range of 350 to 750 ° C. A method for producing a copper-zinc alloy porous body excellent in corrosion resistance, characterized in that the alloy is formed by heat diffusion impregnation for 10 to 120 minutes.
KR1020050061891A 2005-07-08 2005-07-08 Foam of the copper-zinc alloy with excellent corrosion resistance and thereof manufacturing method KR100720106B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050061891A KR100720106B1 (en) 2005-07-08 2005-07-08 Foam of the copper-zinc alloy with excellent corrosion resistance and thereof manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050061891A KR100720106B1 (en) 2005-07-08 2005-07-08 Foam of the copper-zinc alloy with excellent corrosion resistance and thereof manufacturing method

Publications (2)

Publication Number Publication Date
KR20070006500A KR20070006500A (en) 2007-01-11
KR100720106B1 true KR100720106B1 (en) 2007-05-18

Family

ID=37871735

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050061891A KR100720106B1 (en) 2005-07-08 2005-07-08 Foam of the copper-zinc alloy with excellent corrosion resistance and thereof manufacturing method

Country Status (1)

Country Link
KR (1) KR100720106B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2469118C1 (en) * 2011-07-06 2012-12-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Porous copper obtaining method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480441B1 (en) * 2013-04-02 2015-01-13 한국기계연구원 Method for surface alloying of porous metal using titanium hydride
CN111088443B (en) * 2020-01-06 2022-03-22 广西大学 Copper-based composite foam material
GB2592398A (en) * 2020-02-27 2021-09-01 Copper Clothing Ltd Antimicrobial material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215933A (en) * 1988-02-24 1989-08-29 Aisin Takaoka Ltd Metallic porous body and its manufacture
JPH0959596A (en) * 1995-08-22 1997-03-04 Akebono Brake Res & Dev Center Ltd Frictional material containing metal having three-dimensional net structure as skeleton and its production
US6051117A (en) 1996-12-12 2000-04-18 Eltech Systems, Corp. Reticulated metal article combining small pores with large apertures
KR20040041813A (en) * 2002-11-12 2004-05-20 최성조 Process for preparing a fragnant metal body using a sintered porous metal plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215933A (en) * 1988-02-24 1989-08-29 Aisin Takaoka Ltd Metallic porous body and its manufacture
JPH0959596A (en) * 1995-08-22 1997-03-04 Akebono Brake Res & Dev Center Ltd Frictional material containing metal having three-dimensional net structure as skeleton and its production
US6051117A (en) 1996-12-12 2000-04-18 Eltech Systems, Corp. Reticulated metal article combining small pores with large apertures
KR20040041813A (en) * 2002-11-12 2004-05-20 최성조 Process for preparing a fragnant metal body using a sintered porous metal plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2469118C1 (en) * 2011-07-06 2012-12-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Porous copper obtaining method

Also Published As

Publication number Publication date
KR20070006500A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
KR100720106B1 (en) Foam of the copper-zinc alloy with excellent corrosion resistance and thereof manufacturing method
CN103614719B (en) A kind of preparation method of anti-bacteria stainless steel
JP4941236B2 (en) Sintering aid, sintered aluminum-containing copper-based alloy powder, and sintered body obtained by sintering the sintered aluminum-containing copper-based alloy powder
CN100469493C (en) Powder metallurgy composite antimicrobial stainless steel instrument and its preparation method
CN106086495B (en) Cupric oxide doped siller tin oxide composite and preparation method thereof
Quadakkers et al. Practical aspects of the reactive element effect
JPH01115936A (en) Fluorinated polymer-ion exchange body having metal condensate therein or on its surface and production thereof
CN105018772A (en) Method for preparing porous copper or porous copper alloy
KR20180128248A (en) Block type antibacterial filter and method of manufacturing tongue type antibacterial balls
CN110039041A (en) Anti-bacteria stainless steel composite granule, anti-bacteria stainless steel and preparation method thereof
JPS5923835A (en) Production of boride diffused alloy
CN111838183A (en) Composite metal colloid inorganic antibacterial agent, preparation method thereof and inorganic artificial stone thereof
KR100991993B1 (en) Manufacturing method of Fe-based sintered body for filter and Fe-based sintered body for filter
KR100886931B1 (en) Copper Silver Alloy Porous Metal has excellent ability for anti bacteria
KR100534089B1 (en) A metallic filter for air purification
US4662939A (en) Process and composition for improved corrosion resistance
KR100803665B1 (en) Cu-Ni porous alloy and method for fabricating the same
JPH045745B2 (en)
CN111887259A (en) Metal colloid active carbon antibacterial agent, preparation method thereof and inorganic artificial stone thereof
DE102015221750B4 (en) Coated particulate polymeric material, methods of making the coated particulate polymeric material, and use of the coated particulate polymeric material
RU2746877C1 (en) Porous filter element and its manufacturing method
CN103540927B (en) In-situ preparation method of silver functional coating
KR20220142130A (en) Method to improve corrosion resistance of copper alloy that realizes sterilization and gold color
US3372468A (en) Method of coating a copper silver alloy with a silver coat
US3419364A (en) Composite silver and copper article

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20110513

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee