KR20000003189A - New oligosaccharide producing method using glucansucrases of leuconostoc mesenteroides mutant - Google Patents
New oligosaccharide producing method using glucansucrases of leuconostoc mesenteroides mutant Download PDFInfo
- Publication number
- KR20000003189A KR20000003189A KR1019980024355A KR19980024355A KR20000003189A KR 20000003189 A KR20000003189 A KR 20000003189A KR 1019980024355 A KR1019980024355 A KR 1019980024355A KR 19980024355 A KR19980024355 A KR 19980024355A KR 20000003189 A KR20000003189 A KR 20000003189A
- Authority
- KR
- South Korea
- Prior art keywords
- receptor
- dextran
- 512fmcm
- maltose
- sucrase
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/04—Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/01—Hexosyltransferases (2.4.1)
- C12Y204/01005—Dextransucrase (2.4.1.5)
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
본 발명은 글루칸수크라제(glucansucrases)를 이용하여 신규한 올리고당을 생산하는 방법에 관한 것이다. 더욱 상세하게는, 본 발명은 L. mesenteroides의 돌연변이 균주로부터 얻은 덱스트란수크라제들과 말토오스, 겐티오바이오스, 라피노스 또는 락토오스를 수용체로 사용한 올리고당의 생산방법에 관한 것이다.The present invention relates to a method for producing novel oligosaccharides using glucansucrases. More specifically, the present invention relates to a method for producing oligosaccharides using dextran sucrases obtained from mutant strains of L. mesenteroides and maltose, genthiobio, raffinose or lactose as receptors.
올리고당은 감미료 이외에도 안정제, 응집제 및 소장내 유용균주의 생장촉진 제로 식품산업에 유용하게 사용되고 있다. 이 올리고당을 산업적 규모로 생산하기 위해 식물에서의 추출방법 및 식물성이나 미생물성 탄수화물 고분자의 산 또는 효소의 가수분해방법이 이용되고 있다. 또한 올리고당의 효소적 합성방법으로 덱스트란수크라제(dextransucrase)의 이용방법이 있다. Leuconostoc mesenteroides에서 얻어지는 덱스트란수크라제는 산업적으로 덱스트란을 합성하는 효소로서, 합성된 덱스트란은 주쇄에 글루코스 단위가 α1 - 6으로 연결되며 덱스트란수크라제의 종류에 따라 가지결합의 종류, 비율 및 길이가 각각 달라진다. 대부분의 L. mesenteroides dextransucrase는 효소 생산배지내에 설탕을 넣어 효소의 생산을 유도하여 주어야만 상징액중에 덱스트란이 생성되기 때문에 배지 상징액중의 효소가 덱스트란과 결합된 상태에 있으므로 효소정제시 덱스트란 제거를 위해 덱스트라나제를 처리해야하는 문제점을 갖는다. 본 발명자들은 상기의 문제점을 해결하기 위하여 L. mesenteroides B-742, B-1355, B-1299 또는 B-512FB 등으로부터 구조적 돌연변이 균주와, 진공 자외선 조사로 돌연변이를 유발한 B-512FMCM을 분리한바 있다(Kim,D. et al. 1997. Development of constitutive dextransucrase hyper-producing mutants of Leuconostoc mesenteroides using the synchroton radiation in the 70 - 1000 eV region. Biotechnol. Techniq. 11 : 319 - 321). B-512FMCM 덱스트란수크라제로부터 생합성된 덱스트란은 95%의 α1 - 6 결합에 5%의 α1 - 3 가지구조를 가진다. 또한 B-742CB 덱스트란수크라제는 모균주의 덱스트란수크라제와는 달리 α1 - 6의 주결합과 α1 - 2, α1 - 3 및 α1 - 4의 가지구조를 갖는 덱스트란을 합성하며, B-1355C 알터난수크라제(alternansucrase)는 α1 - 6과 α1 - 3으로 번갈아 결합한 구조의 다당류인 알터난(alternan)만을 선택적으로 생산한다.In addition to sweeteners, oligosaccharides are useful in the food industry as growth agents for stabilizers, flocculants and small intestine strains. In order to produce this oligosaccharide on an industrial scale, extraction methods from plants and hydrolysis methods of acids or enzymes of vegetable or microbial carbohydrate polymers are used. In addition, there is a method of using dextran sucrose (dextransucrase) as an enzymatic synthesis method of oligosaccharides. Dextran sucrase obtained from Leuconostoc mesenteroides is an enzyme that industrially synthesizes dextran. The synthesized dextran is composed of glucose units in the main chain with α1-6, and according to the type of dextran sucrase, Proportions and lengths vary respectively. Since most of L. mesenteroides dextransucrase must be added to the enzyme production medium to induce the production of enzymes, dextran is produced in the supernatant, so the enzyme in the medium supernatant is bound to dextran. There is a problem in that dextranase must be processed. In order to solve the above problems, the present inventors have isolated a structurally mutant strain from L. mesenteroides B-742, B-1355, B-1299 or B-512FB, and B-512FMCM, which is mutated by vacuum ultraviolet irradiation. (Kim, D. et al. 1997. Development of constitutive dextransucrase hyper-producing mutants of Leuconostoc mesenteroides using the synchroton radiation in the 70-1000 eV region. Biotechnol. Techniq. 11: 319-321). Dextran biosynthesized from B-512FMCM dextran sucrase has 5% α1-3 structure to 95% α1-6 bond. In addition, B-742CB dextran sucrase synthesizes dextran having main bonds of α1-6 and branched structures of α1-2, α1-3 and α1-4, unlike dextransucrase of the parent strain. B-1355C Alternasucrase selectively produces only alternating alkanes, polysaccharides of alternating structures of α1-6 and α1-3.
덱스트란수크라제는 덱스트란의 생합성과 더불어 효소반응액중에 설탕외에 다른 탄수화물이 첨가될 경우 설탕의 글루코스 단위를 첨가된 탄수화물에 전달하여 올리고당을 생산한다. 이때 첨가된 탄수화물을 수용체라 하며 이 반응을 수용체 반응이라고 한다. 수용체 반응에 관하여 가장 많이 연구된 B-512F 덱스트란수크라제의 경우 말토오스 또는 이소말토스를 수용체로 하여 일련의 올리고당을 포함하는 수용체 산물을 생산하지만 D-프럭토스, 락토오스 및 라피노스를 수용체로 사용할 경우에는 단 한가지의 수용체 산물만을 생산한다. 따라서, 본 발명자들은 상기의 효소정제의 문제점과 수용체 산물의 단일 생산성을 감안하여 안출한 것으로, 본 발명의 목적은 올리고당 생산균주의 돌연변이 균주인 B-512FMCM 덱스트란수크라제, B-742CB 덱스트란수크라제와 B-1355C 알터난수크라제를 사용하고 말토오스, 겐티오바이오스, 라피노스 및 락토오스를 수용체로 사용하여 신규한 구조의 다양한 수용체 산물(올리고당)을 생산함에 있다.Dextran sucrose, along with dextran biosynthesis, produces oligosaccharides by transferring glucose units of sugar to added carbohydrates when other carbohydrates are added to the enzyme reaction. At this time, the added carbohydrate is called a receptor and this reaction is called a receptor reaction. The most studied B-512F dextransucrase for receptor responses produces receptor products containing a series of oligosaccharides using maltose or isomaltose as receptors, but D-fructose, lactose and raffinose are used as receptors. In case it produces only one receptor product. Therefore, the present inventors have devised in view of the problems of the above enzyme purification and a single productivity of the receptor product, the object of the present invention is B-512FMCM dextran sucrase, B-742CB dextran, which is a mutant strain of an oligosaccharide producing strain It is used to produce various receptor products (oligosaccharides) of novel structure by using sucrase and B-1355C alternasu sucrose and maltose, genthiobio, raffinose and lactose as receptors.
본 발명의 상기 목적은 올리고당의 생산균주 L. mesenteroides의 구조적 돌연변이 균주로부터 얻은 B-512FMCM 덱스트란수크라제, B-742CB 덱스트란수크라제 또는 B-1355C 알터난수크라제와, 말토오스, 겐티오바이오스, 라피노스 및 락토오스를 수용체로 사용하여 설탕과 수용체의 비율 및 효소양의 조절에 따른 올리고당 생산성을 비교·분석하므로써 달성하였다.The above object of the present invention is a B-512FMCM dextran sucrase, B-742CB dextran sucrase or B-1355C alternan sucrase, maltose, genthio obtained from a structural mutant strain of L. mesenteroides producing oligosaccharides. Using bios, raffinose and lactose as receptors, this was achieved by comparing and analyzing oligosaccharide productivity according to the ratio of sugar and receptor and the amount of enzyme.
이하, 본 발명의 구성 및 작용을 상세히 설명한다.Hereinafter, the configuration and operation of the present invention will be described in detail.
도1은 B-512FMCM 덱스트란수크라제의 말토오스와의 수용체 반응 결과를 TLC로 분석한 사진이다.1 is a photograph of B-512FMCM dextran sucrase receptor reaction results with maltose by TLC.
도2는 B-512FMCM 덱스트란수크라제의 겐티오바이오스와의 수용체 반응 결과를 TLC로 분석한 사진이다.FIG. 2 is a photograph of B-512FMCM dextran sucrase receptor reaction with genthiobio.
도3은 B-512FMCM 덱스트란수크라제의 락토오스와의 수용체 반응 결과를 TLC로 분석한 사진이다.Figure 3 is a TLC analysis of the results of the receptor reaction of lactose of B-512FMCM dextran sucrase.
도4는 B-1355C 알터난수크라제의 라피노즈와의 수용체 반응 결과를 TLC로 분석한 사진이다.Figure 4 is a photograph of the reaction of the receptor reaction with raffinose of B-1355C Alterna sucrase by TLC.
도5는 말토오스, 겐티오바이오스, 락토오스와 수용체 산물을 구조분석한 TLC분석 사진이다.5 is a TLC analysis photograph of the structural analysis of maltose, genthiobiose, lactose and the receptor product.
본 발명은 Leuconostoc mesenteroides B-512FMCM, B-742CB, B-1355C균의 돌연변이 균주를 선택하고 이를 배양하여 덱스트란수크라제 또는 알터난수크라제를 생산하는 단계; 상기 각각의 균주에서 분리한 말토오스, 겐티오바이오스, 라피노스 및 락토오스 등의 수용체와 효소의 반응 단계; 및 상기 반응을 통해 얻은 수용체 산물인 올리고당을 메틸레이션시켜 구조 분석하는 단계로 이루어진다. 또한, 하기 실시예에 사용된 탄수화물은 시그마사(Sigma)에서 구입한 것을 사용하였다.The present invention comprises the steps of selecting the mutant strains of Leuconostoc mesenteroides B-512FMCM, B-742CB, B-1355C bacteria and culturing them to produce dextran sucrase or alternan sucrase; A reaction step of an enzyme and a receptor such as maltose, genthiobiose, raffinose and lactose isolated from the respective strains; And a step of methylation of the oligosaccharide which is a receptor product obtained through the reaction. In addition, the carbohydrate used in the following example used what was purchased from Sigma.
이하, 본 발명의 구성 및 작용은 실시예를 통하여 상세히 설명하지만 본 발명의 권리범위가 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the configuration and operation of the present invention will be described in detail by way of examples, but the scope of the present invention is not limited to these examples.
실시예 1. 돌연변이 균주의 선발 및 효소액의 조제Example 1 Selection of Mutant Strains and Preparation of Enzyme Solution
Kim 등의 방법(Kim,D.,et al. 1997., Biotechnol. Techniq. 11 : 319 - 321) 에 따라, Leuconostoc mesenteroides B-512FMC 및 그의 돌연변이 균주를 탄소원으로 2% 글루코스 또는 프럭토스를 함유한 LM 배지(1L의 증류수당 4g 이스트 추출물, 2g 펩톤, 0.2g MgSO4·7H2O, 0.015g CaCl2·2H2O, 0.01g FeSO4·7H2O, 0.01g NaCl, 2g K2HPO4, 0.01g MnSO4·H2O)에서 배양하고, 광전자 방출 쳄버(Photoemission Spectroscopy Beamline of the Pohang Light Source, Pohang, Korea)를 이용, 70eV 내지 1keV 범위의 에너지(UV와 X-선 사이에 놓여진 전자마그네틱(VUV) 광선)를 조사하여 변이를 유발시킨 후 돌연변이 균주 B-512FMCM을 얻었다. 또한 Leucomostoc mesenteroides B-742, B-1355는 USDA Northern Regional Laboratory(NRRL;Peoria, IL)에서 분양받아 탄소원으로 2중량부 글루코스를 포함한 하루지난 LM 배지(1L의 증류수당 4g 이스트 추출물, 2g 펩톤, 0.2g MgSO4·7H2O, 0.015g CaCl2·2H2O, 0.01g FeSO4·7H2O, 0.01g NaCl, 2g K2HPO4, 0.01g MnSO4·H2O)에서 28℃ 온도하에 각각 배양하여 약 3 x 107cell/mL 밀도로 배양시켰다. 각 세포를 현탁하고 살균된 100mM Sodium phosphate buffer(pH 7.0) 1.5mL로 2회 세척한 후, 돌연변이를 유발하기 위하여 세포 현탁액(15mL)에 ethyl methane sulfate(이하, EMS라 한다) 40㎕를 첨가하였다. EMS가 첨가된 세포 현탁액을 28℃에서 1시간 동안 인큐베이트 한 후, 세포 현탁액(1mL)을 살균된 10중량부 sodium thiosulfate 2mL에 옮겨 잔류 EMS를 제거하였다. 이렇게 처리된 세포를 원심분리(10.4(x)g) 하고, sodium phosphate buffer로 2회 세척한 다음, 2% 글루코스가 함유된 LM 아가배지위에 도말하였다. 콜로니들은 2% 글루코스 또는 프럭토스를 함유한 LM 배지에 접종하여 얻은 글루칸수크라제의 구조분석동안 선택하고, 28℃에서 24시간동안 인큐베이트 하였다. 배지 상청액을14C-수크로스를 이용한 방사선 활성 분석법(radioactive assay)으로 글루칸수크라제 활성분석을 통해 구조적 돌연변이체인 Leucomostoc mesenteroides B-742CB, B-1299CB 또는 B-1355C를 얻었다. 또한 상기 선발된 균주를 이용하여 Kim과 Robyt의 방법(Kim, D. and J. F. Robyt. 1994., Enzyme Microbiol Technical. 16 : 659-664)에 의하여 Leuconostoc mesenteroides B-512FMCM, B-742CB, B-1355C균을 배양하여 덱스트란수크라제 또는 알터난수크라제를 생산하여 정제하였다. 그리고 상기 B-512FMCM, B-742CB, B-1355C 돌연변이체들은 모두 광주광역시 북구 용봉동 300번지에 소재한 전남대학교 공과대학 생물과학공학과에서 보관하고 있으며, 특히 B-512FMCM 돌연변이체는 글리세롤 스톡(glycerol stock)형태로 보관되어 있다.According to Kim et al. (Kim, D., et al. 1997., Biotechnol. Techniq. 11: 319-321), Leuconostoc mesenteroides B-512FMC and its mutant strains contain 2% glucose or fructose as a carbon source. LM medium (4 g yeast extract per liter of distilled water, 2 g peptone, 0.2 g MgSO 4 · 7H 2 O, 0.015 g CaCl 2 · 2H 2 O, 0.01 g FeSO 4 · 7H 2 O, 0.01 g NaCl, 2 g K 2 HPO 4 Incubated in 0.01 g MnSO 4 H 2 O) and using an electron emission chamber (Photoemission Spectroscopy Beamline of the Pohang Light Source, Pohang, Korea), energy ranging from 70 eV to 1 keV (electrons placed between UV and X-rays). Magnetic (VUV) light) was used to induce mutations to obtain mutant strain B-512FMCM. In addition, Leucomostoc mesenteroides B-742 and B-1355 were distributed by the USDA Northern Regional Laboratory (NRRL; Peoria, IL), and were used as a carbon source. g MgSO 4 · 7H 2 O, 0.015g CaCl 2 · 2H 2 O, 0.01g FeSO 4 · 7H 2 O, 0.01g NaCl, 2g K 2 HPO 4 , 0.01g MnSO 4 · H 2 O) at 28 ° C. Each culture was incubated at a density of about 3 x 10 7 cell / mL. Each cell was suspended and washed twice with 1.5 mL of sterile 100 mM Sodium phosphate buffer (pH 7.0), and 40 μl of ethyl methane sulfate (hereinafter referred to as EMS) was added to the cell suspension (15 mL) to induce mutation. . After incubating the cell suspension added with EMS for 1 hour at 28 ° C., the cell suspension (1 mL) was transferred to 2 mL of sterilized 10 parts by weight sodium thiosulfate to remove residual EMS. The cells thus treated were centrifuged (10.4 (x) g), washed twice with sodium phosphate buffer, and then plated onto LM agar medium containing 2% glucose. Colonies were selected during structural analysis of glucans sucrase obtained by inoculation in LM medium containing 2% glucose or fructose and incubated at 28 ° C. for 24 hours. The medium supernatant was obtained by glucan sucrose activity analysis by radioactive assay using 14 C-sucrose, to obtain structural mutants Leucomostoc mesenteroides B-742CB, B-1299CB or B-1355C. In addition, Leuconostoc mesenteroides B-512FMCM, B-742CB, B-1355C by Kim and Robyt's method (Kim, D. and JF Robyt. 1994., Enzyme Microbiol Technical. 16: 659-664) using the selected strain. The bacteria were cultured to produce and purified dextran sucrose or alternan sucrose. The B-512FMCM, B-742CB, and B-1355C mutants are all stored in the Department of Biological Science and Engineering, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, and especially the B-512FMCM mutant is a glycerol stock. It is stored in the form.
실시예 2. 고정화 효모의 준비Example 2 Preparation of Immobilized Yeast
25중량부 이스트 현탁액 40mL을 35중량부 sodium acetate 용액 100mL과 혼합하였다. 이때 빠른교반으로 용액을 균일하게 한 후 기포를 제거하기 위하여 4℃에서 1시간 방치하였다. 준비된 yeast-alginate 용액을 교반중인 2중량부 염화칼슘 용액에 적하한 후 비드의 강도강화를 위해 2시간 더 교반하고 냉장보관하였다.40 mL of 25 parts by weight yeast suspension was mixed with 100 mL of 35 parts by weight sodium acetate solution. At this time, the solution was uniformed by rapid stirring and left at 4 ° C. for 1 hour to remove bubbles. The prepared yeast-alginate solution was added dropwise to the stirring 2 parts by weight calcium chloride solution, followed by further stirring for 2 hours to strengthen the strength of the beads and refrigerated.
실시예 3. 수용체 반응 검사Example 3. Receptor Response Test
실험예 1. B-512FMCM 덱스트란수크라제의 수용체 반응 검사Experimental Example 1. Receptor reaction test of B-512FMCM dextran sucrose
수용체 반응액은 20mM sodium acetate buffer(pH 5.2)에 녹여서 준비한 설탕과 수용체로서 말토오스, 겐티오바이오스, 라피노스 및 락토오스를 혼합하여 준비하였다. 총탄수화물 농도를 100mM로 고정한 후 수용체와 설탕비를 1/10, 1/5, 1/1, 4/1 및 10/1로 달리하고 상기 실시예 1에서 얻은 B-512FMCM 덱스트란수크라제를 사용하여 수용체 반응시킨 후, 수용체 산물의 종류 및 이의 수율에 따른 설탕과 수용체의 농도비의 영향을 조사하였다. 수용체로 말토오스를 사용한 경우, 도1과 표1에서 알 수 있듯이 말토오스/설탕(M/S)의 비율이 증가하면 수용체 산물수가 줄어들었다. 그리고, B-512FMCM 덱스트란수크라제의 겐티오바이오스와의 수용체 반응 결과는 도2 및 표2에서 볼 수 있듯이, 겐티오바이오스는 말토오스와 같은 반응양상을 보여 비율 1/1 이하에서는 일련의 수용체 산물들 즉, 62-α-D-glucopyranosylgentiobiose(PG3), 62-α-D-isomaltosylgentiobiose(PG4), 62-α-D-isomaltosylgentiobiose(PG5), 62-α-D-isomaltosylgentiobiose(PG6), 62-α-D-isomaltosylgentiobiose(PG7) 등이 생성되었으며, 비율 10/1이상에서는 단 두가지 수용체 산물인 62-α-D-glucopyranosylgentiobiose(PG3)과 62-α-D-glucopyranosylgentiobiose(PG4)만을 얻었고, 락토오스의 수용체 반응결과는 도3과 표3에서 볼 수 있듯이 단일 수용체 산물인 2'-α-D-glucopyranosyllactose(P13)만이 생성되었다. 또한 수용체 반응에 대한 효소양의 영향은 일정 총탄수화물 농도(100mM)에 수용체와 설탕비를 1/1로 고정한 후 상기 실시예 2에서 준비한 효소의 양을 각각 0.45, 4.5, 45, 90 및 450(U/digest)로 달리하여 넣어주었다. 이때, 효소의 1Unit는 1분당 효소 1mL당 설탕으로부터 유리되는 프럭토스의 마이크로몰수로 나타내었다. 그리고, 28℃에서 20시간 반응시킨 후 반응액 1㎕를 취하여 Merck K6F TLC plate에 점적한 후 니트로메탄/1-프로파놀/물이 각각 2/5/2.5의 부피비율로 혼합된 전개용액에서 전개하였다. 분리된 탄수화물의 성분은 TLC plate를 α-나프톨 0.5중량부과 황산 5중량부를 함유한 발색시약을 이용하여 확인하였다. 실험결과, 표4에서 알 수 있듯이 말토오스 수용체 반응의 경우 효소양이 증가함에 따라 수용체 산물의 수와 양이 증가하면서 덱스트란 생성량은 감소하였다. 그리고 겐티오바이오스 수용체 반응의 경우도 표5에서 알수 있듯이 말토오스의 경우와 같이 효소양의 증가에 따라 수용체 산물의 수와 양이 늘었으며 이에따라 덱스트란 생성량은 감소하였으나 생산된 수용체산물의 구조는 겐티오바이오스를 가지는 이소말토올리고당이었고, 락토오스의 경우는 표6에서 볼 수 있듯이, 효소양이 45U/digest까지 증가할 때는 수용체 산물의 양에 큰 변화가 없었으나 효소양이 45U/digest 이상으로 증가하면 덱스트란의 양은 34.5%로 급격히 감소하였다.Receptor reaction solution was prepared by mixing maltose, genthiobio, raffinose and lactose as sugar and the receptor prepared by dissolving in 20mM sodium acetate buffer (pH 5.2). After fixing the total carbohydrate concentration to 100 mM, the receptor and sugar ratio were changed to 1/10, 1/5, 1/1, 4/1 and 10/1, and B-512FMCM dextran sucrase obtained in Example 1 was used. After the receptor reaction, the effect of the concentration ratio of the sugar and the receptor on the type and yield of the receptor product was investigated. When maltose was used as a receptor, as shown in Fig. 1 and Table 1, the number of receptor products decreased as maltose / sugar (M / S) ratio increased. As shown in FIG. 2 and Table 2, the results of the receptor reaction of B-512FMCM dextran sucrase with genthiobios showed that the genthiobios exhibited the same behavior as maltose. Products: 6 2 -α-D-glucopyranosylgentiobiose (P G 3), 6 2 -α-D-isomaltosylgentiobiose (P G 4), 6 2 -α-D-isomaltosylgentiobiose (P G 5), 6 2 -α -D-isomaltosylgentiobiose (P G 6), 6 2 -α-D-isomaltosylgentiobiose (P G 7), etc. were generated, and at a ratio above 10/1, only two receptor products, 6 2 -α-D-glucopyranosylgentiobiose (P G 6), were produced. 3) and 6 2 -α-D-glucopyranosylgentiobiose (P G 4) were obtained only, and the result of the receptor reaction of lactose was shown to be a single receptor product 2'-α-D-glucopyranosyllactose (P 1 3). ) Was created. In addition, the effect of the amount of enzyme on the receptor reaction was fixed to a fixed total carbohydrate concentration (100mM) and the sugar ratio to 1/1 and the amount of enzyme prepared in Example 2 was 0.45, 4.5, 45, 90 and 450 ( U / digest). In this case, one unit of enzyme is expressed as the number of micromoles of fructose liberated from sugar per mL of enzyme per minute. After reacting at 28 ° C. for 20 hours, 1 μl of the reaction solution was added to the Merck K6F TLC plate, and then developed in a developing solution in which nitromethane / 1-propanol / water was mixed at a volume ratio of 2/5 / 2.5, respectively. It was. The components of the separated carbohydrates were identified by using a coloring reagent containing 0.5 parts by weight of α-naphthol and 5 parts by weight of sulfuric acid. As can be seen from Table 4, the amount of dextran production decreased as the amount of enzyme product increased as the amount of enzyme increased. As can be seen in Table 5, the number and amount of receptor products increased with the increase of the amount of enzyme as in the case of maltose, and the amount of dextran production decreased, but the structure of the produced receptor product was It was an isomaltoligosaccharide with bios and lactose, as shown in Table 6, when the amount of enzyme increased to 45 U / digest, there was no significant change in the amount of the product of the receptor, but when the amount of enzyme increased above 45 U / digest, The amount of tran was sharply reduced to 34.5%.
주 ; M/Sb는 말토오스 대 수크로스의 농도비율이다.Note; M / S b is the concentration ratio of maltose to sucrose.
주 ; G/Sb는 겐티오바이오스 대 수크로스의 농도비율이다.Note; G / S b is the ratio of genthiobios to sucrose.
주 ; L/Sb는 락토오스 대 수크로스의 농도비율이다.Note; L / S b is the ratio of lactose to sucrose.
실험예 2. B-742CB 덱스트란수크라제의 수용체 반응 검사Experimental Example 2. Receptor reaction test of B-742CB dextransukrase
수용체 반응액은 20mM sodium acetate buffer(pH 5.2)에 녹여서 준비한 설탕과 수용체로 말토오스, 겐티오바이오스, 라피노스 및 락토오스를 혼합하여 준비하였다. 총탄수화물 농도를 100mM로 고정한 후 수용체와 설탕비를 1/10, 1/5, 1/1, 4/1 및 10/1로 달리하고 상기 실시예 1에서 얻은 B-742CB 덱스트란수크라제를 사용하여 수용체 반응시킨 후, 수용체 산물의 종류 및 수율에 따른 설탕과 수용체의 농도비의 영향을 조사하였다. 실험결과, B-512FMCM 덱스트란수크라제의 경우와 큰 차이는 없었으나 표7에서 볼 수 있듯이 B-742CB 덱스트란수크라제는 락토오스를 이용하여 여러가지 수용체 산물을 합성하였다. 수용체와 설탕의 비율이 5/1의 경우는 한가지만의 수용체 산물이 합성되었고 덱스트란의 양은 29.4% 였다. 그리고 설탕의 양이 증가됨에 따라 덱스트란의 양은 증가되어 1/1의 비율에서는 가장 많은 덱스트란의 합성을 보였으며 그 이후 설탕의 양이 더욱 증가되면 덱스트란의 생성양은 감소하고 이당, 삼당 등의 작은크기의 올리고당의 생산양이 증가하였으며 종류도 증가하였다. 또한 라피노스의 경우 표8에서 볼 수 있듯이 수용체와 설탕의 비율이 5/1일 때 한가지 수용체산물만 생산되었고 설탕의 양이 1/5이상의 비율로 증가될 때에는 덱스트란의 양이 감소하였으며 이당, 삼당 등의 작은크기의 올리고당의 생산양은 증가하였다. 즉, B-742CB 덱스트란수크라제를 이용하여 라피노스를 포함하는 올리고당을 생산하였다.The receptor reaction solution was prepared by mixing maltose, genthiobio, raffinose and lactose with sugar prepared by dissolving in 20 mM sodium acetate buffer (pH 5.2). After fixing the total carbohydrate concentration at 100 mM, the receptor and sugar ratio were changed to 1/10, 1/5, 1/1, 4/1, and 10/1, and B-742CB dextran sucrase obtained in Example 1 was used. After the receptor reaction, the effect of concentration ratio of sugar and receptor on the type and yield of receptor product was investigated. As a result, B-512FMCM dextran sucrase was not significantly different from the case, but as shown in Table 7, B-742CB dextran sucrase synthesized various receptor products using lactose. When the ratio of receptor to sugar was 5/1, only one receptor product was synthesized and the amount of dextran was 29.4%. As the amount of sugar increased, the amount of dextran increased, showing the most synthesis of dextran at the ratio of 1/1. After that, when the amount of sugar increased further, the amount of dextran produced decreased and disaccharide, trisaccharide, etc. The production of small sized oligosaccharides was increased and the types were increased. In addition, as shown in Table 8, only one receptor product was produced when the ratio of receptor to sugar was 5/1, and the amount of dextran decreased when the amount of sugar increased by more than 1/5. The production of oligosaccharides of small size, etc., increased. That is, oligosaccharides containing raffinose were produced using B-742CB dextran sucrose.
주 ; L/Sb는 락토오스 대 수크로스의 농도비율이다.Note; L / S b is the ratio of lactose to sucrose.
주 ; R/Sb는 라피노스 대 수크로스의 농도비율이다.Note; R / S b is the ratio of raffinose to sucrose.
실험예 3. B-1355C 알터난수크라제의 수용체 반응Experimental Example 3 Receptor Reaction of B-1355C Alternasucrase
상기 실험예2와 동일한 방법으로 상기 실시예 1에서 얻은 B-1355C 알터난수크라제를 사용한 수용체 반응을 검사하였다. 실험결과, 도4 및 표9에서 볼 수 있듯이, 라피노스 수용체 반응에서 설탕의 농도가 수용체보다 크게 증가할 경우 라피노스를 포함한 올리고당을 합성하였다. 또한 알터난수크라제는 첫번째 수용체 산물로서 22-α-D-glucopyranosyl raffinose와 더불어 32-α-D-glucopyranosyl raffinose를 생성하고, 비환원 말단의 글루코스에 α1 - 6구조로 글루코스를 결합한 올리고당을 생산하였다.In the same manner as in Experimental Example 2, the receptor reaction using the B-1355C alternace sukrase obtained in Example 1 was examined. As a result, as shown in Figure 4 and Table 9, when the concentration of sugar in the raffinose receptor reaction significantly increased than the receptor oligosaccharide containing raffinose was synthesized. In addition to α1 Alter random sucrase generates 3 2 -α-D-glucopyranosyl raffinose with 2 2 -α-D-glucopyranosyl raffinose as the first acceptor product, and the ratio of the reducing end glucose-oligosaccharides bound glucose to 6 structure Produced.
주 ; R/Sb는 라피노스 대 수크로스의 농도비율이다.Note; R / S b is the ratio of raffinose to sucrose.
실시예 4. 올리고당의 분리Example 4. Isolation of Oligosaccharides
상기 실시예3의 실험예 1 내지 3에서의 반응용액중의 불필요한 성분인 D-프럭토스는 상기 실시예 2에서 준비된 고정화 이스트를 반응액과 실온에서 반응시켜 제거하였고, 반응중에 합성된 덱스트란은 반응액의 2배 부피의 에탄올을 이용하여 침전시킨 후 원심분리(6000xg, 30분)하여 제거하였다. 상징액은 rotary evaporator로 농축한 후 동결 건조하였다. 5% 농도의 건조시료 2mL을 활성탄 칼럼에 주입하여 에탄올의 단계별 농도구배(2 ~ 16중량부)를 통해 올리고당을 크기별로 순수 분리하였다.D-fructose, which is an unnecessary component in the reaction solutions in Experimental Examples 1 to 3 of Example 3, was removed by reacting the immobilized yeast prepared in Example 2 with the reaction solution at room temperature, and dextran synthesized during the reaction was The precipitate was precipitated using twice the volume of ethanol and then centrifuged (6000xg, 30 minutes) to remove. The supernatant was concentrated by rotary evaporator and freeze-dried. 2 mL of a dry sample of 5% concentration was injected into the activated carbon column to separate pure oligosaccharides by size through the concentration gradient of ethanol (2 to 16 parts by weight).
실시예 5. 올리고당의 구조분석Example 5. Structural Analysis of Oligosaccharides
상기 실시예 4에서 분리한 올리고당들을 메틸레이션 분석법을 이용하여 구조분석 하였다. 즉, 건조된 올리고당 10㎎을 0.8mL Me2SO로 교반하여 녹였다. 이 용액은 튜브에 옮겨서 Hakomori 시약을 첨가하고 septum으로 막아 밤새 녹인후 iodomethane 0.2mL을 첨가하여 2시간 반응시켰다. 여기에 물 4mL을 첨가 혼합한 혼합액을 2mL CHCl3로 세 번 추출한 후 Na2S2O3결정 2-3 조각을 첨가하여 둔탁한 색을 제거하고 10mL의 물로 두번 추출하였다. CHCl3층을 공기로 말린후 4M CF3CO2H 1mL을 첨가한 용액을 캡튜브에 옮겨 121℃에서 30분간 가열하고 60℃에서 건조시켜 TLC로 분석하였다. 그리고 상기 말토오스를 비롯한 상기의 수용체 산물을 메틸레이션하고 산가수분해 하여 TLC로 분석하였다. 실험결과, 도5에서 볼 수 있듯이 말토오스의 메틸레이션 결과 산물은 설탕의 D-글루코스가 수용체의 비환원말단에 α(1-6)으로 결합한 62-α-D-glucopyranosyl maltose 였다. 그리고, 겐티오바이오스 의 메틸레이션 결과 산물은 설탕의 D-글루코스가 수용체의 비환원말단에 α(1-6) 결합한 62-α-D-glucopyranosylgentiobiose 였다. 락토오스의 경우는 설탕의 D-글루코스가 수용체의 환원말단인 글루코스에 α(1-2)으로 결합한 21-α-D-glucopyranosyl lactose였다.The oligosaccharides isolated in Example 4 were structurally analyzed using methylation analysis. That is, 10 mg of the dried oligosaccharide was dissolved by stirring with 0.8 mL Me 2 SO. The solution was transferred to a tube, added with Hakomori reagent, blocked with septum, dissolved overnight, and then reacted for 2 hours by adding 0.2 mL of iodomethane. 4 mL of water was added thereto, and the mixed solution was extracted three times with 2 mL CHCl 3 , followed by adding 2-3 pieces of Na 2 S 2 O 3 crystals to remove the dull color, and then extracted twice with 10 mL of water. After drying the CHCl 3 layer with air, the solution to which 1 mL of 4M CF 3 CO 2 H was added was transferred to a cap tube, heated at 121 ° C. for 30 minutes, dried at 60 ° C., and analyzed by TLC. And the receptor product including the maltose was methylated and acid hydrolyzed and analyzed by TLC. As shown in FIG. 5, the product of maltose methylation resulted in 6 2 -α-D-glucopyranosyl maltose in which D-glucose of sugar was bonded to α (1-6) at the non-reducing end of the receptor. The product of methylation of genthiobio was 6 2 -α-D-glucopyranosylgentiobiose, in which D-glucose of sugar was α (1-6) bound to the non-reducing end of the receptor. In the case of lactose, it was 2 1 -α-D-glucopyranosyl lactose in which D-glucose of sugar binds α (1-2) to glucose, the reducing end of the receptor.
본 발명은 상기의 실시예를 통하여 알 수 있는바와 같이, 올리고당 생산균주의 구조적 돌연변이 균주에서 얻은 B-512FMCM 덱스트란수크라제, B-742CB 덱스트란수크라제 또는 B-1355C 알터난수크라제를 사용하여 말토오스, 겐티오바이오스, 라피노스 및 락토오스의 수용체 반응을 수행하므로써 별도의 효소 정제과정을 생략할 수 있는 효과가 있고, 또한 본 발명의 올리고당 생산방법은 효소적으로만 합성될 수 있는 신규한 구조의 다양한 올리고당을 합성하는 효과가 있으므로 식품산업상 매우 유용한 발명인 것이다.As can be seen from the above examples, B-512FMCM dextran sucrase, B-742CB dextran sucrase, or B-1355C alternace sukrase obtained from structural mutant strains of oligosaccharide producing strains By carrying out the receptor reaction of maltose, genthiobio, raffinose and lactose using the effect of eliminating the separate enzyme purification process, the oligosaccharide production method of the present invention is also a novel structure that can be synthesized only enzymatically Because of the effect of synthesizing various oligosaccharides is a very useful invention in the food industry.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980024355A KR20000003189A (en) | 1998-06-26 | 1998-06-26 | New oligosaccharide producing method using glucansucrases of leuconostoc mesenteroides mutant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980024355A KR20000003189A (en) | 1998-06-26 | 1998-06-26 | New oligosaccharide producing method using glucansucrases of leuconostoc mesenteroides mutant |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20000003189A true KR20000003189A (en) | 2000-01-15 |
Family
ID=19540938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980024355A KR20000003189A (en) | 1998-06-26 | 1998-06-26 | New oligosaccharide producing method using glucansucrases of leuconostoc mesenteroides mutant |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20000003189A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100337144B1 (en) * | 2000-01-26 | 2002-05-18 | 서진호 | Process for the preparation of kimchi producing oligosaccharide and fructose |
KR100453576B1 (en) * | 2001-02-14 | 2004-10-20 | 김도만 | Method for the production of thermostable and acid-stable oligosaccharide by using dextransucrase |
KR100716797B1 (en) * | 2004-12-03 | 2007-05-14 | 전남대학교산학협력단 | Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof |
KR20170070825A (en) * | 2015-12-14 | 2017-06-22 | 서울대학교산학협력단 | Method for producing oligosaccharide-rich molasses, oligosaccharide-rich molasses produced by the same and use thereof |
KR20180055735A (en) | 2016-11-17 | 2018-05-25 | 서울대학교산학협력단 | Synthesis method of stevioside glucosides using modified Leuconostoc and Novel stevioside glucosides made by the same |
-
1998
- 1998-06-26 KR KR1019980024355A patent/KR20000003189A/en not_active Application Discontinuation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100337144B1 (en) * | 2000-01-26 | 2002-05-18 | 서진호 | Process for the preparation of kimchi producing oligosaccharide and fructose |
KR100453576B1 (en) * | 2001-02-14 | 2004-10-20 | 김도만 | Method for the production of thermostable and acid-stable oligosaccharide by using dextransucrase |
KR100716797B1 (en) * | 2004-12-03 | 2007-05-14 | 전남대학교산학협력단 | Method for preparing derivatives of glyco-compounds by using glycosyltransferases and the derivatives thereof |
KR20170070825A (en) * | 2015-12-14 | 2017-06-22 | 서울대학교산학협력단 | Method for producing oligosaccharide-rich molasses, oligosaccharide-rich molasses produced by the same and use thereof |
KR20180055735A (en) | 2016-11-17 | 2018-05-25 | 서울대학교산학협력단 | Synthesis method of stevioside glucosides using modified Leuconostoc and Novel stevioside glucosides made by the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5789209A (en) | Rapid screening method to select microorganism strains that produce a high proportion of alternan to dextran | |
CN101415834A (en) | Method of producing sialylated oligosaccharides | |
Hancock et al. | In vitro synthesis of the unit that links teichoic acid to peptidoglycan | |
Jann et al. | 4‐Amino‐4, 6‐Dideoxyhexoses Isolated from Lipopolysaccharides of Escherichia coli | |
KR20000003189A (en) | New oligosaccharide producing method using glucansucrases of leuconostoc mesenteroides mutant | |
US5057418A (en) | Process for the preparation of difructose dianhydride iii | |
Sarvas et al. | Biosynthesis of T1 antigen in Salmonella: origin of D-galactofuranose and D-ribofuranose residues | |
Dols et al. | Characterization of dextransucrases from Leuconostoc mesenteroides NRRL B-1299 | |
Kim et al. | Development of constitutive dextransucrase hyper-producing mutants of Leuconostoc mesenteroides using the synchrotron radiation in the 70-1000 eV region | |
JPS58170493A (en) | Preparation of 3'-deoxyguanosine | |
WO1989001043A1 (en) | Process and enzyme for preparing cyclodextrins, especially alpha-cyclodextrin | |
Kobayashi et al. | Biochemical Studies on Sulfate-Reducing Bacteria: XIV. Enzyme Levels of Adenylylsulfate Reductase, Inorganic Pyrophosphatase, Sulfite Reductase, Hydrogenase, and Adenosine Triphosphatase in Cells Grown on Sulfate, Sulfite, and Thiosulfate | |
US5334514A (en) | Process for the production of activated sialic acids | |
Sirisansaneeyakul et al. | Production of β-Fructofuranosidase from Aspergillus niger ATCC 20611 | |
JP3647873B2 (en) | Novel deaminoneuraminidase and production method thereof | |
US5750389A (en) | Purified saccharose-synthase, process for its production and its use | |
US5827714A (en) | β-galactoside-α-2, 6-sialyltransferase, and a process for producing from Photobacterium | |
US7413886B2 (en) | Process for producing phosphorylase | |
KR100260849B1 (en) | Leuconostoc mesen-teroides cbi-110 and metho for preparing alternan using this | |
KR970002253B1 (en) | MICROORGANISM PRODUCING 5óÑ-GUANYL ACID | |
KR100233988B1 (en) | Method for development of microorganism using vacuum ultraviolet | |
CN118421729A (en) | Method for synthesizing lactose-N-disaccharide by double-bacterium co-culture fermentation | |
Yu | Optimization of culture conditions for the production of pyrimidine nucleotide N-ribosidase from Pseudomonas oleovorans | |
KR970000588B1 (en) | Microorganism producing gmp | |
KR970000587B1 (en) | Microorganism producing gmp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |