KR100716797B1 - Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof - Google Patents

Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof Download PDF

Info

Publication number
KR100716797B1
KR100716797B1 KR1020050117086A KR20050117086A KR100716797B1 KR 100716797 B1 KR100716797 B1 KR 100716797B1 KR 1020050117086 A KR1020050117086 A KR 1020050117086A KR 20050117086 A KR20050117086 A KR 20050117086A KR 100716797 B1 KR100716797 B1 KR 100716797B1
Authority
KR
South Korea
Prior art keywords
formula
sugar
alpha
isomaltooligosaccharide
glucopyranoside
Prior art date
Application number
KR1020050117086A
Other languages
Korean (ko)
Other versions
KR20060063703A (en
Inventor
김도만
문영환
조재영
강상미
안준섭
서은성
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of KR20060063703A publication Critical patent/KR20060063703A/en
Application granted granted Critical
Publication of KR100716797B1 publication Critical patent/KR100716797B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/26Acyclic or carbocyclic radicals, substituted by hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/18Acyclic radicals, substituted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/203Monocyclic carbocyclic rings other than cyclohexane rings; Bicyclic carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/06Benzopyran radicals

Abstract

본 발명은 당전이 효소를 이용한 당전이 화합물의 유도체 제조방법 및 이로부터 제조된 유도체에 관한 것으로, 0.1-1M 농도의 설탕이 함유된 용액에 당전이효소를 반응기 최종 활성 농도가 0.1-3.0 U/ml가 되도록 첨가한 다음, 이를 15-50℃의 반응기에서 카테킨, 레스베라트롤(resveratrol), 아큐빈(aucubin), 파라니트로페놀(p-nitrophenol), 파라니트로페닐-O-α-D-글루코피라노사이드 (p-nitrophenyl-O-α-D-glucopyranoside), 티로솔(tyrosol), 알파-아카보스 (α-acarbose), 노다케닌(nodakenin), 페룰릭산(ferulic acid), 퀘르세틴(quercetin) 및 알코올로 구성되는 그룹으로부터 선택되는 적어도 하나의 당 수용체를 최종 활성 농도가 0.01-2%가 되도록 첨가하여 반응시킴으로써 설탕의 글루코오스 혹은 프락토실기를 상기 수용체에 전이하여 당전이 화합물의 유도체를 생성하는 단계 및 상기 당전이 화합물의 유도체를 분리 및 정제하는 단계를 포함하여 이루어진 당전이 화합물의 유도체 제조방법, 및 이로부터 제조된 유도체가 제공된다. 본 발명에 의해 생성되는 당전이 유도체는 물에 대한 용해도가 증가되거나 빛, 열에 의한 분해나 산화를 방지하는 효과를 가지고 있어 식품 및 화장품, 의약품 산업 등에 유용하게 사용될 수 있다. The present invention relates to a method for preparing a derivative of a sugar transfer compound using a sugar transfer enzyme and a derivative prepared therefrom. The final active concentration of a sugar transferase in a solution containing 0.1-1 M sugar is 0.1-3.0 U / was added such that the following ml, catechin it in the reactor of 15-50 ℃, resveratrol (resveratrol), Accu blank (aucubin), para-nitrophenol (p -nitrophenol), p-nitrophenyl - O -α-D- gluconic nose Llano P- nitrophenyl- O- α-D-glucopyranoside, tyrosol, alpha-acarbose, nodakenin, ferulic acid, quercetin and alcohol Reacting by adding at least one sugar receptor selected from the group consisting of a final active concentration of 0.01-2% to transfer glucose or fructosyl groups of sugar to the receptor to generate derivatives of the sugar transition compound; and Party There is provided a method for preparing a derivative of a sugar transfer compound, and a derivative prepared therefrom, comprising the step of isolating and purifying the derivative of the transition compound. The sugar transition derivative produced by the present invention has an effect of increasing solubility in water or preventing decomposition or oxidation by light and heat, and thus may be usefully used in food, cosmetics, and pharmaceutical industries.

당전이 효소, 글루칸수크라아제, 레반수크라아제, 수크로오스, 카테킨 Glycotransferase, Glucan Sucrase, Levansucrase, Sucrose, Catechin

Description

당전이 효소를 이용한 당전이 화합물의 유도체 제조방법 및 이로부터 제조된 유도체{Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof}Method for preparing derivatives of glycotransfer compounds using sugar transfer enzymes and derivatives prepared therefrom {Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives

도 1은 본 발명에 따라 수크로오스 용액에 각 카테킨류의 용액과 글루칸수크라아제를 첨가하여 반응시킨 경우에 반응 산물의 분포를 분석한 TLC 결과이다. 1 is a TLC result of analyzing the distribution of the reaction product when the solution of each catechin and the glucan sucrase were added to the sucrose solution according to the present invention.

S, 수크로오스; F, 프락토오스;S, sucrose; F, fructose;

래인 1, 0.5M 수크로오스 + 완충용액 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 1, 0.5M sucrose + buffer + L. mesenteroides NRRL 1299 glucan sucrase;

래인 2, 카테킨Lane 2, catechin

래인 3, 0.5M 수크로오스 + 카테킨 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 3, 0.5M sucrose + catechin + L. mesenteroides NRRL 1299 glucan sucrase;

래인 4, 에피카테킨Lane 4, epicatechin

래인 5, 0.5M 수크로오스 + 에피카테킨 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 5, 0.5M sucrose + epicatechin + L. mesenteroides NRRL 1299 glucan sucrase;

래인 6, 에피갈로카테킨Lane 6, epigallocatechin

래인 7, 0.5M 수크로오스 + 에피갈로카테킨 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 7, 0.5M sucrose + epigallocatechin + L. mesenteroides NRRL 1299 glucan sucrase;

래인 8, 에피카테킨 갈레이트Lane 8, epicatechin gallate

래인 9, 0.5M 수크로오스 + 에피카테킨 갈레이트 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 9, 0.5M sucrose + epicatechin gallate + L. mesenteroides NRRL 1299 glucan sucrase;

래인 10, 카테킨 갈레이트Lane 10, catechin gallate

래인 11, 0.5M 수크로오스 + 카테킨 갈레이트 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 11, 0.5M sucrose + catechin gallate + L. mesenteroides NRRL 1299 glucan sucrase;

래인 12, 에피갈로카테킨 갈레이트;Lane 12, epigallocatechin gallate;

래인 13, 0.5M 수크로오스 + 에피갈로카테킨 갈레이트 + L. mesenteroides NRRL 1299 글루칸수크라아제Lane 13, 0.5M sucrose + epigallocatechin gallate + L. mesenteroides NRRL 1299 glucan sucrase

도 2는 본 발명에 따라 수크로오스 용액에 레스베라트롤 용액과 글루칸수크라아제를 첨가하여 반응시킨 경우에 반응 산물의 분포를 분석한 TLC 결과이다. Figure 2 is a TLC result of analyzing the distribution of the reaction product when reacted by adding the resveratrol solution and glucan sucrase to the sucrose solution according to the present invention.

S, 수크로오스; G, 글루코오스;S, sucrose; G, glucose;

래인 1, 레스베라트롤Lane 1, resveratrol

래인 2, 0.2M 수크로오스 + 완충용액 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 2, 0.2M sucrose + buffer + L. mesenteroides NRRL 1299 glucan sucrase;

래인 3, 0.2M 수크로오스 + 레스베라트롤 + L. mesenteroides NRRL 1299 글루칸수크라아제Lane 3, 0.2M sucrose + resveratrol + L. mesenteroides NRRL 1299 glucan sucrase

도 3은 아큐빈을 이용하여 설탕과 덱스트란수크라제를 반응시킨 후 합성된 수용체 산물을 확인한 TLC 결과이다.Figure 3 is a TLC result confirming the receptor product synthesized after reacting sugar and dextran sucrase using acubin.

래인 1, 아큐빈Lane 1, Accubin

래인 2, 0.2M 수크로오스 + 완충용액 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 2, 0.2M sucrose + buffer + L. mesenteroides NRRL 1299 glucan sucrase;

래인 3, 0.2M 수크로오스 + 아큐빈 + L. mesenteroides NRRL 1299 글루칸수크라아제Lane 3, 0.2M sucrose + acubin + L. mesenteroides NRRL 1299 glucan sucrase

도 4는 본 발명에 따라 수크로오스 용액에 에탄올과 글루칸수크라아제를 첨가하여 반응시킨 경우에 반응 산물의 분포를 분석한 TLC 결과이다. Figure 4 is a TLC result of analyzing the distribution of the reaction product when reacted by adding ethanol and glucan sukrase to the sucrose solution according to the present invention.

S, 수크로오스; G, 글루코오스; F, 프락토오스;S, sucrose; G, glucose; F, fructose;

래인 1, 0.5M 수크로오스 + 완충용액 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 1, 0.5M sucrose + buffer + L. mesenteroides NRRL 1299 glucan sucrase;

래인 2, 0.5M 수크로오스 + 에탄올 + L. mesenteroides NRRL 1299 글루칸수크라아제Lane 2, 0.5M sucrose + ethanol + L. mesenteroides NRRL 1299 glucan sucrase

도 5는 본 발명에 따라 수크로오스 용액에 파라니트로페놀, 파라니트로페닐-O-α-D-글루코피라노사이드와 글루칸수크라아제를 첨가하여 반응시킨 경우에 반응 산물의 분포를 분석한 TLC 결과이다.5 is a TLC result of analyzing the distribution of the reaction product when the reaction was added to the paranitrophenol, paranitrophenyl- O- α-D-glucopyranoside and glucan sucrase in the sucrose solution according to the present invention .

F, 프락토오스; S, 수크로오스; F, fructose; S, sucrose;

래인 1, 파라니트로페놀;Lane 1, paranitrophenol;

래인 2, 파라니트로페닐-O-α-D-글루코피라노사이드;Lane 2, paranitrophenyl- O- α-D-glucopyranoside;

래인 3, 0.2M 수크로오스 + 완충용액 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 3, 0.2M sucrose + buffer + L. mesenteroides NRRL 1299 glucan sucrase;

래인 4, 0.2M 수크로오스 + 파라니토로페놀 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 4, 0.2M sucrose + paranitrophenols + L. mesenteroides NRRL 1299 glucan sucrase;

래인 5, 0.2M 수크로오스 + 파라니토로페닐-O-α-D-글루코피라노사이드 + L. mesenteroides NRRL 1299 글루칸수크라아제Lane 5, 0.2M sucrose + paranitrophenyl- O- α-D-glucopyranoside + L. mesenteroides NRRL 1299 glucan sucrase

도 6은 본 발명에 따라 수크로오스 용액에 티로솔과 글루칸수크라아제를 첨가하여 반응시킨 경우에 반응 산물의 분포를 분석한 TLC 결과이다.6 is a TLC result of analyzing the distribution of the reaction product when the reaction was added to the sucrose solution in the addition of tyrosol and glucan sucrase.

래인 1, 0.2M 수크로오스 + 완충용액 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 1, 0.2M sucrose + buffer + L. mesenteroides NRRL 1299 glucan sucrase;

래인 2, 0.2M 수크로오스 + 티로솔 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 2, 0.2M sucrose + tyrosol + L. mesenteroides NRRL 1299 glucan sucrase;

래인 3, 티로솔Lane 3, tyrosol

도 7은 본 발명에 따라 수크로오스 용액에 아카보스와 레반수크라아제를 첨가하여 반응시킨 경우에 반응 산물의 분포를 분석한 TLC 결과이다.7 is a TLC result of analyzing the distribution of the reaction product when the reaction was added to the sucrose solution and acarbose and levane sukrases according to the present invention.

래인 1, 아카보스;Lane 1, acarbose;

래인 2, 0.2M 수크로오스 + 완충용액 + L. mesenteroides NRRL 512 레반수크 라아제;Lane 2, 0.2M sucrose + buffer + L. mesenteroides NRRL 512 levansucase;

래인 3, 0.2M 수크로오스 + 아카보스 + L. mesenteroides NRRL 512 레반수크라아제Lane 3, 0.2M sucrose + acarbose + L. mesenteroides NRRL 512 levansoukrases

도 8은 본 발명에 따라 수크로오스 용액에 프락토실 아카보스와 글루칸수크라아제를 첨가하여 반응시킨 경우에 반응 산물의 분포를 분석한 TLC 결과이다.8 is a TLC result of analyzing the distribution of the reaction product when reacted by the addition of fructosyl acarbose and glucan sucrase to the sucrose solution according to the present invention.

래인 1, 프락토실 아카보스;Lane 1, fructosyl acarbose;

래인 2, 0.2M 수크로오스 + 프락토실 아카보스 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 2, 0.2M sucrose + fructosyl acarbose + L. mesenteroides NRRL 1299 glucan sucrase;

래인 3, 0.2M 수크로오스 + 완충용액 + L. mesenteroides NRRL 1299 글루칸수크라아제Lane 3, 0.2M sucrose + buffer + L. mesenteroides NRRL 1299 glucan sucrase

도 9는 본 발명에 따라 수크로오스 용액에 알코올류와 글루칸수크라아제를 첨가하여 반응시킨 경우에 반응 산물의 분포를 분석한 TLC 결과이다.9 is a TLC result of analyzing the distribution of the reaction product when the reaction with the addition of alcohols and glucan sucrase to the sucrose solution according to the present invention.

래인 1, 0.2M 수크로오스 + 완충용액 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 1, 0.2M sucrose + buffer + L. mesenteroides NRRL 1299 glucan sucrase;

래인 2, 0.2M 수크로오스 + 메탄올 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 2, 0.2M sucrose + methanol + L. mesenteroides NRRL 1299 glucan sucrase;

래인 3, 0.2M 수크로오스 + 1-프로판올 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 3, 0.2M sucrose + 1-propanol + L. mesenteroides NRRL 1299 glucan sucrase;

래인 4, 0.2M 수크로오스 + 1-부탄올 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 4, 0.2M sucrose + 1-butanol + L. mesenteroides NRRL 1299 glucan sucrase;

래인 5, 0.2M 수크로오스 + 2-프로판올 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 5, 0.2M sucrose + 2-propanol + L. mesenteroides NRRL 1299 glucan sucrase;

래인 6, 0.2M 수크로오스 + 3-메틸-1-부탄올 + L. mesenteroides NRRL 1299 글루칸수크라아제Lane 6, 0.2M sucrose + 3-methyl-1-butanol + L. mesenteroides NRRL 1299 glucan sucrase

도 10은 본 발명에 따라 수크로오스 용액에 노다케닌과 글루칸수크라아제를 첨가하여 반응시킨 경우에 반응 산물의 분포를 분석한 TLC 결과이다.10 is a TLC result of analyzing the distribution of the reaction product when the reaction was added to the sucrose solution with nodakine and glucan sukrase.

래인 1, 노다케닌;Lane 1, nodakenin;

래인 2, 0.2M 수크로오스 + 완충용액 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 2, 0.2M sucrose + buffer + L. mesenteroides NRRL 1299 glucan sucrase;

래인 3, 0.2M 수크로오스 + 노다케닌 + L. mesenteroides NRRL 1299 글루칸수크라아제Lane 3, 0.2M sucrose + nodakenin + L. mesenteroides NRRL 1299 glucan sucrase

도 11은 본 발명에 따라 수크로오스 용액에 알코올류와 레반수크라아제를 첨가하여 반응시킨 경우에 반응 산물의 분포를 분석한 TLC 결과이다.11 is a TLC result of analyzing the distribution of the reaction product when the reaction was added to the sucrose solution and alcohols and levane sucrase.

래인 1, 0.2M 수크로오스 + 완충용액 + L. mesenteroides NRRL 512 레반수크라아제;Lane 1, 0.2M sucrose + buffer + L. mesenteroides NRRL 512 levansukraase;

래인 2, 0.2M 수크로오스 + 메탄올 + L. mesenteroides NRRL 512 레반수크라 아제;Lane 2, 0.2M sucrose + methanol + L. mesenteroides NRRL 512 levansukraase;

래인 3, 0.2M 수크로오스 + 에탄올 + L. mesenteroides NRRL 512 레반수크라아제;Lane 3, 0.2M sucrose + ethanol + L. mesenteroides NRRL 512 levansukraase;

래인 4, 0.2M 수크로오스 + 1-프로판올 + L. mesenteroides NRRL 512 레반수크라아제;Lane 4, 0.2M sucrose + 1-propanol + L. mesenteroides NRRL 512 levansukraase;

래인 5, 0.2M 수크로오스 + 1-부탄올 + L. mesenteroides NRRL 512 레반수크라아제;Lane 5, 0.2M sucrose + 1-butanol + L. mesenteroides NRRL 512 levansukraase;

래인 6, 0.2M 수크로오스 + 3-메틸-1-부탄올 + L. mesenteroides NRRL 512 레반수크라아제Lane 6, 0.2M sucrose + 3-methyl-1-butanol + L. mesenteroides NRRL 512 levansukraase

도 12는 본 발명에 따라 수크로오스 용액에 페룰릭산(ferulic acid)과 레반수크라아제를 첨가하여 반응시킨 경우에 반응 산물의 분포를 분석한 TLC 결과이다.12 is a TLC result of analyzing the distribution of the reaction product when the reaction was added to the ferulic acid (ferulic acid) and levane sucrase in the sucrose solution according to the present invention.

래인 1, 페룰릭산Lane 1, ferulic acid

래인 2, 0.2M 수크로오스 + 완충용액 + L. mesenteroides NRRL 512 레반수크라아제;Lane 2, 0.2M sucrose + buffer + L. mesenteroides NRRL 512 levansukraase;

래인 3, 0.2M 수크로오스 + 페룰릭산 + L. mesenteroides NRRL 512 레반수크라아제;Lane 3, 0.2M sucrose + ferulic acid + L. mesenteroides NRRL 512 levansukraase;

도 13은 본 발명에 따라 수크로오스 용액에 퀘르세틴과 글루칸수크라아제를 첨가하여 반응시킨 경우에 반응 산물의 분포를 분석한 TLC 결과이다.13 is a TLC result of analyzing the distribution of the reaction product when the reaction was added to quercetin and glucan sucrase in a sucrose solution according to the present invention.

래인 1, 퀘르세틴Lane 1, quercetin

래인 2, 0.2M 수크로오스 + 완충용액 + L. mesenteroides NRRL 1299 글루칸수크라아제;Lane 2, 0.2M sucrose + buffer + L. mesenteroides NRRL 1299 glucan sucrase;

래인 3, 0.2M 수크로오스 + 퀘르세틴 + L. mesenteroides NRRL 1299 글루칸수크라아제Lane 3, 0.2M sucrose + quercetin + L. mesenteroides NRRL 1299 glucan sucrase

본 발명은 효소와 설탕을 이용하여 여러 가지 당전이 유도 물질 제조 방법에 관한 것으로, 보다 상세하게는 당전이효소를 이용하여 녹차 카테킨류, 레스베라트롤(resveratrol), 아큐빈(aucubin), 에탄올(ethanol), 파라니트로페놀(p-nitrophenol), 파라니트로페닐-O-α-D-글루코피라노사이드 (p-nitrophenyl-O-α-D-glucopyranoside), 티로솔(tyrosol), 알파-아카보스 (α-acarbose), 메탄올(methanol), 1-프로판올(1-propanol), 부탄올(1-butanol), 이소프로판올(2-propanol), 3-메틸-1-부탄올(3-methyl-1-butanol), 노다케닌(nodakenin), 페룰릭산(ferulic acid), 퀘르세틴(quercetin) 등의 당전이 화합물의 유도체를 제조하는 방법 및 이로부터 제조된 유도체에 관한 것이다.The present invention relates to a method for producing a variety of sugar-transfer substances using enzymes and sugars, and more specifically, using green tea catechins, resveratrol, acubin, and ethanol using sugar-transferases. , p-nitrophenol (p -nitrophenol), the para-nitrophenyl-O -α-D- gluconic nose Llano side (p -nitrophenyl- O -α-D- glucopyranoside), tee brush (tyrosol), alpha-acarbose (α- acarbose, methanol, 1-propanol, 1-butanol, 1-butanol, isopropanol, 3-methyl-1-butanol, 3-methyl-1-butanol, and nodakine The present invention relates to a method for preparing derivatives of sugar-transfer compounds such as (nodakenin), ferulic acid, and quercetin, and derivatives prepared therefrom.

녹차의 여러 가지 생리활성을 일으키는 주된 성분은 녹차 잎에 함유되어 있 는 카테킨이다. 녹차 잎에 포함되어있는 카테킨은 카테킨(Catechin), 에피카테킨(Epicatechin), 에피갈로카테킨(Epigallocatechin), 에피카테킨 갈레이트(Epicatechin gallate), 카테킨 갈레이트(Catechin gallate), 에피갈로카테킨 갈레이트(Epigallocatechin gallate) 등이 있다. 이들 녹차 카테킨류에 대한 관심이 높아지고 있는데, 이는 카테킨류 화합물이 강한 항산화 특성(Sakanaka etc. Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a carcinogenic bacterium. Agric . Biol . Chem., 53, 2307, 1989), 항균 작용(Yeo etc., Antimicrobial effect of tea extracts from green tea, oolong tea and black tea. J. Korean Soc . Food Nutr ., 24(2), 293-298, 1995)을 가지고 있을 뿐만 아니라 항궤양, 항암, 항알러지등 여러 가지 활성이 보고 되고 있기 때문이다. The main constituents that cause the various physiological activities of green tea are catechins contained in green tea leaves. The catechins contained in the green tea leaves are catechin, epicatechin, epigallocatechin, epicatechin gallate, catechin gallate, and epigallocatechin gallate. gallate). There is interest in these green tea catechins increased, which Biol strong antioxidant properties catechin compound (Sakanaka etc. Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a bacterium carcinogenic. Agric.. Chem., 53, 2307, 1989 ), antibacterial activity (Yeo etc.,. antimicrobial effect of tea extracts from green tea, oolong tea and black tea. J. Korean Soc. Food Nutr, 24 (2) , as well as with, 293-298, 1995) wherein This is because various activities such as ulcers, anticancer and anti-allergy have been reported.

그러나 이들 카테킨류 화합물들은 물에 잘 녹지 않고, 빛이나 열에 의해 쉽게 분해 및 산화되어 갈변현상을 일으키는 단점이 있어 식품첨가물이나 화장품 및 의약품등의 용도로 활용하기에 많은 제한이 있다. 한편, 생물공학적인 방법 즉, 이들 카테킨류를 효소적 반응을 통하여 당을 전이시켜 합성된 변형산물들은 빛에 대한 안정성이 증가되었을 뿐만 아니라 물에 잘 녹는 성질을 가지고 있고, 카테킨의 강한 쓴맛과 떫은 맛이 없는 특성을 가지고 있다고 보고 되고 있다(Satoshi etc. The syntheses of Catechin-glucosides by Transglycosylation with Leuconostoc mesenteroides sucrose phosphorylase, Biosci . Biotech. Biochem., 57(12), 2010-2015, 1993). 이 보고는 수크로오스 포스포릴레이즈를 사용하여 카테킨-글루코사이 드를 합성하는 내용으로 본 발명의 글루칸수크라아제를 이용하여 당전이 화합물을 만드는 방법과는 차이가 있다. However, these catechin compounds do not dissolve well in water, and are easily decomposed and oxidized by light or heat to cause browning. Therefore, there are many limitations in using them as food additives, cosmetics, and medicines. On the other hand, biotechnological methods, that is, modified products synthesized by transferring these catechins through the enzymatic reaction, have not only increased light stability, but also have good water-soluble properties. It is reported to have tasteless properties (Satoshi etc.The syntheses of Catechin-glucosides by Transglycosylation with Leuconostoc mesenteroides sucrose phosphorylase, Biosci . Biotech. Biochem ., 57 (12), 2010-2015, 1993). This report is about synthesizing catechin-glucoside using sucrose phosphorylase, which is different from the method for making a sugar-transfer compound using the glucan sucrase of the present invention.

녹차 카테킨류의 국내 특허로는 주로 카테킨 함유 녹차를 이용한 여러 가지 응용 제품 및 제조방법들이 특허기술로 등록되어있다. 이들 특허 기술들은 카테킨을 이용하는데 있어서 단순히 녹차로부터 분리, 정제 및 첨가하는 정도이다. 또한 효소반응을 통한 당전이 카테킨류의 당전이 유도 물질 제조방법에 있어서의 특허기술은 에피갈로카테킨, 에피카테킨 갈레이트를 바실러스 서브틸리스(Bacillus subtilis)균의 효소적 반응을 통하여 기질인 전분과 덱스트린으로부터 당을 전이시켜 합성된 변형산물인 에피갈로카테킨-O-α- D-글루코피라노사이드, 에피갈로카테킨-O-α-D-글루코피라노사이드의 제조방법(당전이물의 제조방법, 공개특허 특2003-0032930)들에 대한 기술이 공개되어 있으나, 본 발명에서는 김치발효균인 류코노스톡 메센테로이드(Leuconostoc mesenteroides)균을 이용하여 값이 싼 설탕을 기질로 하여 녹차 카테킨의 모든 종류들의 물질에 글루코오스를 전이시키는데 성공하였고, 또한 그 기능성을 개선하였다. As a domestic patent for green tea catechins, various application products and manufacturing methods using catechin-containing green tea are registered as patent technologies. These patented technologies simply separate, purify and add green tea from using catechins. In addition, the patented technology for the preparation of sugar-transfer catechin-inducing substance by the enzyme reaction is epigallocatechin, epicatechin gallate to the substrate starch through the enzymatic reaction of Bacillus subtilis bacteria a modified product of the epi go synthesized by the transition from dextrin per catechins - O -α- D- gluconic nose side Llano, catechin -O-α-D- gluconic nose production method (transition manufacture of water per side in the pyrano epi go Method, and the technology for the Patent Publication No. 2003-0032930 have been published, but in the present invention the kimchi fermentation bacteria Leukonostoc mesenteroid ( Leuconostoc Mesenteroides ) has been used to transfer glucose to all kinds of substances of green tea catechins using low-cost sugar as a substrate and also improve its functionality.

적포도주에 많이 함유되어 있는 레스베라트롤(resveratrol) 화합물은 페놀릭화합물 중의 하나로 항산화효과 및 여러 가지 기능성을 가지고 있는 화합물이다. 그러나 이 물질은 타이로시나제 혹은 폴리페놀 옥시다아제 등과 같은 효소에 의해 쉽게 산화되어 그 기능 활성이 감소된다. 여기에 화학적인 방법을 통해 당이 전이되는 글리코실레이션(glycosylation)을 시키면 이들 효소들로부터 산화 방지되는 효과를 나타낸다고 보고 되고 있다(Gilly etc., Glycosylation of resveratrol protects it from enzymic oxidation. Biochem . J. 374, 157-163(2003)). 하지만 본 발명에서와 같이 화학적인 방법 대신 생물학적 방법인 당전이 효소, 특히 글루칸수크라아제를 이용하여 레스베라트롤에 당을 전이하여 그 기능성을 개선시키는 연구에 대한 보고는 없다. Resveratrol compound, which is found in red wine, is one of the phenolic compounds. It is a compound having antioxidant effect and various functionalities. However, this substance is easily oxidized by enzymes such as tyrosinase or polyphenol oxidase, reducing its functional activity. When the glycosyl illustration (glycosylation) that each transition through a chemical method is reported here represents the effect of preventing oxidation from these enzymes (Gilly etc., Glycosylation of resveratrol protects it from enzymic oxidation. Biochem. J. 374, 157-163 (2003). However, as in the present invention, there is no report on improving sugar functionality by transferring sugar to resveratrol using a sugar transfer enzyme, particularly glucan sucrase, which is a biological method instead of a chemical method.

또 다른 예로, 아큐빈(aucubin)은 창상치유 및 항균 효과 (이 등, Iridoid 화합물이 창상 치유에 미치는 영향, 대한구강내과학회지, 24(2), 137-143,1999)와 간세포 및 동물 암세포의 RNA 생합성 억제효과 (Chang etc., Liver protective activities of aucubin derived from traditional oriental medicine. Commun. Mol. Pathol. Pharmacol. 102, 189-204, 1998) 등이 연구된 바 있으나, 당전이 효소를 통해 아큐빈을 합성하는 방법 및 그 산물에 대한 특성을 연구한 보고는 없다. As another example, acubin has the effects of wound healing and antimicrobial effects (such as the effects of Iridoid compounds on wound healing, Journal of the Korean Institute of Oral Medicine, 24 (2), 137-143,1999) and hepatic and animal cancer cells. RNA biosynthesis inhibitory effect (Chang etc., Liver protective activities of aucubin derived from traditional oriental medicine.Commun.Mol.Pathol.Pharmacol. 102, 189-204, 1998) There is no report on the method of synthesizing and the properties of the product.

이와 같이 카테킨, 레스베라트롤 및 아큐빈 등 식품 및 화장품, 의약품 산업 등에 유용하게 사용될 수 있는 화합물들은 물에 대한 용해도가 낮거나, 빛, 열에 의한 분해나 산화가 쉽게 이루어져 변질되기 쉽고 또한 그 제조방법 역시 간단하지 않은 문제점을 갖고 있으며, 이러한 화합물의 기능성을 개선하거나 안정성을 증가시킬 수 있는 방법에 대한 연구가 계속 요구되는 실정이다.As such, compounds that can be usefully used in the food, cosmetics, and pharmaceutical industries, such as catechin, resveratrol, and acubin, are easily deteriorated due to low solubility in water, or easy decomposition or oxidation by light and heat. There is a problem that has not been studied, and there is a continuing need for research on a method for improving the functionality or increasing the stability of such a compound.

본 발명의 목적은 글리칸수크라아제 또는 레반수크라아제를 이용하여 카테킨, 레스베라트롤, 아큐빈, 파라니트로페놀, 파라니트로페닐-O-α-D-글루코피라노사이드, 티로솔, 알파-아카보스, 노다케닌, 페룰릭산(ferulic acid), 퀘르세틴 (quercetin) 및 알코올 등의 당전이 화합물의 유도체를 효소적으로 합성하는 방법을 제공하는 것이다.It is an object of the present invention to use catechins, resveratrol, acubin, paranitrophenol, paranitrophenyl- O- α-D-glucopyranoside, tyrosol, alpha-acarbose, using glycan sucralase or levan sucralase, It provides a method for enzymatically synthesizing derivatives of sugar-transfer compounds such as nodakenin, ferulic acid, quercetin, and alcohols.

본 발명의 다른 목적은 상기 방법으로부터 제조된 당전이 화합물의 유도체를 제공하는 것이다.Another object of the present invention is to provide a derivative of a sugar transfer compound prepared from the above method.

본 발명의 제1 견지에 의하면, 0.1-1M 농도의 설탕이 함유된 용액에 당전이효소를 반응기 최종 활성 농도가 0.1-3.0 U/ml가 되도록 첨가한 다음, 이를 15-50℃의 반응기에서 카테킨, 레스베라트롤(resveratrol), 아큐빈(aucubin), 파라니트로페놀(p-nitrophenol), 파라니트로페닐-O-α-D-글루코피라노사이드 (p-nitrophenyl-O-α-D-glucopyranoside), 티로솔(tyrosol), 알파-아카보스 (α-acarbose), 노다케닌(nodakenin), 페룰릭산(ferulic acid), 퀘르세틴(quercetin) 및 알코올로 구성되는 그룹으로부터 선택되는 적어도 하나의 당 수용체를 최종 활성 농도가 0.01-2중량%가 되도록 첨가하여 반응시킴으로써 설탕의 글루코오스 혹은 프락토실기를 상기 수용체에 전이하여 당전이 화합물의 유도체를 생성하는 단계; 및 상기 당전이 화합물의 유도체를 분리 및 정제하는 단계를 포함하여 이루어진 당전이 화합물의 유도체 제조방법이 제공된다. According to the first aspect of the present invention, a sugar transferase is added to a solution containing 0.1-1 M sugar so that the final active concentration of the reactor is 0.1-3.0 U / ml, and then the catechin in the reactor at 15-50 ° C. , resveratrol (resveratrol), Accu blank (aucubin), para-nitrophenol (p -nitrophenol), p-nitrophenyl - O -α-D- gluconic nose Llano side (p -nitrophenyl- O -α-D- glucopyranoside), tyrosine The final active concentration is at least one sugar receptor selected from the group consisting of sol, tyrosol, alpha-acarbose, nodakenin, ferulic acid, quercetin and alcohol. Adding 0.01-2% by weight to react to transfer glucose or fructosyl groups of sugar to the receptor to form derivatives of sugar transition compounds; And there is provided a method for producing a derivative of the sugar-transfer compound comprising the step of separating and purifying the derivative of the sugar-transfer compound.

본 발명의 제2 견지에 의하면, 상기 방법으로 제조된 상기 기질 화합물들의 당전이 유도 물질들이 제공된다. According to a second aspect of the present invention, there are provided sugar inducing substances of the substrate compounds prepared by the above method.

이하 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 녹차 카테킨류, 레스베라트롤, 아큐빈, 에탄올, 파라니트로페놀, 파라니트로페닐-O-α-D-글루코피라노사이드, 티로솔, 알파-아카보스, 메탄올, 1-프로판올, 부탄올, 이소프로판올, 3-메틸-1-부탄올, 노다케닌, 퀘르세틴을 수용체로하고 글루칸수크라아제를 이용하여 설탕의 글루코오스를 상기 수용체에 전이함으로써 기질로 사용한 화합물들의 당전이 유도 물질을 합성하는 방법을 발견하였으며, 특히 알파-아카보스, 페룰릭산의 경우의 경우에는 레반수크라아제를 이용하여 프락토오스가 전이된 화합물 (베타-디-프락토퓨라노실-(2→4)-알파-아카보스)을 만들고 이를 수용체로 이용하여 글루코오스가 전이된 당전이 화합물을 합성하고자 하였고, 메탄올, 에탄올, 1-프로판올, 부탄올, 및 3-메틸-1-부탄올 등의 알코올류의 경우에도 레반수크라아제를 이용하여 프락토오스가 전이된 여러 가지 당전이 화합물들을 합성하였다. 이러한 당전이 산물들의 일반적인 기능적 특징으로는 그 물질 본래의 기능적 특징을 유지하면서 물에 대한 용해도가 증가되고, 열이나 빛에 비교적 안정되어 식품첨가물, 화장품 및 의약품소재로의 이용가능성이 높아질 것으로 기대된다.The present inventors have found green tea catechins, resveratrol, acubin, ethanol, paranitrophenol, paranitrophenyl- O- α-D-glucopyranoside, tyrosol, alpha-acarbose, methanol, 1-propanol, butanol, isopropanol, A method of synthesizing a sugar-transducing substance of compounds used as a substrate by transferring sugar of glucose to the receptor using 3-methyl-1-butanol, nodakenin, and quercetin as receptors, in particular, has been found. In the case of alpha-acarbose and ferulic acid, levansucrase is used to make a compound (beta-di-fructofuranosyl- (2 → 4 IV ) -alpha-acarbose) to which fructose is transferred. Glucose-transferred sugar-transfer compounds were synthesized, and in the case of alcohols such as methanol, ethanol, 1-propanol, butanol, and 3-methyl-1-butanol, Using the La kinase was synthesized a number of compounds of this dangjeon fructose transition. The general functional characteristics of these products are expected to increase their solubility in water while maintaining their original functional characteristics and relatively stable to heat or light, increasing their applicability to food additives, cosmetics and pharmaceutical materials. .

글루칸수크라아제는 효소 반응액 중에 설탕외의 다른 화합물이 첨가될 경우 설탕의 글루코오스 단위를 첨가한 화합물에 전달하여 글리코실된 화합물을 합성하 는 효소이다. 이때 첨가된 설탕외의 화합물을 수용체라 하며 이 반응을 수용체 반응이라고 한다. 효소의 종류에 따라서 전이되는 글루코오스의 수용체와의 결합 구조와 수용체인 화합물과의 반응 효능이 다르며, 효소와 수용체와의 농도 비에 따라서도 생합성되는 수용체 산물의 종류가 다르다. Glucan sucrase is an enzyme that synthesizes glycosylated compounds by transferring them to the compound to which glucose units of sugar are added when a compound other than sugar is added to the enzyme reaction solution. The compound other than sugar added at this time is called a receptor and this reaction is called a receptor reaction. Depending on the type of enzyme, the binding structure of the transferred glucose to the receptor and the reaction efficiency of the compound as a receptor are different, and the type of receptor product to be biosynthesized also depends on the concentration ratio between the enzyme and the receptor.

본 발명에서는 특정 미생물 균주로부터 생성된 글루칸수크라아제를 이용하여 효소적인 방법으로 카테킨, 레스베라트롤, 아큐빈, 파라니트로페놀, 파라니트로페닐-O-α-D-글루코피라노사이드, 티로솔, 알파-아카보스, 노다케닌, 페룰릭산, 퀘르세틴 및 알코올 등의 당전이 화합물을 생합성하였다. 특히 알파-아카보스의 경우에는 레반수크라아제를 이용하여 프락토오스가 전이된 화합물 (베타-디-프락토퓨라노실-(2→4)-알파-아카보스)을 만들고 이를 수용체로 이용하여 글루코오스가 전이된 당전이 화합물을 합성하였고, 메탄올, 에탄올, 1-프로판올, 부탄올, 및 3-메틸-1-부탄올 등의 알코올류와 페롤릭산도 레반수크라아제를 이용하여 프락토오스가 전이된 여러 가지 당전이 화합물들을 합성하였다. In the present invention, the catechin, resveratrol, acubin, paranitrophenol, paranitrophenyl- O- α-D-glucopyranoside, tyrosol, alpha by enzymatic method using glucan sucrase produced from a specific microorganism strain -Sugar synthesis compounds such as acarbose, nodakenin, ferulic acid, quercetin and alcohols were biosynthesized. Particularly, in the case of alpha-acarbose, a compound having a fructose-transferred compound (beta-di-fructofuranosyl- (2 → 4 IV ) -alpha-acarbose) was prepared using levansukraase and used as a receptor to produce glucose. The sugar-transfer compound was synthesized, and alcohols such as methanol, ethanol, 1-propanol, butanol, and 3-methyl-1-butanol and ferrolic acid were also variously converted to fructose using levansukraase. Sugar transfer compounds were synthesized.

본 발명에 사용되는 글루칸수크라아제는 류코노스톡 메센테로이드(Leuconostoc mesenteroides)종 균주로부터 얻어질 수 있다. 상기 미생물로부터 글루칸수크라아제의 분리는 예를들어, 류코노스톡 메센테로이드 종 균주를 효모추출물, 펩톤, K2HPO4 및 수크로오스를 함유하는 배지에 접종하여 배양한 후, 배양액에서 균체만을 분리하고 이로부터 글루칸수크라아제를 정제하여 이루어진다. 상기 글 루칸수크라아제의 분리 및 정제는 이 기술분야에 알려진 일반적인 방법에 의해 행해질 수 있다. Glucan sucrase used in the present invention may be obtained from a strain of Leuconostoc mesenteroides . Separation of the glucan sucrase from the microorganism is, for example, inoculated with a strain containing a leukonostock mesenteroid species strain in a medium containing yeast extract, peptone, K 2 HPO 4 and sucrose, and then isolates only the cells from the culture medium. This is achieved by purifying glucan sucrase. Isolation and purification of the glucan sukrase can be done by common methods known in the art.

글루칸수크라아제를 얻기에 바람직한 류코노스톡 메센테로이드 종 균주로는 류코노스톡 메센테로이드(Leuconostoc mesenteroides) NRRL B-1299, NRRL B-742, NRRL B-1355, NRRL B-512, NRRL B-1149, NRRL B-1142 또는 이들의 돌연변이주를 포함한다. 특히 류코노스톡 메센테로이드(Leuconostoc mesenteroides) NRRL B-1299가 가장 바람직하다.Preferred leuconosstock mesenteroid species strains for obtaining glucan sukrase include Leuconostoc mesenteroides NRRL B-1299, NRRL B-742, NRRL B-1355, NRRL B-512, NRRL B-1149 , NRRL B-1142 or mutants thereof. Especially Leuconostoc mesenteroides ) NRRL B-1299 is most preferred.

본 발명에 사용되는 레반수크라아제는 류코노스톡 메센테로이드(Leuconostoc mesenteroides)종 균주로부터 얻어질 수 있다. 상기 미생물로부터 레반수크라아제의 분리는 예를 들어, 류코노스톡 메센테로이드 종 균주를 효모추출물, 펩톤, K2HPO4 및 수크로오스를 함유하는 배지에 접종하여 배양한 후, 배양액에서 균체만을 분리하고 이로부터 레반수크라아제를 정제하여 이루어진다. 상기 글루칸수크라아제의 분리 및 정제는 이 기술분야에 알려진 일반적인 방법에 의해 행해질 수 있다. Levansukraase used in the present invention can be obtained from Leuconostoc mesenteroides species strain. Separation of Levansukraase from the microorganism is, for example, inoculated with a strain containing a leukonostock mesenteroid species strain in a medium containing yeast extract, peptone, K 2 HPO 4 and sucrose, and then isolates only the cells from the culture medium and This is achieved by purifying Levansukraase. Isolation and purification of the glucans sucrase can be done by general methods known in the art.

레반수크라아제를 얻기에 바람직한 류코노스톡 메센테로이드 종 균주로는 류코노스톡 메센테로이드(Leuconostoc mesenteroides) NRRL B-512(ATCC 10830), NRRL B-1299, NRRL B-742, NRRL B-1355, NRRL B-1149, NRRL B-1142 또는 이들의 돌연변이주를 포함한다. 특히 류코노스톡 메센테로이드(Leuconostoc mesenteroides) NRRL B-512(ATCC 10830)이 가장 바람직하다.Preferred Leuconostok mesenteroid species strains for obtaining Levansukraase include Leuconostoc mesenteroides NRRL B-512 (ATCC 10830), NRRL B-1299, NRRL B-742, NRRL B-1355, NRRL B-1149, NRRL B-1142, or mutants thereof. Especially Leuconostoc mesenteroides ) NRRL B-512 (ATCC 10830) is most preferred.

상기 글루칸수크라아제를 0.1-1M 농도의 설탕이 함유된 용액에 첨가하고, 이를 카테킨, 레스베라트롤, 아큐빈, 파라니트로페놀, 파라니트로페닐-O-α-D-글루코피라노사이드, 티로솔, 알파-아카보스, 노다케닌 및 알코올 등의 당 수용체와 반응시키면 설탕이 분해되어 설탕의 글루코오스가 각각 상기 당 수용체에 전이되어 각종 당전이 화합물의 유도체가 합성된다. 이때 상기 글루칸수크라아제는 반응기 최종 활성 농도가 0.1-3.0 U/ml이 되도록하며, 특히 0.5-1.0 U/ml이 되도록 첨가하는 것이 가장 바람직하며, 상기 당 수용체는 각각 반응기 최종 활성 농도가 0.03-3중량%가 되도록 첨가하는 것이 바람직하다. 또한 이때 상기 반응은 일반적으로 설탕이 모두 분해 될 때까지, 바람직하게는 15-50℃에서, 보다 바람직하게는 28-37℃에서 1-18시간동안 행한다.The glucan sucrase was added to a solution containing 0.1-1 M of sugar, which was catechin, resveratrol, acubin, paranitrophenol, paranitrophenyl- O- α-D-glucopyranoside, tyrosol, Reaction with sugar receptors, such as alpha-acarbose, nodakenin, and alcohol, breaks down the sugar and transfers sugar glucose to the sugar receptor, thereby synthesizing derivatives of various sugar transfer compounds. In this case, the glucan sucrase is added so that the reactor final activity concentration is 0.1-3.0 U / ml, and in particular 0.5-1.0 U / ml, and the sugar acceptor has a reactor final activity concentration of 0.03- It is preferable to add so that it may become 3 weight%. In this case, the reaction is generally performed for 1-18 hours at all sugars, preferably at 15-50 ° C, more preferably at 28-37 ° C, until all the sugars are decomposed.

생성된 당전이 화합물의 유도체는 통상적인 방법에 의해 분리 및 정제될 수 있다. 예를들어, 겔투과컬럼크로마토그라피(Gel Permeation Chromatography)인 바이오겔 P-2 컬럼 크로마토그라피나 세파덱스 LH-20 컬럼 크로마토그라피로 1차 정제한 다음, HPLC (High performance Liquid Chromatography)를 이용하여 각 유도체들을 단리하였다. 사용된 컬럼은 μ-Bondapak C18 컬럼이나 Hypersil APS-2 NH2 컬럼 등을 이용하였다.Derivatives of the resulting sugar transfer compounds can be isolated and purified by conventional methods. For example, the gel may be first purified by gel permeation chromatography (Gel Permeation Chromatography), Biogel P-2 column chromatography or Sephadex LH-20 column chromatography, and then purified using HPLC (High performance Liquid Chromatography). Derivatives were isolated. The column used was a μ-Bondapak C 18 column or a Hypersil APS-2 NH 2 column.

당 수용체로서 카테킨이 반응에 이용되는 경우, 하기 화학식 1 내지 5 및 6- 1 내지 6-6으로 구성되는 그룹으로부터 선택되는 적어도 하나의 카테킨 유도체가 생성된다.When catechin as the sugar receptor is used in the reaction, at least one catechin derivative is selected from the group consisting of the following formulas 1 to 5 and 6-1 to 6-6.

[화학식 1][Formula 1]

Figure 112005070626099-pat00001
Figure 112005070626099-pat00001

카테킨-알파-디-이소말토올리고당Catechin-alpha-di-isomaltooligosaccharide

(Catechin-O-α-D-isomaltooligosaccharide)(Catechin- O- α-D-isomaltooligosaccharide)

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 2][Formula 2]

Figure 112005070626099-pat00002
Figure 112005070626099-pat00002

에피카테킨-알파-디-이소말토올리고당Epicatechin-alpha-di-isomaltooligosaccharide

(Epicatechin-O-α-D-isomaltooligosaccharide)(Epicatechin- O- α-D-isomaltooligosaccharides)

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 3][Formula 3]

Figure 112005070626099-pat00003
Figure 112005070626099-pat00003

에피갈로카테킨-알파-디-이소말토올리고당Epigallocatechin-alpha-di-isomaltooligosaccharide

(Epigallocatechin-O-α-D-isomaltooligosaccharide)Epigallocatechin-O-α-D-isomaltooligosaccharides

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 4][Formula 4]

Figure 112005070626099-pat00004
Figure 112005070626099-pat00004

에피카테킨갈레이트-알파-디-이소말토올리고당Epicatechin Gallate-alpha-di-isomaltooligosaccharide

(Epicatechingallate-O-α-D-isomaltooligosaccharide)(Epicatechingallate-O-α-D-isomaltooligosaccharide)

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 5][Formula 5]

Figure 112005070626099-pat00005
Figure 112005070626099-pat00005

카테킨갈레이트-알파-디-이소말토올리고당Catechingallate-alpha-di-isomaltooligosaccharide

(Catechingallate-O-α-D-isomaltooligosaccharide)(Catechingallate-O-α-D-isomaltooligosaccharide)

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 6-1][Formula 6-1]

Figure 112005070626099-pat00006
Figure 112005070626099-pat00006

에피갈로카테킨갈레이트-7-알파-디-글루코피라노사이드Epigallocatechingallate-7-alpha-di-glucopyranoside

(Epigallocatechingallate-7-O-α-D-glucopyranoside)(Epigallocatechingallate-7-O-α-D-glucopyranoside)

[화학식 6-2][Formula 6-2]

Figure 112005070626099-pat00007
Figure 112005070626099-pat00007

에피갈로카테킨갈레이트-7,4"-알파-디-글루코피라노사이드Epigallocatechingallate-7,4 "-alpha-di-glucopyranoside

(Epigallocatechingallate-7.4"-O-α-D-glucopyranoside)(Epigallocatechingallate-7.4 "-O-α-D-glucopyranoside)

[화학식 6-3][Formula 6-3]

Figure 112005070626099-pat00008
Figure 112005070626099-pat00008

에피갈로카테킨갈레이트-7,4'-알파-디-글루코피라노사이드Epigallocatechingallate-7,4'-alpha-di-glucopyranoside

(Epigallocatechingallate-7,4'-O-α-D-glucopyranoside)(Epigallocatechingallate-7,4'-O-α-D-glucopyranoside)

[화학식 6-4][Formula 6-4]

Figure 112005070626099-pat00009
Figure 112005070626099-pat00009

에피갈로카테킨갈레이트-4"-알파-디-글루코피라노사이드Epigallocatechingallate-4 "-alpha-di-glucopyranoside

(Epigallocatechingallate-4"-O-α-D-glucopyranoside)(Epigallocatechingallate-4 "-O-α-D-glucopyranoside)

[화학식 6-5][Formula 6-5]

Figure 112005070626099-pat00010
Figure 112005070626099-pat00010

에피갈로카테킨갈레이트-4'-알파-디-글루코피라노사이드Epigallocatechin gallate-4'-alpha-di-glucopyranoside

(Epigallocatechingallate-4'-O-α-D-glucopyranoside)(Epigallocatechingallate-4'- O- α-D-glucopyranoside)

[화학식 6-6][Formula 6-6]

Figure 112005070626099-pat00011
Figure 112005070626099-pat00011

에피갈로카테킨갈레이트-4',4"-알파-디-글루코피라노사이드Epigallocatechingallate-4 ', 4 "-alpha-di-glucopyranoside

(Epigallocatechingallate-4',4"-O-α-D-glucopyranoside)(Epigallocatechingallate-4 ', 4 " -O- α-D-glucopyranoside)

즉, 카테킨이 반응에 이용되는 경우에, 당전이 화합물로서 카테킨에 여러개의 글루코오스가 결합한 형태인 카테킨-O-α-D-이소말토올리고당(화학식 1)이 생성되고, 에피카테킨이 반응에 이용되는 경우에는 에피카테킨-O-α-D-이소말토올리고당(화학식 2)이 생성되고, 에피갈로카테킨의 경우에는 에피갈로카테킨-O-α-D-이소말토올리고당(화학식 3)이 생성된다. 또한, 에피카테킨 갈레이트의 경우에는 에피카테킨 갈레이트-O-α-D-이소말토올리고당(화학식 4)이 생성되고, 카테킨 갈레이트의 경우에는 카테킨 갈레이트-O-α-D-이소말토올리고당(화학식 5)이 생성되고, 그리고 에피갈로카테킨 갈레이트의 경우에는 화학식 6-1 내지 6-6의 에피갈로카테킨 갈레이트-O-α-D-이소말토올리고당이 생성된다. 이때 당전이 효소는 글루칸수크라아제를 사용하는 것이 바람직하다.That is, when catechin is used for the reaction, catechin- O- α-D-isomaltooligosaccharide (Formula 1), which is a form in which several glucose is bound to catechin as a sugar transfer compound, is produced, and epicatechin is used for the reaction. Epicatechin- O- α-D-isomaltooligosaccharide (Formula 2) is produced, and in the case of epigallocatechin, epigallocatechin- O- α-D-isomalto oligosaccharide (Formula 3) is produced. In the case of epicatechin gallate is epicatechin gallate - O -α-D- iso-malto-oligosaccharides (IV) is generated, for catechin gallate catechins include gallate - O -α-D- iso-malto-oligosaccharides (Formula 5) is produced, and in the case of epigallocatechin gallate, epigallocatechin gallate- O- α-D-isomalto oligosaccharides of formulas 6-1 to 6-6 are produced. In this case, it is preferable to use glucan sucrase as a sugar transfer enzyme.

당 수용체로서 레스베라트롤이 반응에 이용되는 경우에, 당전이 화합물로서 하기 화학식 7의 레스베라트롤 유도체가 생성된다. 이때 당전이 효소는 글루칸수크라아제를 사용하는 것이 바람직하다.When resveratrol is used for the reaction as a sugar receptor, a resveratrol derivative of the following formula (7) is produced as a sugar transition compound. In this case, it is preferable to use glucan sucrase as a sugar transfer enzyme.

[화학식 7][Formula 7]

Figure 112005070626099-pat00012
Figure 112005070626099-pat00012

레스베라트롤-알파-디-이소말토올리고당Resveratrol-alpha-di-isomaltooligosaccharide

(Resveratrol-O-α-D-isomaltooligosaccharide)(Resveratrol- O- α-D-isomaltooligosaccharides)

(상기 식에서, n은 0-5)(Wherein n is 0-5)

당 수용체로서 아큐빈이 반응에 이용되는 경우에는 하기 화학식 8의 아큐빈 유도체가 생성된다. 이때 당전이 효소는 글루칸수크라아제를 사용하는 것이 바람직하다.When acubin is used as a sugar acceptor for the reaction, an acubin derivative represented by the following formula (8) is produced. In this case, it is preferable to use glucan sucrase as a sugar transfer enzyme.

[화학식 8][Formula 8]

Figure 112005070626099-pat00013
Figure 112005070626099-pat00013

(상기 식에서, n은 0-5)(Wherein n is 0-5)

당 수용체로서 파라니트로페놀 또는 파라니트로페닐-O-α-D-글루코피라노사이드가 반응에 이용되는 경우에는 하기 화학식 9의 파라니트로페놀 유도체가 생성된다. 이때 당전이 효소는 글루칸수크라아제를 사용하는 것이 바람직하다.When paranitrophenol or paranitrophenyl- O- α-D-glucopyranoside is used for the reaction as the sugar acceptor, a paranitrophenol derivative of the following formula (9) is produced. In this case, it is preferable to use glucan sucrase as a sugar transfer enzyme.

[화학식 9][Formula 9]

Figure 112005070626099-pat00014
Figure 112005070626099-pat00014

파라니토로페닐-알파-디-이소말토올리고당Paranitophenyl-alpha-di-isomaltooligosaccharide

(p-Nitrophenyl-O-α-D-isomaltooligosaccharide)( p -Nitrophenyl- O -α-D-isomaltooligosaccharide)

(상기 식에서, n은 0-5)(Wherein n is 0-5)

당 수용체로서 티로솔이 반응에 이용되는 경우에는 하기 화학식 10의 티로솔 유도체가 생성된다. 이때 당전이 효소는 글루칸수크라아제를 사용하는 것이 바람직하다.When tyrosol is used in the reaction as the sugar acceptor, a tyrosol derivative represented by the following Chemical Formula 10 is produced. In this case, it is preferable to use glucan sucrase as a sugar transfer enzyme.

[화학식 10][Formula 10]

Figure 112005070626099-pat00015
Figure 112005070626099-pat00015

티로솔-알파-디-이소말토올리고당Tyrosol-alpha-di-isomaltooligosaccharide

(Tyrosol-O-α-D-isomaltooligosaccharide)(Tyrosol- O- α-D-isomaltooligosaccharide)

(상기 식에서, n은 0-5)(Wherein n is 0-5)

당 수용체로서 아카보스가 반응에 이용되는 경우에는 하기 화학식 11의 알파-아카보스 유도체가 생성되고, 또한 이 유도체가 상기 반응에 이용되는 경우에는 하기 화학식 12의 알파-아카보스 유도체가 생성된다. 이때 당전이효소는 레반수크 라아제가 사용되는 것이 바람직하다.When acarbose is used as the sugar acceptor in the reaction, an alpha-acarbose derivative of the formula (11) is produced, and when this derivative is used in the reaction, an alpha-acarbose derivative of the formula (12) is produced. At this time, the sugar transferase is preferably Levansukraase.

[화학식 11][Formula 11]

Figure 112005070626099-pat00016
Figure 112005070626099-pat00016

[화학식 12][Formula 12]

Figure 112005070626099-pat00017
Figure 112005070626099-pat00017

당 수용체로서 노다케닌이 반응에 이용되는 경우에는 하기 화학식 13의 노다 케닌 유도체가 생성된다. 이때 당전이 효소는 글루칸수크라아제가 사용되는 것이 바람직하다.When nodakenin is used for the reaction as a sugar receptor, a nodakenin derivative represented by the following formula (13) is produced. In this case, it is preferable that glucan sucrase is used as the sugar transfer enzyme.

[화학식 13][Formula 13]

Figure 112005070626099-pat00018
Figure 112005070626099-pat00018

(상기 식에서, n은 0-5)(Wherein n is 0-5)

또한, 당 수용체로서 알코올이 반응에 이용되는 경우, 하기 화학식 14 내지 24로 구성되는 그룹으로부터 선택되는 적어도 하나의 알코올 유도체가 생성된다. In addition, when alcohol is used for the reaction as a sugar acceptor, at least one alcohol derivative selected from the group consisting of the following Chemical Formulas 14 to 24 is produced.

[화학식 14][Formula 14]

Figure 112005070626099-pat00019
Figure 112005070626099-pat00019

에틸-알파-디-이소말토올리고당Ethyl-alpha-di-isomaltooligosaccharide

(Ethyl-O-α-D-isomaltooligosaccharide)(Ethyl- O- α-D-isomaltooligosaccharide)

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 15][Formula 15]

Figure 112005070626099-pat00020
Figure 112005070626099-pat00020

메틸-알파-디-이소말토올리고당Methyl-alpha-di-isomaltooligosaccharide

(Methyl-O-α-D-isomaltooligosaccharide)(Methyl- O -α-D-isomaltooligosaccharide)

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 16][Formula 16]

Figure 112005070626099-pat00021
Figure 112005070626099-pat00021

1-프로필-알파-디-이소말토올리고올리고당1-propyl-alpha-di-isomaltooligosaccharide

(1-Propyl-O-α-D-isomaltooligosaccharide)(1-Propyl- O- α-D-isomaltooligosaccharide)

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 17][Formula 17]

Figure 112005070626099-pat00022
Figure 112005070626099-pat00022

1-부틸-알파-디-이소말토올리고올리고당1-butyl-alpha-di-isomaltooligosaccharide

(1-Butyl-O-α-D-isomaltooligosaccharide)(1-Butyl- O- α-D-isomaltooligosaccharide)

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 18][Formula 18]

Figure 112005070626099-pat00023
Figure 112005070626099-pat00023

이소프로필-알파-디-이소말토올리고당Isopropyl-alpha-di-isomaltooligosaccharide

(2-Propyl-O-α-D-isomaltooligosaccharide)(2-Propyl- O- α-D-isomaltooligosaccharide)

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 19][Formula 19]

Figure 112005070626099-pat00024
Figure 112005070626099-pat00024

3-메틸-1-부틸-알파-디-이소말토올리고당3-methyl-1-butyl-alpha-di-isomaltooligosaccharide

(3-Methyl-1-butyl-O-α-D-isomaltooligosaccharide)(3-Methyl-1-butyl- O -α-D-isomaltooligosaccharide)

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 20][Formula 20]

Figure 112005070626099-pat00025
Figure 112005070626099-pat00025

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 21][Formula 21]

Figure 112005070626099-pat00026
Figure 112005070626099-pat00026

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 22][Formula 22]

Figure 112005070626099-pat00027
Figure 112005070626099-pat00027

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 23][Formula 23]

Figure 112005070626099-pat00028
Figure 112005070626099-pat00028

(상기 식에서, n은 0-5)(Wherein n is 0-5)

[화학식 24][Formula 24]

Figure 112005070626099-pat00029
Figure 112005070626099-pat00029

(상기 식에서, n은 0-5)(Wherein n is 0-5)

또한, 당 수용체로서 퀘르세틴이 반응에 이용되는 경우, 하기 화학식 25-1 및 25-2로 구성되는 그룹으로부터 선택되는 적어도 하나의 퀘르세틴 유도체가 생성된다.In addition, when quercetin is used in the reaction as a sugar acceptor, at least one quercetin derivative selected from the group consisting of the following formulas 25-1 and 25-2 is produced.

[화학식 25-1][Formula 25-1]

Figure 112005070626099-pat00030
Figure 112005070626099-pat00030

퀘르세틴-4'-알파-디-글루코피라노사이드Quercetin-4'-alpha-di-glucopyranoside

(Quercetin-4'-O-α-D-glucopyranoside)(Quercetin-4'- O -α-D-glucopyranoside)

[화학식 25-2][Formula 25-2]

Figure 112005070626099-pat00031
Figure 112005070626099-pat00031

퀘르세틴-3'-알파-디-글루코피라노사이드Quercetin-3'-alpha-di-glucopyranoside

(Quercetin-3'-O-α-D-glucopyranoside)(Quercetin-3'- O -α-D-glucopyranoside)

또한, 당 수용체로서 페눌릭산이 반응에 이용되는 경우, 하기 화학식 26의 페눌릭산 유도체가 생성된다.In addition, when phenolic acid is used in the reaction as a sugar acceptor, a phenolic acid derivative represented by the following Chemical Formula 26 is produced.

[화학식 26][Formula 26]

Figure 112005070626099-pat00032
Figure 112005070626099-pat00032

페눌릭-베타-디-프락토올리고당Penulic-Beta-D-Fructooligosaccharides

(Ferulic-β-D-fructooligosaccharide)(Ferulic-β-D-fructooligosaccharide)

(상기 식에서, n은 0-5)(Wherein n is 0-5)

알코올로서 예를들어, 에탄올이 반응에 이용되는 경우에는 에틸-O-α-D-이소말토올리고당(화학식 14)(당 전이 효소로서 글루칸수크라아제를 이용하는 경우) 또는 에틸-O-β-D-프락토올리고당(화학식 20)(당전이 효소로서 레반수크라아제를 이용하는 경우)이 생성된다. 메탄올이 반응에 이용되는 경우에는 메틸-O-α-D-이소말토올리고당(화학식 15)(당 전이 효소로서 글루칸수크라아제를 이용하는 경우) 또는 메틸-O-β-D-프락토올리고당(화학식 21)(당전이 효소로서 레반수크라아제를 이용하는 경우)이 생성된다. 또한, 1-프로판올이 반응에 이용되는 경우에는 1-프로필-O-α-D-이소말토올리고당(화학식 16)(당 전이 효소로서 글루칸수크라아제를 이용하는 경우) 또는 1-프로필-O-β-D-프락토올리고당(화학식 22)(당전이 효소로서 레반수크라아제를 이용하는 경우)이 생성된다. 또한, 1-부탄올이 반응에 이용되는 경우에는 1-부틸-O-α-D-이소말토올리고당(화학식 17)(당 전이 효소로서 글루칸수크라아제를 이용하는 경우) 또는 1-부틸-O-β-D-프락토올리고당(화학식 23)(당전이 효소로서 레반수크라아제를 이용하는 경우)이 생성된다. 이소프로판올이 반응에 이용되는 경우에는 이소프로필-O-α-D-이소말토올리고당(화학식 18)(당 전이 효소로서 글루칸수크라아제를 이용하는 경우)이 생성된다. 또한, 3-메틸-1-부탄올이 반응에 이용되는 경우에는 3-메틸-1-부틸-O-α-D-이소말토올리고당(화학식 19)(당 전이 효소로서 글루칸수크라아제를 이용하는 경우) 또는 3-메틸-1-부틸-O-β-D-프락토올리고당(화학식 24)(당전이 효소로서 레반수크라아제를 이용하는 경우)이 생성된다. 또한, 퀘르세틴이 반응에 이용되는 경우에는 퀘르세틴-4'-알파-디-글루코피라노사이드(화학식 25-1)와 퀘르세틴-3'-알파-디-글루코피라노사이드(화학식 25-2, 당 전이 효소로서 글루칸수크라아제를 이용하는 경우)가 생성된다. 또한, 페룰릭산이 반응에 이용되는 경우에는 페룰릭-베타-디-프락토올리고당(화학식 26)(당전이 효소로서 레반수크라아제를 이용하는 경우)이 생성된다.As alcohol, for example, when ethanol is used in the reaction, ethyl- O- α-D-isomaltooligosaccharide (Formula 14) (using glucan sucrase as the sugar transferase) or ethyl-O-β-D -Fructooligosaccharide (Formula 20) (when using levansukraase as a sugar transfer enzyme) is produced. When methanol is used in the reaction, methyl- O- α-D-isomaltooligosaccharide (Formula 15) (when using glucan sucrase as the sugar transferase) or methyl- O- β-D-fractoligosaccharide (Formula 15) 21) (when using levansukraase as a sugar transfer enzyme) is produced. In addition, when 1-propanol is used for the reaction, 1-propyl- O- α-D-isomaltooligosaccharide (Formula 16) (when using glucan sucrase as a sugar transferase) or 1-propyl- O- β -D-Fructooligosaccharide (Formula 22) (when using Levansukraase as a sugar transfer enzyme) is produced. In addition, when 1-butanol is used for the reaction, 1-butyl- O- α-D-isomaltooligosaccharide (Formula 17) (when using glucan sucrase as the sugar transferase) or 1-butyl- O- β -D-Fructooligosaccharide (Formula 23) (when using Levansukraase as a sugar transfer enzyme) is produced. When isopropanol is used for the reaction, isopropyl- O- α-D-isomaltooligosaccharide (Formula 18) (when using glucan sucrase as the sugar transfer enzyme) is produced. When 3-methyl-1-butanol is used for the reaction, 3-methyl-1-butyl- O- α-D-isomaltooligosaccharide (Formula 19) (when glucan sucrase is used as a sugar transferase) Or 3-methyl-1-butyl- O- β-D-fractoligosaccharide (Formula 24) (when using levansukraase as a sugar transfer enzyme). In addition, when quercetin is used in the reaction, quercetin-4'-alpha-di-glucopyranoside (Formula 25-1) and quercetin-3'-alpha-di-glucopyranoside (Formula 25-2, sugar Glucan sucrase as a transfer enzyme). In addition, when ferulic acid is used for the reaction, ferulic-beta-di-fructooligosaccharide (Formula 26) is produced (when using levan sucrase as a sugar transfer enzyme).

특히, 이와 같이 제조된 당전이 화합물의 유도체중 화학식 1 내지 5에서 n은 1-5인 경우, 화학식 6-1, 6-2, 6-4의 유도체, 화학식 7에서 n은 0-5인 경우, 화학식 8에서 n은 2-5인 경우, 화학식 9에서 n은 2-5인 경우, 화학식 10에서 n은 1-5인 경우, 화학식 11 및 12에서 n은 0-5인 경우, 화학식 13에서 n은 2-5인 경우, 화학식 14에서 n은 3-5인 경우, 화학식 16에서 n은 3-5인 경우, 화학식 18에서 n은 2-5인 경우, 화학식 19에서 n은 2-5인 경우, 화학식 20에서 n은 2-5인 경우, 화학식 21에서 n은 2-5인 경우, 화학식 22에서 n은 2-5인 경우, 화학식 23에서 n은 2-5인 경우, 화학식 24에서 n은 1-5인 경우에 그 유도체들 그리고 화학식 25-1, 25-2 및 26의 유도체는 모두 신규물질인 것으로 여겨진다.In particular, when n is 1-5 in the derivatives of the sugar-transfer compounds thus prepared, derivatives of the formulas 6-1, 6-2, 6-4, and n in the formula 7 is 0-5 When n is 2-5 in formula 8, n is 2-5 in formula 9, n is 1-5 in formula 10, n is 0-5 in formula 11 and 12, in formula 13 n is 2-5, n is 3-5 in Formula 14, n is 3-5 in Formula 16, n is 2-5 in Formula 18, n is 2-5 in Formula 19 When n is 2-5 in formula 20, n is 2-5 in formula 21, n is 2-5 in formula 22, n is 2-5 in formula 23, n in formula 24 When silver is 1-5, the derivatives and the derivatives of formulas 25-1, 25-2 and 26 are all considered to be novel.

이러한 당전이 화합물의 유도체는 물에 대한 용해도가 증가되거나 빛, 열에 의한 분해나 산화를 방지하는 효과를 가지고 있어 식품, 화장품 및 의약품 등에 유용하게 사용될 수 있을 것으로 여겨진다. 예를 들어, 카테킨의 경우 종래의 카테킨류는 물에 잘 녹지 않고, 빛이나 열에 의해 쉽게 분해 및 산화되어 갈변현상을 일으키는데 비해 본 발명의 카테킨 유도체는 보다 높은 용해도를 가지며, 빛이나 열에 대해 보다 높은 안정성을 가져 식품첨가물이나 화장품 및 의약품의 용도로 사용하기 적합하다. 본 발명의 당전이 화합물의 유도체는 식품, 화장품 및 의약품 등에 사용시 그 함량을 한정하는 것은 아니나 총 중량을 기준으로 0.001-10중량%가 바람직하다.Derivatives of such sugar-transfer compounds are believed to be useful for food, cosmetics and medicines because they have an effect of increasing solubility in water or preventing decomposition or oxidation by light and heat. For example, in the case of catechins, conventional catechins do not dissolve well in water and are easily decomposed and oxidized by light or heat to cause browning, whereas the catechin derivatives of the present invention have higher solubility and higher resistance to light or heat. It has stability and is suitable for use in food additives, cosmetics and pharmaceuticals. The derivative of the sugar transfer compound of the present invention is not limited to its content when used in food, cosmetics and pharmaceuticals, but is preferably 0.001-10% by weight based on the total weight.

이하에서 본 발명을 실시예를 통하여 더욱 상세히 설명하나 본 발명이 이들 예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

실시예 1(효소액의 제조)Example 1 (Preparation of Enzyme Solution)

L. mesenteroides NRRL B-1299 를 1L의 물에 효모추출물 5g, 펩톤 5g, K2HPO4 20g과 수크로오스 20g 함유하는 LB 배지에 접종하여 28℃에서 배양한 후, 배 양액에서 균체만을 분리하여 조효소액을 준비하고 이 효소액으로부터 글루칸수크라아제를 정제하여 사용하였다. 효소의 정제는 DEAE-Sepharose(2.5×35cm)를 20mM 소디움 포스페이트 완충용액(pH6.8)으로 미리 평형화한 후 조효소액을 적용하고 컬럼의 3배에 해당하는 완충용액으로 결합하지 않은 단백질을 제거하고, 동일한 완충용액으로 준비한 NaCl(0-1M) 용액으로 흡착된 효소를 분리하였다. 활성이 있는 단백질 부분을 모아서 동일한 완충용액으로 투석한 후 다시 컬럼에 적용하는 과정을 세 번 반복하여 글루칸수크라아제 활성을 갖는 부분을 분리, 정제하였다. L. mesenteroides NRRL B-1299 was inoculated in LB medium containing 5 g of yeast extract, 5 g of peptone, 5 g of K 2 HPO 4 and 20 g of sucrose in 1 L of water and incubated at 28 ° C. Was prepared and the glucan sucrase was purified from this enzyme solution. Purification of enzyme was performed after equilibrating DEAE-Sepharose (2.5 × 35cm) with 20mM sodium phosphate buffer (pH6.8), applying crude enzyme solution, and removing unbound protein with 3 times the buffer of column. , The adsorbed enzyme was separated by NaCl (0-1M) solution prepared in the same buffer solution. The active protein fractions were collected, dialyzed with the same buffer solution, and then applied to the column three times to separate and purify the glucan sucrose activity.

L. mesenteroides NRRL B-512를 LWG 액체 배지(0.3% (w/v) 효모 추출물, 펩톤, 0.3% (w/v) K2HPO4, 및 미네랄 용액(2% MgSO4·7H2O, 0.1% NaCl, 0.1% FeSO4·7H2O, 0.1% MnSO4·H2O, 0.13% CaCl2·2H2O, 2% (w/v) 글루코오스) 에서 12 시간에서 16 시간동안 OD600 이 3.0이 될 때까지 배양한 뒤 배양액에서 균체만을 분리하여 조효소액을 준비하여 레반수크라아제 효소액으로 사용하였다. L. mesenteroides NRRL B-512 was added to LWG liquid medium (0.3% (w / v) yeast extract, peptone, 0.3% (w / v) K 2 HPO 4 , and mineral solution (2% MgSO 4 · 7H 2 O, 0.1 % NaCl, 0.1% FeSO 4 · 7H 2 O, 0.1% MnSO 4 · H 2 O, 0.13% CaCl 2 · 2H 2 O, 2% (w / v) glucose) for 12 to 16 hours After culturing until the cells were separated only from the culture medium to prepare a crude enzyme solution was used as the leban sucrase enzyme solution.

실시예 2Example 2

1) 당전이 효소 반응1) sugar transferase reaction

당전이 산물을 생산하기 위하여 본 실시예에서는 0.5M의 설탕용액을 준비하고, 실시예 1에서 얻은 글루칸수크라아제 효소를 사용하였다. In order to produce a sugar transition product, in this example, a sugar solution of 0.5 M was prepared, and the glucan sucrase enzyme obtained in Example 1 was used.

카테킨류 반응조건은 글루칸수크라아제, 0.5M 수크로오스와 0.5% 카테킨류를 1:2:2 (v/v/v)로 반응기안에 혼합한 후 28℃에서 반응시켰다. 반응은 28℃에서 반응기의 설탕이 모두 소모될 때까지(약 3.5시간) 수행하였다. The catechins were reacted at 28 ° C. after mixing glucan sucrase, 0.5M sucrose and 0.5% catechins in a 1: 2: 2 (v / v / v) reactor. The reaction was carried out at 28 ° C. until all of the sugar in the reactor was consumed (about 3.5 hours).

레스베라트롤의 반응조건은 글루칸수크라아제, 0.2M 수크로오스와 1% 레스베라트롤(50% 아세톤에 녹임)을 1:1:1 (v/v/v)로 반응기안에 혼합한 후 28℃에서 반응시켰다. 반응기의 설탕이 모두 소모될 때까지(18시간) 수행하였다. Resveratrol reaction conditions were mixed with glucan sucrase, 0.2M sucrose and 1% resveratrol (dissolved in 50% acetone) in a 1: 1: 1 (v / v / v) in the reactor and reacted at 28 ℃. The reaction was run until all the sugar in the reactor was consumed (18 hours).

아큐빈의 반응조건은 글루칸수크라아제, 0.2M 수크로오스와 0.5% 아큐빈을 1:1:1 (v/v/v)로 반응기안에 혼합한 후 28℃에서 반응시켰다. 반응기의 설탕이 모두 소모될 때까지(2시간) 수행하였다. Reaction conditions of Accucuin were glucan sucrase, 0.2M sucrose and 0.5% Accucuin in a 1: 1: 1 (v / v / v) mixture in the reactor, followed by reaction at 28 ° C. The reaction was run until all the sugar in the reactor was consumed (2 hours).

에탄올의 반응조건은 글루칸수크라아제, 0.5M 수크로오스와 80% 에탄올 용액을 1:1:1 (v/v/v)로 반응기안에 혼합한 후 28℃에서 반응시켰다. 반응기의 설탕이 모두 소모될 때까지(2시간) 수행하였다. The reaction conditions of ethanol were glucan sucrase, 0.5M sucrose and 80% ethanol solution in a 1: 1: 1 (v / v / v) in the reactor was mixed and reacted at 28 ℃. The reaction was run until all the sugar in the reactor was consumed (2 hours).

파라니트로페놀과 파라니트로페닐-O-α-D-글루코피라노사이드의 반응조건은 글루칸수크라아제, 0.2M 수크로오스와 1% 파라니트로페놀 또는 1% 파라니트로페닐-O-α-D-글루코피라노사이드를 1:1:1 (v/v/v)로 각각 반응기안에 혼합한 후 28℃에서 설탕이 모두 소모될 때까지(3시간) 수행하였다. The reaction conditions of paranitrophenol and paranitrophenyl- O- α-D-glucopyranoside were determined using glucan sucrase, 0.2M sucrose and 1% paranitrophenol or 1% paranitrophenyl- O- α-D-glu. Copyranoside was mixed in a reactor of 1: 1: 1 (v / v / v), respectively, and then performed at 28 ° C. until all of the sugar was consumed (3 hours).

효소의 최종 활성은 카테킨류의 경우는 0.5 U/ml이고, 그 외 아큐빈, 레스베라트롤, 에탄올, 파라니트로페놀, 파라니트로페닐-O-α-D-글루코피라노사이드, 티로솔, 메탄올, 1-프로판올, 부탄올, 이소프로판올, 3-메틸-1-부탄올, 노다케닌의 경우는 0.83 U/ml이었다. 효소 1 유니트는 1분에 효소 1ml당 설탕으로부터 유리되는 프락토오스의 μmol 수로 나타내었다. The final activity of the enzyme is 0.5 U / ml for catechins, and other accucuins, resveratrol, ethanol, paranitrophenol, paranitrophenyl- O- α-D-glucopyranoside, tyrosol, methanol, 1 For propanol, butanol, isopropanol, 3-methyl-1-butanol, and nodakenin, it was 0.83 U / ml. One unit of enzyme is expressed in μmol of fructose free from sugar per ml of enzyme per minute.

알파-아카보스의 경우는 먼저 레반수크라아제를 이용하여 상기의 조건으로 프락토오스 전이 화합물인 베타-디-프락토퓨라노실-(2→4)-알파-아카보스를 합성하고 이를 글루칸수크라아제 (0.5 U/ml)를 이용하여 상기의 방법으로 당전이 화합물을 합성하였으며, 메탄올, 에탄올, 1-프로판올, 1-부탄올, 3-메틸-1-부탄올등의 알코올류의 경우도 레반수크라아제를 이용하여 상기의 방법으로 프락토오스가 전이된 여러 가지 당전이 화합물을 합성하였다. 당전이 산물의 생산과 설탕의 완전한 반응 종결의 확인은 반응액 1㎕를 취하여 Merck K6F TLC 플레이트에 점적한 후 니트로메탄:노르말프로필알코올:물=2:5:1.5 (v/v/v) 혹은 아세토니트릴:물=85:15 (v/v)로 준비된 전개용매를 이용하여 전개하였으며, 분리된 탄수화물의 성분은 HPTLC(High pressure thin layer chromatograph) 플레이트를 0.5%(w/v) α-나프톨과 5%(v/v) 황산을 함유한 발색시약을 이용하여 분석되었다. In the case of alpha-acarbose, beta-di-fructofuranosyl- (2 → 4 IV ) -alpha-acabose was first synthesized using levansukraase under the above conditions, and then glucansucura. The sugar transfer compound was synthesized by the above method using an azease (0.5 U / ml), and in the case of alcohols such as methanol, ethanol, 1-propanol, 1-butanol, and 3-methyl-1-butanol, Using an aze, various glycotransfer compounds to which fructose was transferred in the above-described manner were synthesized. Confirmation of production of sugar transfer product and complete reaction of sugar was performed by taking 1 μl of the reaction solution and dropping it onto a Merck K6F TLC plate, followed by nitromethane: normalpropyl alcohol: water = 2: 5: 1.5 (v / v / v) or It was developed using a developing solvent prepared with acetonitrile: water = 85: 15 (v / v), and the components of the separated carbohydrate were 0.5% (w / v) α-naphthol on a high pressure thin layer chromatograph (HPTLC) plate. It was analyzed using a color reagent containing 5% (v / v) sulfuric acid.

2) 반응 산물의 구성 확인2) Check the composition of the reaction product

또한 생산된 산물의 구성을 HPLC를 이용하여 확인하였다. 반응물을 정제하기 위해 Bio Gel P-2 컬럼을 준비하여 시료를 투여하고 물로 용출하여 당의 분리 정도를 TLC를 이용하여 확인하였다. 분리된 당을 진공 농축한 후 TLC를 이용하여 확인하였다. 합성 산물의 성분과 분포를 TLC와 MALDI-TOF MS (Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometer)를 이용하여 확인하였으며, 수용체 반응 결과는 도 1 - 도 11에 나타내었다.The composition of the produced product was also confirmed using HPLC. In order to purify the reaction, a Bio Gel P-2 column was prepared, the sample was administered, eluted with water, and the degree of sugar separation was confirmed by TLC. The isolated sugar was concentrated in vacuo and then confirmed using TLC. The composition and distribution of the synthetic product were confirmed using TLC and MALDI-TOF MS (Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometer), and the results of the receptor reaction are shown in FIGS. 1 to 11.

Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 카 테킨의 반응(도 1)으로부터 카테킨-O-α-D-글루코피라노사이드(도 1의 P1), 카테킨-O-α-D-이소말토사이드(도 1의 P2) 등의 카테킨 이소말토올리고당 수용체 반응 산물이 합성되었고, 에피카테킨의 반응(도 1)으로부터는 에피카테킨-O-α-D-글루코피라노사이드(도 1의 P3), 에피카테킨-O-α-D-이소말토사이드(도 1의 P4) 등의 에피카테킨 이소말토올리고당 수용체 반응 산물이 합성되었으며, 에피갈로카테킨의 반응(도 1)으로부터는 에피갈로카테킨-O-α-D-글루코피라노사이드(도 1의 P5), 에피갈로카테킨-O-α-D-이소말토사이드(도 1의 P6)등의 에피갈로카테킨 이소말토올리고당 수용체 반응 산물이 합성되었다. 또한, 에피카테킨 갈레이트의 반응으로부터는 2개의 에피카테킨 갈레이트-O-α-D-글루코피라노사이드(도 1의 P7, P8)와 1개의 에피카테킨 갈레이트-O-α-D-이소말토사이드(도 1의 P9)등의 에피카테킨갈레이트 올리고당 수용체 반응 산물이 합성되었고, 카테킨 갈레이트의 반응(도 1)으로부터는 2개의 카테킨 갈레이트-O-α-D-글루코피라노사이드(도 1의 P10, P11)와 1개의 카테킨 갈레이트-O-α-D-이소말토사이드(도 1의 P12) 등의 카테킨 갈레이트 이소말토올리고당 수용체 반응 산물이 합성되었으며, 에피갈로카테킨 갈레이트의 반응(도 1)으로부터는 에피갈로카테킨 갈레이트-O-α-D-글루코피라노사이드(도 1의 P13)와 에피카테킨갈레이트-O-α-D-이소말토사이드(도 1의 P14)등의 에피갈로카테킨 갈레이트 이소말토올리고당 수용체 반응 산물이 합성되었다. Leuconostoc Catechin- O- α-D-glucopyranoside (P1 in Fig. 1), catechin- O- α-D-isomalto from the reaction of glucans sucrase and catechin obtained from mesenteroides NRRL B-1299 (FIG. 1). A catechin isomaltooligosaccharide receptor reaction product such as side (P2 in FIG. 1) was synthesized, and epicatechin- O- α-D-glucopyranoside (P3 in FIG. 1) and epicatechin- from the reaction of epicatechin (FIG. 1). Epicatechin isomaltooligosaccharide receptor reaction products, such as O- α-D-isomaltoside (P4 in FIG. 1), were synthesized, and epigallocatechin- O- α-D from the reaction of epigallocatechin (FIG. 1). Epigallocatechin isomaltooligosaccharide receptor reaction products, such as -glucopyranoside (P5 of FIG. 1) and epigallocatechin- O- α-D-isomaltoside (P6 of FIG. 1), were synthesized. Also, from the reaction of epicatechin gallate, two epicatechin gallate- O- α-D-glucopyranosides (P7 and P8 in FIG. 1) and one epicatechin gallate- O- α-D-isomaltoside ( Epicatechin gallate oligosaccharide receptor reaction products such as P9) of FIG. 1 were synthesized, and two catechin gallate- O- α-D-glucopyranosides (P10 of FIG. 1) were synthesized from the reaction of catechin gallate (FIG. 1). , P11) and catechin gallate isomaltoligosaccharide receptor reaction products, such as one catechin gallate- O- α-D-isomaltoside (P12 in FIG. 1), were synthesized, and the reaction of epigallocatechin gallate (FIG. 1) from epigallocatechin gallate- O- α-D-glucopyranoside (P13 in Fig. 1) and epicatechin gallate- O- α-D-isomaltoside (P14 in Fig. 1). Gallocatechin gallate isomaltoligosaccharide receptor reaction products were synthesized.

또한, Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 레스베라트롤의 반응(도 2)으로부터 2개의 레스베라트롤-O-α-D-글루코피라노사이드(도 2의 P15, P16)와 1개의 레스베라트롤-O-α-D-이소말토사이드(도 2의 P17) 를 포함하여 레스베라트롤 이소말토올리고당 수용체 반응 산물이 합성됨을 확인하였다. In addition, Leuconostoc mesenteroides NRRL-glucan sucrase two resveratrol from Ajay and reaction (2) of resveratrol obtained from the B-1299 - O -α-D- gluconic nose Llano side (in FIG. 2, P15, P16) and one resveratrol - O -α It was confirmed that resveratrol isomaltooligosaccharide receptor reaction product was synthesized including -D-isomaltoside (P17 in FIG. 2).

또한, Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 아큐빈의 반응(도 3)으로부터 아큐비제닌-O-α-D-이소말토사이드(도 3의 P18)등의 아큐빈 이소말토올리고당 수용체 반응산물이 합성됨을 확인하였다. In addition, Leuconostoc Acubin isomaltooligosaccharide receptor reaction products, such as acubigenin- O- α-D-isomaltoside (P18 in FIG. 3), from the reaction of glucan sucrase obtained from mesenteroides NRRL B-1299 with acubin (FIG. 3). It was confirmed that this was synthesized.

또한, Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 에탄올과의 반응(도 4)으로부터 에틸-O-α-D-글루코피라노사이드(도 4의 P19)와 에틸-O-α-D-이소말토사이드(도 4의 P20)등 에탄올 이소말토올리고당 수용체 반응산물이 합성됨을 확인하였다. In addition, Leuconostoc Elution of ethyl- O- α-D-glucopyranoside (P19 in FIG. 4) with ethyl- O- α-D-isomalto from reaction of glucans sucrase obtained from mesenteroides NRRL B-1299 with ethanol (FIG. 4) It was confirmed that the reaction product of ethanol isomaltooligosaccharide receptor such as side (P20 of Figure 4).

또한, Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 파라니트로페놀의 반응(도 5)으로부터 파라니트로페닐-O-α-D-글루코피라노사이드(도 5의 P21), 파라니트로페닐-O-α-D-이소말토사이드(도 5의 P22), 파라니트로페닐-O-α-D-이소말토트리오사이드(도 5의 P23)등과, Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 파라니트로 페닐-O-α-D-글루코피라노사이드의 반응(도 5)으로부터 파라니트로페닐-O-α-D-이소말토사이드(도 5의 P22)와 파라니트로페닐-O-α-D-이소말토트리오사이드(도 5의 P23)등의 파라니토로페놀 이소말토올리고당 수용체 반응 산물들을 확인하였다. In addition, Leuconostoc mesenteroides NRRL B-1299 glucan sucrase Kinase reaction of the para-nitrophenol from para (Fig. 5) obtained from nitrophenyl - O -α-D- gluconic nose Llano side (P21 in Figure 5), p-nitrophenyl - O -α -D-isomaltoside (P22 of FIG. 5), paranitrophenyl- O- α-D-isomaltotrioside (P23 of FIG. 5), etc., Leuconostoc Paranitrophenyl - O- α-D-isomaltoside (FIG. 5) from the reaction of glucan sucrase obtained from mesenteroides NRRL B-1299 with paranitrophenyl- O- α-D-glucopyranoside (FIG. 5) P22) and paranitrophenyl- O- α-D-isomaltotrioside (P23 of FIG. 5) and other paranitorophenol isomaltooligosaccharide receptor reaction products were identified.

또한, Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 티로솔의 반응(도 6)으로부터 티로솔-O-α-D-이소말토올리고당(도 6의 P24, P25, P26)의 수용체 반응 산물들을 확인하였다. In addition, Leuconostoc Receptor reaction products of tyrosol- O- α-D-isomaltooligosaccharides (P24, P25, P26 in FIG. 6) were identified from the reaction of glucan sucrase and tyrosol obtained from mesenteroides NRRL B-1299 (FIG. 6). .

또한, Leuconostoc mesenteroides NRRL B-512로부터 얻은 레반수크라아제와 아카보스의 반응(도 7)으로부터 베타-디-프락토퓨라노실-(2→4)-알파-아카보스(도 7의 P27)의 수용체 반응 산물들을 확인하였다. 또한, Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 베타-디-프락토퓨라노실-(2→4)-알파-아카보스의 반응(도 8)으로부터 알파-디-글루코피라노실-(1→1)-베타-디-프락토퓨라노실-(2→4)-알파-아카보스(도 8의 P28)의 수용체 반응 산물을 확인하였다. In addition, Leuconostoc Receptor reaction product of beta-di-fractopuranosyl- (2 → 4IV ) -alpha-acarbose (P27 in FIG. 7) from the reaction of avanose with levansukraase obtained from mesenteroides NRRL B-512 (FIG. 7). Confirmed them. In addition, Leuconostoc Alpha-di-glucopyranosyl- (1 →) from the reaction of glucansucrase obtained from mesenteroides NRRL B-1299 with beta-di-fractopuranosyl- (2 → 4 IV ) -alpha-acarbose (FIG. 8). The receptor reaction product of 1) -beta-di-fractopuranosyl- (2 → 4 IV ) -alpha- acarbose (P28 in FIG. 8) was identified.

또한, Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 메탄올의 반응(도 9)으로부터 메틸-O-α-D-이소말토올리고당(도 9의 P29)의 수용체 반응 산물을 확인하였다. 또한, Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 1-프로판과의 반응(도 9)으로부터 1-프로필-O-α-D-이소말토올리고당(도 9의 P30, P31, P32)의 수용체 반응 산물을 확인하였다. 또한, Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 1-부탄올의 반응(도 9)으로부터 1-부틸-O-α-D-이소말토올리고당(도 9의 P33, P34, P35)의 수용체 반응 산물을 확인하였다. 또한, Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 이소프로판의 반응(도 9)으로부터 이소프로필-O-α-D-이소말토올리고당(도 9의 P36)의 수용체 반응 산물을 확인하였다. 또한, Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 3-메틸-1-부탄올의 반응(도 9)으로부터 이소프로필-O-α-D-이소말토올리고당(도 9의 P37, P38, P39)의 수용체 반응 산물을 확인하였다. In addition, Leuconostoc Receptor reaction products of methyl- O- α-D-isomalto-oligosaccharides (P29 in FIG. 9) were identified from the reaction of glucans sucrase obtained from mesenteroides NRRL B-1299 with methanol (FIG. 9). In addition, Leuconostoc Receptor reaction products of 1-propyl- O- α-D-isomaltooligosaccharides (P30, P31, P32 in Fig. 9) from the reaction of glucans sucrase obtained from mesenteroides NRRL B-1299 with 1-propane (Fig. 9). It was confirmed. In addition, Leuconostoc Receptor reaction products of 1-butyl- O- α-D-isomaltooligosaccharides (P33, P34, P35 in FIG. 9) were obtained from the reaction of glucans sucrase obtained from mesenteroides NRRL B-1299 with 1-butanol (FIG. 9). Confirmed. In addition, Leuconostoc Receptor reaction products of isopropyl- O- α-D-isomaltooligosaccharides (P36 in FIG. 9) were identified from the reaction of glucan sucrase and isopropane obtained from mesenteroides NRRL B-1299 (FIG. 9). In addition, Leuconostoc Receptor of isopropyl- O- α-D-isomaltooligosaccharides (P37, P38, P39 in Fig. 9) from the reaction of glucan sucrase obtained from mesenteroides NRRL B-1299 with 3-methyl-1-butanol (Fig. 9). The reaction product was identified.

또한, Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 노다케닌의 반응(도 10)으로부터 노다케닌-O-α-D-이소말토올리고당(도 10의 P40)의 수용체 반응 산물을 확인하였다. In addition, Leuconostoc Receptor reaction products of nodakenin- O- α-D-isomaltooligosaccharides (P40 in FIG. 10) were confirmed from the reaction of glucans sucrase obtained from mesenteroides NRRL B-1299 with nodakenin (FIG. 10).

또한, Leuconostoc mesenteroides NRRL B-512로부터 얻은 레반수크라아제와 메탄올의 반응(도 11)으로부터 메틸-O-β-D-프락토올리고당(도 11의 P41)의 수용체 반응 산물들을 확인하였다. 또한, Leuconostoc mesenteroides NRRL B-512로부터 얻은 레반수크라아제와 에탄올의 반응(도 11)으로부터 에틸-O-β-D-프락토올리고당(도 11의 P42, P43)의 수용체 반응 산물들을 확인하였다. 또한, Leuconostoc mesenteroides NRRL B-512로부터 얻은 레반수크라아제와 1-프로판올의 반응(도 11)으로부터 1-프로필-O-β-D-프락토올리고당(도 11의 P44, P45)의 수용체 반응 산물들을 확인하였다. 또한, Leuconostoc mesenteroides NRRL B-512로부터 얻은 레반수크라아제와 1-부탄올의 반응(도 11)으로부터 1-부틸-O-β-D-프락토올리고당(도 11의 P46, P47)의 수용체 반응 산물들을 확인하였다. 또한, Leuconostoc mesenteroides NRRL B-512로부터 얻은 레반수크라아제와 3-메틸-1-부탄올의 반응(도 11)으로부터 3-메틸-1-부틸-O-β-D-프락토올리고당(도 11의 P48, P49)의 수용체 반응 산물들을 확인하였다. In addition, Leuconostoc Receptor reaction products of methyl-O-β-D-fracttooligosaccharide (P41 in FIG. 11) were identified from the reaction of levansukraase and methanol obtained from mesenteroides NRRL B-512 (FIG. 11). In addition, Leuconostoc Receptor reaction products of ethyl-O-β-D-fracttooligosaccharides (P42, P43 in FIG. 11) were identified from the reaction of levane sucrase and ethanol (FIG. 11) obtained from mesenteroides NRRL B-512. In addition, Leuconostoc Receptor reaction products of 1-propyl-O-β-D-fracttooligosaccharide (P44, P45 in FIG. 11) were identified from the reaction of 1-propanol with levansukraase obtained from mesenteroides NRRL B-512 (FIG. 11). . In addition, the receptor reaction products of 1-butyl-O-β-D-fractoligosaccharides (P46 and P47 in Fig. 11) from the reaction of 1-butanol with levansoucrase obtained from Leuconostoc mesenteroides NRRL B-512 (Fig. 11). Confirmed them. In addition, Leuconostoc 3-methyl-1-butyl-O-β-D-fractoligosaccharide (Fig. 11, P48, P49) from the reaction of 3-methyl-1-butanol with levansukraase obtained from mesenteroides NRRL B-512 (Fig. 11) ) Receptor reaction products were identified.

또한, Leuconostoc mesenteroides NRRL B-1299로부터 얻은 글루칸수크라아제와 퀘르세틴의 반응(도 12)으로부터 퀘르세틴-4'-알파-디-글루코피라노사이드(도 12의 P50)와 퀘르세틴-3'-알파-디-글루코피라노사이드(도 12의 P51)의 수용체 반응 산물을 확인하였다. 또한, Leuconostoc mesenteroides NRRL B-512로부터 얻은 레반 수크라아제와 페룰릭산의 반응(도 13)으로부터 페룰릭-베타-디-프락토올리고당(도 13의 P52, P53)의 수용체 반응 산물들을 확인하였다. In addition, Leuconostoc Quercetin-4'-alpha-di-glucopyranoside (P50 in FIG. 12) and quercetin-3'-alpha-di-glulune from the reaction of glucansukraase with quercetin obtained from mesenteroides NRRL B-1299 (FIG. 12). The receptor reaction product of copyranoside (P51 in FIG. 12) was identified. In addition, Leuconostoc Receptor reaction products of ferulic-beta-di-fractooligosaccharides (P52, P53 in FIG. 13) were identified from the reaction of leban sucrase and ferulic acid obtained from mesenteroides NRRL B-512 (FIG. 13).

본 발명에 의해 글루칸수크라아제 및 레반수크라아제를 이용하여 녹차 카테킨류, 레스베라트롤, 아큐빈, 파라니트로페놀, 파라니트로페닐-O-α-D-글루코피라노사이드, 티로솔, 알파-아카보스, 노다케닌, 에탄올, 메탄올, 1-프로판올, 부탄올, 이소프로판올, 3-메틸-1-부탄올, 퀘르세틴, 페룰릭산 등의 당전이화합물을 효소적으로 합성할 수 있으며, 당전이를 통한 이들 당전이 유도 물질들은 물에 대한 용해도가 증가되거나 빛, 열에 의한 분해나 산화를 방지하는 효과를 가지고 있어 식품 및 화장품, 의약품 산업 등에 유용하게 사용될 수 있다. Green tea catechins, resveratrol, acubin, paranitrophenol, paranitrophenyl- O- α-D-glucopyranoside, tyrosol, alpha-acarbose using glucan sucrase and levan sucrase according to the present invention And enzymatic synthesis of sugar transition compounds such as nodakenin, ethanol, methanol, 1-propanol, butanol, isopropanol, 3-methyl-1-butanol, quercetin, and ferulic acid, and inducing these sugar transitions through sugar transition Substances have an effect of increasing solubility in water or preventing decomposition or oxidation by light and heat, and thus may be useful for food, cosmetics, and pharmaceutical industries.

Claims (30)

0.1-1M 농도의 설탕이 함유된 용액에 글루칸수크라아제 및 레반수크라아제로 이루어진 그룹으부터 선택된 당전이효소를 반응기 최종 활성 농도가 0.1-3.0 U/ml가 되도록 첨가한 다음, 이를 15-50℃의 반응기에서 카테킨, 레스베라트롤(resveratrol), 아큐빈(aucubin), 파라니트로페놀(p-nitrophenol), 파라니트로페닐-O-α-D-글루코피라노사이드 (p-nitrophenyl-O-α-D-glucopyranoside), 티로솔(tyrosol), 알파-아카보스 (α-acarbose), 노다케닌(nodakenin), 퀘르세틴(quercetin), 페룰릭산(ferulic acid) 및 알코올로 구성되는 그룹으로부터 선택되는 적어도 하나의 당 수용체를 최종 활성 농도가 0.01-2중량%가 되도록 첨가하여 반응시킴으로써 설탕의 글루코오스 혹은 프락토실기를 상기 수용체에 전이하여 당전이 화합물의 유도체를 생성하는 단계; 및To a solution containing 0.1-1 M sugar, a sugar transferase selected from the group consisting of glucan sucase and levan sucrase was added so that the final active concentration of the reactor was 0.1-3.0 U / ml, and then 15- catechins in the reactor of 50 ℃, resveratrol (resveratrol), Accu blank (aucubin), para-nitrophenol (p -nitrophenol), p-nitrophenyl - O -α-D- gluconic nose Llano side (p -nitrophenyl- O -α- At least one sugar selected from the group consisting of D-glucopyranoside, tyrosol, alpha-acarbose, nodakenin, quercetin, ferulic acid and alcohol Adding a receptor so that the final active concentration is 0.01-2% by weight to react, thereby transferring a glucose or fructosyl group of sugar to the receptor to generate a derivative of a sugar transfer compound; And 상기 당전이 화합물의 유도체를 분리 및 정제하는 단계;Separating and purifying derivatives of the sugar transfer compound; 를 포함하여 이루어진 당전이 화합물의 유도체 제조방법.Method for producing a derivative of the sugar transition compound comprising a. 삭제delete 제 1항에 있어서, 상기 글루칸수크라아제는 류코노스톡 메센테로이드(Leuconostoc mesenteroides) NRRL B-1299 균주로부터 얻어지는 것을 특징으로 하는 방법.The method of claim 1, wherein the glucan sucrase is obtained from a Leuconostoc mesenteroides NRRL B-1299 strain. 제 1항에 있어서, 상기 레반수크라아제는 류코노스톡 메센테로이드(Leuconostoc mesenteroides) NRRL B-512 균주로부터 얻어지는 것을 특징으로 하는 방법. The method of claim 1, wherein the Levansukraase is obtained from Leuconostoc mesenteroides NRRL B-512 strain. 제 1항에 있어서, 상기 당전이효소가 글루칸수크라아제인 경우 설탕의 글루코오스가 상기 당 수용체에 전이되는 것을 특징으로 하는 당전이 화합물의 유도체 제조방법.The method of claim 1, wherein when the sugar transferase is glucan sucrase, glucose of sugar is transferred to the sugar receptor. 제 1항에 있어서, 상기 당전이효소가 레반수크라아제인 경우 설탕의 프락토실기가 상기 당 수용체에 전이되는 것을 특징으로 하는 당전이 화합물의 유도체 제조방법.The method of claim 1, wherein the fructosyl group of sugar is transferred to the sugar receptor when the sugar transferase is levansukraase. 제 1항에 있어서, 상기 당전이효소는 반응기 최종 활성 농도가 0.5-1.0 U/ml가 되도록 첨가되는 것을 특징으로 하는 방법. The method of claim 1, wherein the sugar transferase is added so that the reactor final active concentration is 0.5-1.0 U / ml. 제 1항에 있어서, 상기 당 수용체는 반응기 최종 활성 농도가 0.03-2중량%가 되도록 첨가되는 것을 특징으로 하는 방법.The method of claim 1 wherein the sugar acceptor is added so that the reactor final active concentration is 0.03-2% by weight. 제 1항에 있어서, 상기 반응은 28-37℃에서 1-18시간동안 이루어지는 것을 특징으로 하는 방법.The method of claim 1 wherein the reaction is carried out at 28-37 ° C. for 1-18 hours. 제 1항에 있어서, 상기 당 수용체가 카테킨인 경우, 하기 화학식 1 내지 5 및 6-1 내지 6-6으로 구성되는 그룹으로부터 선택되는 적어도 하나의 카테킨 유도체가 생성되는 것을 특징으로 하는 방법. The method of claim 1, wherein when the sugar receptor is catechin, at least one catechin derivative selected from the group consisting of the following Chemical Formulas 1 to 5 and 6-1 to 6-6 is produced. [화학식 1][Formula 1]
Figure 112005070626099-pat00033
Figure 112005070626099-pat00033
카테킨-알파-디-이소말토올리고당Catechin-alpha-di-isomaltooligosaccharide (Catechin-O-α-D-isomaltooligosaccharide)(Catechin- O- α-D-isomaltooligosaccharide) (상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 2][Formula 2]
Figure 112005070626099-pat00034
Figure 112005070626099-pat00034
에피카테킨-알파-디-이소말토올리고당Epicatechin-alpha-di-isomaltooligosaccharide (Epicatechin-O-α-D-isomaltooligosaccharide)(Epicatechin- O- α-D-isomaltooligosaccharides) (상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 3][Formula 3]
Figure 112005070626099-pat00035
Figure 112005070626099-pat00035
에피갈로카테킨-알파-디-이소말토올리고당Epigallocatechin-alpha-di-isomaltooligosaccharide (Epigallocatechin-O-α-D-isomaltooligosaccharide)Epigallocatechin- O- α-D-isomaltooligosaccharides (상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 4][Formula 4]
Figure 112005070626099-pat00036
Figure 112005070626099-pat00036
에피카테킨갈레이트-알파-디-이소말토올리고당Epicatechin Gallate-alpha-di-isomaltooligosaccharide (Epicatechingallate-O-α-D-isomaltooligosaccharide)(Epicatechingallate- O- α-D-isomaltooligosaccharide) (상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 5][Formula 5]
Figure 112005070626099-pat00037
Figure 112005070626099-pat00037
카테킨갈레이트-알파-디-이소말토올리고당Catechingallate-alpha-di-isomaltooligosaccharide (Catechingallate-O-α-D-isomaltooligosaccharide)(Catechingallate- O- α-D-isomaltooligosaccharide) (상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 6-1][Formula 6-1]
Figure 112005070626099-pat00038
Figure 112005070626099-pat00038
에피갈로카테킨갈레이트-7-알파-디-글루코피라노사이드Epigallocatechingallate-7-alpha-di-glucopyranoside (Epigallocatechingallate-7-O-α-D-glucopyranoside)(Epigallocatechingallate-7-O-α-D-glucopyranoside) [화학식 6-2][Formula 6-2]
Figure 112005070626099-pat00039
Figure 112005070626099-pat00039
에피갈로카테킨갈레이트-7,4"-알파-디-글루코피라노사이드Epigallocatechingallate-7,4 "-alpha-di-glucopyranoside (Epigallocatechingallate-7.4"-O-α-D-glucopyranoside)(Epigallocatechingallate-7.4 "-O-α-D-glucopyranoside) [화학식 6-3][Formula 6-3]
Figure 112005070626099-pat00040
Figure 112005070626099-pat00040
에피갈로카테킨갈레이트-7,4'-알파-디-글루코피라노사이드Epigallocatechingallate-7,4'-alpha-di-glucopyranoside (Epigallocatechingallate-7,4'-O-α-D-glucopyranoside)(Epigallocatechingallate-7,4'-O-α-D-glucopyranoside) [화학식 6-4][Formula 6-4]
Figure 112005070626099-pat00041
Figure 112005070626099-pat00041
에피갈로카테킨갈레이트-4"-알파-디-글루코피라노사이드Epigallocatechingallate-4 "-alpha-di-glucopyranoside (Epigallocatechingallate-4"-O-α-D-glucopyranoside)(Epigallocatechingallate-4 "-O-α-D-glucopyranoside) [화학식 6-5][Formula 6-5]
Figure 112005070626099-pat00042
Figure 112005070626099-pat00042
에피갈로카테킨갈레이트-4'-알파-디-글루코피라노사이드Epigallocatechin gallate-4'-alpha-di-glucopyranoside (Epigallocatechingallate-4'-O-α-D-glucopyranoside)(Epigallocatechingallate-4'-O-α-D-glucopyranoside) [화학식 6-6][Formula 6-6]
Figure 112005070626099-pat00043
Figure 112005070626099-pat00043
에피갈로카테킨갈레이트-4',4"-알파-디-글루코피라노사이드Epigallocatechingallate-4 ', 4 "-alpha-di-glucopyranoside (Epigallocatechingallate-4',4"-O-α-D-glucopyranoside)(Epigallocatechingallate-4 ', 4 "-O-α-D-glucopyranoside)
제 1항에 있어서, 상기 당 수용체가 레스베라트롤인 경우, 하기 화학식 7의 레스베라트롤 유도체가 생성되는 것을 특징으로 하는 방법. The method of claim 1, wherein when the sugar receptor is resveratrol, a resveratrol derivative of Formula 7 is produced. [화학식 7][Formula 7]
Figure 112005070626099-pat00044
Figure 112005070626099-pat00044
레스베라트롤-알파-디-이소말토올리고당Resveratrol-alpha-di-isomaltooligosaccharide (Resveratrol-O-α-D-isomaltooligosaccharide)(Resveratrol- O- α-D-isomaltooligosaccharides) (상기 식에서, n은 0-5)(Wherein n is 0-5)
제 1항에 있어서, 상기 당 수용체가 아큐빈인 경우, 하기 화학식 8의 아큐빈 유도체가 생성되는 것을 특징으로 하는 방법. The method according to claim 1, wherein when the sugar receptor is accucuine, an accucu derivative of Formula 8 is produced. [화학식 8][Formula 8]
Figure 112005070626099-pat00045
Figure 112005070626099-pat00045
(상기 식에서, n은 0-5)(Wherein n is 0-5)
제 1항에 있어서, 상기 당 수용체가 파라니트로페놀 또는 파라니트로페닐-O-α-D-글루코피라노사이드파라니트로페놀인 경우, 하기 화학식 9의 파라니트로페놀 유도체가 생성되는 것을 특징으로 하는 방법. The method according to claim 1, wherein when the sugar receptor is paranitrophenol or paranitrophenyl- O- α-D-glucopyranoside paranitrophenol, a paranitrophenol derivative of Formula 9 is produced. . [화학식 9][Formula 9]
Figure 112005070626099-pat00046
Figure 112005070626099-pat00046
파라니토롤페닐-알파-디-이소말토올리고당Paranitorolphenyl-alpha-di-isomaltooligosaccharide (p-Nitrophenyl-O-α-D-isomaltooligosaccharide)( p -Nitrophenyl- O -α-D-isomaltooligosaccharide) (상기 식에서, n은 0-5)(Wherein n is 0-5)
제 1항에 있어서, 상기 당 수용체가 티로솔인 경우, 하기 화학식 10의 티로솔 유도체가 생성되는 것을 특징으로 하는 방법. The method of claim 1, wherein when the sugar receptor is tyrosol, a tyrosol derivative of Formula 10 is produced. [화학식 10][Formula 10]
Figure 112005070626099-pat00047
Figure 112005070626099-pat00047
티로솔-알파-디-이소말토올리고당Tyrosol-alpha-di-isomaltooligosaccharide (Tyrosol-O-α-D-isomaltooligosaccharide)(Tyrosol- O- α-D-isomaltooligosaccharide) (상기 식에서, n은 0-5)(Wherein n is 0-5)
제 1항에 있어서, 상기 당 수용체가 알파-아카보스인 경우, 하기 화학식 11 또는 화학식 12의 알파-아카보스 유도체가 생성되는 것을 특징으로 하는 방법. The method of claim 1, wherein when the sugar receptor is alpha-acarbose, an alpha-acarbose derivative of Formula 11 or Formula 12 is produced. [화학식 11][Formula 11]
Figure 112005070626099-pat00048
Figure 112005070626099-pat00048
[화학식 12][Formula 12]
Figure 112005070626099-pat00049
Figure 112005070626099-pat00049
제 1항에 있어서, 상기 당 수용체가 노다케닌인 경우, 하기 화학식 13의 노다케닌 유도체가 생성되는 것을 특징으로 하는 방법. The method of claim 1, wherein when the sugar receptor is nodakenin, a nodakenin derivative represented by Chemical Formula 13 is produced. [화학식 13][Formula 13]
Figure 112005070626099-pat00050
Figure 112005070626099-pat00050
(상기 식에서, n은 0-5)(Wherein n is 0-5)
제 1항에 있어서, 상기 당 수용체가 알코올인 경우, 하기 화학식 14 내지 24로 구성되는 그룹으로부터 선택되는 적어도 하나의 알코올 유도체가 생성되는 것을 특징으로 하는 방법. The method of claim 1, wherein when the sugar receptor is an alcohol, at least one alcohol derivative selected from the group consisting of Formulas 14 to 24 is produced. [화학식 14][Formula 14]
Figure 112005070626099-pat00051
Figure 112005070626099-pat00051
에틸-알파-디-이소말토올리고당Ethyl-alpha-di-isomaltooligosaccharide (Ethyl-O-α-D-isomaltooligosaccharide)(Ethyl- O- α-D-isomaltooligosaccharide) (상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 15][Formula 15]
Figure 112005070626099-pat00052
Figure 112005070626099-pat00052
메틸-알파-디-이소말토올리고당Methyl-alpha-di-isomaltooligosaccharide (Methyl-O-α-D-isomaltooligosaccharide)(Methyl- O -α-D-isomaltooligosaccharide) (상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 16][Formula 16]
Figure 112005070626099-pat00053
Figure 112005070626099-pat00053
1-프로필-알파-디-이소말토올리고올리고당1-propyl-alpha-di-isomaltooligosaccharide (1-Propyl-O-α-D-isomaltooligosaccharide)(1-Propyl- O- α-D-isomaltooligosaccharide) (상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 17][Formula 17]
Figure 112005070626099-pat00054
Figure 112005070626099-pat00054
1-부틸-알파-디-이소말토올리고올리고당1-butyl-alpha-di-isomaltooligosaccharide (1-Butyl-O-α-D-isomaltooligosaccharide)(1-Butyl- O- α-D-isomaltooligosaccharide) (상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 18][Formula 18]
Figure 112005070626099-pat00055
Figure 112005070626099-pat00055
이소프로필-알파-디-이소말토올리고당Isopropyl-alpha-di-isomaltooligosaccharide (2-Propyl-O-α-D-isomaltooligosaccharide)(2-Propyl- O- α-D-isomaltooligosaccharide) (상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 19][Formula 19]
Figure 112005070626099-pat00056
Figure 112005070626099-pat00056
3-메틸-1-부틸-알파-디-이소말토올리고당3-methyl-1-butyl-alpha-di-isomaltooligosaccharide (3-Methyl-1-butyl-O-α-D-isomaltooligosaccharide)(3-Methyl-1-butyl- O -α-D-isomaltooligosaccharide) (상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 20][Formula 20]
Figure 112005070626099-pat00057
Figure 112005070626099-pat00057
(상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 21][Formula 21]
Figure 112005070626099-pat00058
Figure 112005070626099-pat00058
(상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 22][Formula 22]
Figure 112005070626099-pat00059
Figure 112005070626099-pat00059
(상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 23][Formula 23]
Figure 112005070626099-pat00060
Figure 112005070626099-pat00060
(상기 식에서, n은 0-5)(Wherein n is 0-5) [화학식 24][Formula 24]
Figure 112005070626099-pat00061
Figure 112005070626099-pat00061
(상기 식에서, n은 0-5)(Wherein n is 0-5)
제 1항에 있어서, 상기 당 수용체가 퀘르세틴인 경우, 하기 화학식 25-1 및 25-2로 구성되는 그룹으로부터 선택되는 적어도 하나의 퀘르세틴 유도체가 생성되는 것을 특징으로 하는 방법. The method of claim 1, wherein when the sugar receptor is quercetin, at least one quercetin derivative selected from the group consisting of Formulas 25-1 and 25-2 is generated. [화학식 25-1][Formula 25-1]
Figure 112005070626099-pat00062
Figure 112005070626099-pat00062
퀘르세틴-4'-알파-디-글루코피라노사이드Quercetin-4'-alpha-di-glucopyranoside (Quercetin-4'-O-α-D-glucopyranoside)(Quercetin-4'-O-α-D-glucopyranoside) [화학식 25-2][Formula 25-2]
Figure 112005070626099-pat00063
Figure 112005070626099-pat00063
퀘르세틴-3'-알파-디-글루코피라노사이드Quercetin-3'-alpha-di-glucopyranoside (Quercetin-3'-O-α-D-glucopyranoside)(Quercetin-3'-O-α-D-glucopyranoside)
제 1항에 있어서, 상기 당 수용체가 페눌릭산인 경우, 하기 화학식 26의 페눌릭산 유도체가 생성되는 것을 특징으로 하는 방법. The method of claim 1, wherein when the sugar acceptor is penulic acid, a penulic acid derivative of Formula 26 is produced. [화학식 26][Formula 26]
Figure 112005070626099-pat00064
Figure 112005070626099-pat00064
페눌릭-베타-디-프락토올리고당Penulic-Beta-D-Fructooligosaccharides (Ferulic-β-D-fructooligosaccharide)(Ferulic-β-D-fructooligosaccharide) (상기 식에서, n은 0-5)(Wherein n is 0-5)
제 17항에 있어서, 상기 알코올은 에탄올, 메탄올, 1-프로판올, 부탄올, 이소프로판올 또는 3-메틸-1-부탄올인 것을 특징으로 하는 방법. 18. The method of claim 17, wherein the alcohol is ethanol, methanol, 1-propanol, butanol, isopropanol or 3-methyl-1-butanol. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020050117086A 2004-12-03 2005-12-02 Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof KR100716797B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020040101160 2004-12-03
KR20040101160 2004-12-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020070015716A Division KR20070028499A (en) 2004-12-03 2007-02-15 Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof

Publications (2)

Publication Number Publication Date
KR20060063703A KR20060063703A (en) 2006-06-12
KR100716797B1 true KR100716797B1 (en) 2007-05-14

Family

ID=37159607

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020050117086A KR100716797B1 (en) 2004-12-03 2005-12-02 Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof
KR1020070015716A KR20070028499A (en) 2004-12-03 2007-02-15 Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof
KR1020070064300A KR20070073724A (en) 2004-12-03 2007-06-28 Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020070015716A KR20070028499A (en) 2004-12-03 2007-02-15 Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof
KR1020070064300A KR20070073724A (en) 2004-12-03 2007-06-28 Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof

Country Status (1)

Country Link
KR (3) KR100716797B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964944B1 (en) * 2007-02-21 2010-06-21 전남대학교산학협력단 Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof
KR100941695B1 (en) * 2008-01-24 2010-02-12 경희대학교 산학협력단 Method for preparing of alpha-D-glucopyranosyl-1?4-arbutin by using amylosucrase from Deinococcus georthermails
ES2351644B1 (en) * 2009-04-03 2011-11-30 Consejo Superior De Investigaciones Científicas (Csic) ENZYMATIC PROCEDURE FOR OBTAINING ALFA-GLUCOSILATE DERIVATIVES OF RESVERATROL WITH TENSIOACTIVE PROPERTIES.
KR101381590B1 (en) * 2011-01-10 2014-04-10 전남대학교산학협력단 Inhibitory effects of the human intestinal maltase
KR101402849B1 (en) * 2012-05-23 2014-06-02 부산대학교 산학협력단 Pharmaceutical composition and health function food for preparing or treating for cardiovascular disease including piceid derivative
FR3018821A1 (en) 2014-03-24 2015-09-25 Agronomique Inst Nat Rech NOVEL O-ALPHA-GLUCOSYL FLAVONOIDS ON CYCLE B, PROCESS FOR OBTAINING AND USES
CN106434587B (en) * 2016-11-04 2019-07-02 南京工业大学 A kind of dextransucrase and its application
KR102585963B1 (en) * 2020-03-18 2023-10-05 한림대학교 산학협력단 Method for producing p-nitrophenyl-maltooligosaccharides with sugar transfer reaction of cyclodextrin glucanotransferase
KR20230064363A (en) 2021-11-03 2023-05-10 (주)아모레퍼시픽 Diglucoside of epigallocatechin gallate(EGCG) and method of producing the same
CN116515787B (en) * 2023-06-25 2023-09-15 海南大学三亚南繁研究院 Vietnam camellia oleifera glycosyltransferase CvUM7 and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000003189A (en) * 1998-06-26 2000-01-15 김도만 New oligosaccharide producing method using glucansucrases of leuconostoc mesenteroides mutant
KR20010046096A (en) * 1999-11-10 2001-06-05 김순택 Method for driving plasma display panel
WO2001073106A1 (en) 2000-03-28 2001-10-04 Ezaki Glico Co., Ltd. Process for producing glycosyl transfer product
WO2004013343A2 (en) 2002-08-06 2004-02-12 Danisco A/S Use of lactobacillus to produce exopolysaccharides in food and pharmaceutical compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000003189A (en) * 1998-06-26 2000-01-15 김도만 New oligosaccharide producing method using glucansucrases of leuconostoc mesenteroides mutant
KR20010046096A (en) * 1999-11-10 2001-06-05 김순택 Method for driving plasma display panel
WO2001073106A1 (en) 2000-03-28 2001-10-04 Ezaki Glico Co., Ltd. Process for producing glycosyl transfer product
US20030082751A1 (en) * 2000-03-28 2003-05-01 Shigetaka Okada Glycosyl transfer product
WO2004013343A2 (en) 2002-08-06 2004-02-12 Danisco A/S Use of lactobacillus to produce exopolysaccharides in food and pharmaceutical compositions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Mol. Cells(2002)Vol.13, pp.463-469. *
Phytochemistry(2002)Vol.60, pp 683-689. *

Also Published As

Publication number Publication date
KR20070073724A (en) 2007-07-10
KR20070028499A (en) 2007-03-12
KR20060063703A (en) 2006-06-12

Similar Documents

Publication Publication Date Title
KR100716797B1 (en) Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof
US5965412A (en) Kojibiose phosphorylase obtainable from Thermoanaerobium brockii, its preparation and uses
Park et al. Enzymatic synthesis of fructosyl oligosaccharides by levansucrase from Microbacterium laevaniformans ATCC 15953
JPH0649715B2 (en) Gluco-oligosaccharide having inositol residue bound to the terminal and method for producing the same
Sato et al. α-Anomer-selective glucosylation of (+)-catechin by the crude enzyme, showing glucosyl transfer activity, of Xanthomonas campestris WU-9701
KR100964944B1 (en) Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof
JP7000327B2 (en) Methods for Small Molecule Glycosylation
EP4349843A1 (en) Alpha-salidroside, and preparation method therefor and application thereof
JP2017123844A (en) Method for producing glycoside
CA2208707C (en) Novel aminooligosaccharide derivative and process for preparing the same
EP1967583A1 (en) Novel fructofuranosidase activity for obtaining the prebiotic oligosaccharide 6-kestose
Hashmi et al. Antimelanogenesis activity of polyphenol glycoside synthesized by transglycosylation reaction of CGTase from Xanthomonas Campestris
Biely et al. Enzymic α-galactosylation of a cyclic glucotetrasaccharide derived from alternan
Grizard et al. Enzymatic synthesis and structure determination of NEO‐FOS
JP6156947B2 (en) Method for producing glycoside
Koizumi et al. Enzymatic synthesis, isolation, and analysis of novel α-and β-galactosyl-cycloisomalto-octaoses
Shi et al. Approaches to biosynthesis of salidroside and its key metabolic enzymes
TWI837950B (en) Mangiferin glucoside and manufacuting method thereof
EP2978842B1 (en) Glucan branching enzymes and their methods of use
JP2019216633A (en) Glycoside production method
JP3916682B2 (en) Method for producing glycoside
US20070154996A1 (en) Method for transferring a glucosyl residue
KR100563232B1 (en) Method for Preparing Salicin Analogous, the Salicin Analogous therefrom and Blood Coagulation Control Composition Containing the Salicin Analogous
KR100511419B1 (en) beta-fructosyl-L-ascorbic acid and the preparation method thereof
KR100440191B1 (en) Ascorbic acid derivatives with antioxidnat activity and high stability and preparation method for the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130425

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140428

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150522

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160425

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190430

Year of fee payment: 13