KR100692881B1 - 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치 및 방법 - Google Patents

구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치 및 방법 Download PDF

Info

Publication number
KR100692881B1
KR100692881B1 KR1020007012571A KR20007012571A KR100692881B1 KR 100692881 B1 KR100692881 B1 KR 100692881B1 KR 1020007012571 A KR1020007012571 A KR 1020007012571A KR 20007012571 A KR20007012571 A KR 20007012571A KR 100692881 B1 KR100692881 B1 KR 100692881B1
Authority
KR
South Korea
Prior art keywords
surface layer
undercut
width
structured
coil
Prior art date
Application number
KR1020007012571A
Other languages
English (en)
Other versions
KR20010043488A (ko
Inventor
벡커폴커
라머프란츠
쉴프안드레아
Original Assignee
로베르트 보쉬 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 로베르트 보쉬 게엠베하 filed Critical 로베르트 보쉬 게엠베하
Publication of KR20010043488A publication Critical patent/KR20010043488A/ko
Application granted granted Critical
Publication of KR100692881B1 publication Critical patent/KR100692881B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/10Inductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0035Testing
    • B81C99/004Testing during manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Drying Of Semiconductors (AREA)
  • Pressure Sensors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

본 발명은 희생층(21) 상에 구조화된 표면층(23)의 적어도 부분적 측방향 언더컷의 폭을 결정하기 위한 장치 및 방법에 관한 것이다. 이를 위해, 구조화된 표면층(23)은 부분적으로, 적어도 하나의 패시브 전자 부품(31)을 가지며, 상기 부품(31)에 의해 측방향 언더컷의 폭에 비례하는 물리적 측정값이 검출될 수 있다. 상기 장치를 형성하기 위한 본 발명에 따른 방법에 의해, 구조화된 표면층(23) 상에서 표면층(21)의 적어도 일부에는 제 1 에칭 방법으로 구조화에 의해 트렌치(15')가 제공되며, 구조화된 표면층(23)의 적어도 일부는 제 2 에칭 방법으로 상기 트렌치(15')로부터 출발하여 측방향 언더컷이 실행된다. 제 1 에칭 방법으로, 적어도 하나의 패시브 전자 부품(31)이 표면층(23)의 일부로부터 추가로 구조화되며,상기 패시브 전자 부품(31)은 상기 표면층(23)의 추후 언더컷시 마찬가지로 언더컷된다. 물리적인 측정 변수는 바람직하게는 전자기 방사선이 패시브 부품(31) 내로 조사됨으로써 무접촉으로 검출된다.
표면층, 희생층, 기본층, 수동 전자 부품, 제 1 신호, 제 2 신호, 수신기, 송신기, 처리 장치, 코일

Description

구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치 및 방법{Device And Method For Determining The Lateral Undercut Of A Structured Surface Layer}
본 발명은 독립항의 특징에 따라, 구조화된 표면층의 적어도 부분적인 측방향 언더컷의 폭을 결정하기 위한 장치 및 방법에 관한 것이다.
실리콘층 내에 제공된 표면 마이크로 공학적 구조물을 플루오르화수소산 증기로 에칭하고, 실리콘으로 이루어진 구조화된 표면층의 언더컷을 달성하기 위해 이산화규소로 이루어진 희생층을, 구조화할 표면층 하부에 도포하는 것은 공지되어 있다. 플루오르화수소산 증기는 희생층의 에칭시, 구조화된 표면층의 순수하게 시간이 제어된 언더컷을 일으키므로, 예컨대 표면층 내에 있는 센서 구조물의 규정된 노출을 위해 희생층에서 이루어진 각각의 언더컷 폭은 플루오르화수소산 증기 언더컷이 진행되는 동안 바로 측정될 수 없거나, 에칭 동안 통제가 불가능하다. 따라서, 항상 의도와는 달리 너무 짧거나 너무 길게 에칭될 위험이 존재한다. 특히 너무 긴 에칭으로 인해, 예컨대 기판으로부터 구조물이 분리됨으로써, 웨이퍼 상의 구조물이 파괴될 수 있다.
따라서 본 발명의 과제는 언더컷 동안 구조화된 표면층에서 이루어진 언더컷의 폭을 측정할 수 있는 방법 및, 이 방법을 실행하기에 적합한 장치를 제공하는데 있다.
독립항의 특징을 갖는 본 발명에 따른 방법 및 장치는 종래 기술에 비해, 구조화된 표면층의 측방향 언더컷 폭이, 희생층의 에칭에 의해 원 위치에서, 즉 언더컷 동안, 시간의 함수로서 결정되고 따라서 시간이 제어되고 조정될 수 있다는 장점을 갖는다.
이를 위해, 상기 표면층으로부터 부분적으로 적어도 하나의 패시브 전자 부품이 추가로 구조화되며, 상기 부품은 표면층의 언더컷시 마찬가지로 언더컷되고 언더컷시 언더컷의 폭에 비례하는 물리적인 측정값이 상기 부품에 의해 결정된다.
본 발명의 바람직한 실시예는 종속항에 언급된 특징에 제시된다.
상기 물리적 측정값이 커패시턴스, 흡수된 또는 방사된 전자기 방사선의 세기, 흡수된 또는 방사된 주파수, 특히 공진 주파수, 또는 전자기 방사선의 흡수된 또는 방사된 주파수 스펙트럼인 것이 매우 바람직하다. 적어도 하나의 송신기에 의해 제 1 신호가 적합하게 방사되며, 상기 제 1 신호와 패시브 전자 부품은 상호 작용한다. 제 2 신호가 발생하거나 제 1 신호가 제 2 신호로 변형되며, 상기 제 2 신호는 재차 적어도 하나의 수신기에 의해 검출된다. 물리적 측정값 및 이에 비례하는 언더컷은 제 2 신호로부터, 또는 제 1 신호와 제 2 신호간의 차이로부터 검출된다.
송신기 및 수신기는 바람직하게는 에칭 챔버 외부에 배치되며, 특히 HF-증기, ClF3, XeF2 와 같은 침식성 에칭 가스에 의한 에칭 침식에 대해 보호될 수 있다. 따라서 동시에 매우 바람직하게는, 패시브 전자 부품의 복잡한 결선 및 접촉은 필요없게 된다. 이로써 패시브 부품과 송신기 또는 수신기의 상호 작용은 바람직하게 무접촉으로 이루어진다.
상기 송신기 및 수신기가 하나의 부품, 특히 하나의 처리 유닛 내에 통합되거나, 및/또는 송신기가 동시에 수신기일 경우에 특히 바람직하다. 특히 후자의 경우 매우 바람직하게 상기 송신기의 전기적 특성 파라미터는 간단한 방식으로 검출되거나 평가될 수 있다. 상기 송신기의 파라미터는, 예컨대 내부 전압들과 전류들 또는 내부 전압과 전류들 사이의 위상과 같은 전자기 방사선장의 변화에 반응한다.
제 1 신호로는 특히 바람직하게 패시브 전자 부품에 결합된 또는 인가된 전기 전압, 전자기 방사선의 조사된 또는 유도된 세기, 또는 특히 바람직하게는 패시브 전자 부품 내로 조사되거나 또는 유도되어 연속적으로 또는 펄스 방식으로 방사된 프리세팅된 주파수 또는 프리세팅된 주파수 스펙트럼의 고주파 출력 또는 전자기 방사선의 처프된 고주파 펄스 시퀀스가 적합하다.
또한 제 2 신호는 바람직하게 전압, 전자기 방사선의 흡수된 또는 방사된 세기, 또는 흡수된 또는 방사된 주파수, 특히 공진 주파수 또는 전자기 방사선의 주파수 스펙트럼이다.
또한 패시브 전자 부품이, 구조화되고 적어도 부분적으로 언더컷될 표면층으로부터 추가로 구조화된 코일일 경우 특히 바람직하며, 상기 코일은 그 아래에 위치한 기본층과 함께 동시에 커패시터를 형성하며, 커패시터에서 희생층은 유전체로서 사용된다. 상기 커패시터의 커패시턴스(C)는 구조화된 표면층의 측방향 언더컷의 결정될 폭에 비례한다. 따라서 코일, 그리고 이 코일과 그 아래에 위치한 기본층으로 형성된 커패시터는 공진 주파수(f0)를 갖는 LC-공진 회로이며, 상기 공진 주파수(f0)의 변화(△f0)는 표면층의 부분적 측방향 언더컷의 결정될 폭에 비례한다. 패시브 전자 부품으로서 추가로 구조화된 코일의 두 코일 단부 중 적어도 하나의 폭은, 상기 코일 단부의 완전한 언더컷이 행해지지 않도록 설계된다. 따라서 코일의 적어도 한 쪽은 기본층의 고정되며 예컨대 아래로 떨어지지 않는다.
기본층에 대한 재료로는 특히 실리콘 또는 실리콘 웨이퍼가 적합하다. 표면층은 바람직하게 마찬가지로 실리콘 또는 폴리 실리콘으로 구성되며, 상기 실리콘은 예컨대 전기적 특성의 개선을 위해 도핑되거나 및/또는 표면이 금속 증착될 수 있다. 희생층으로는 바람직하게 적어도, 패시브 전자 부품 또는 코일의 영역 내의, 이산화 규소와 같은 전기 절연성 재료가 적합하다.
본 발명에 따른 방법은 특히 규정된 언더컷에 적합한데, 특히 HF-증기의 증기상, 또는 예컨대 ClF3, BrF3 또는 XeF2를 갖는 기상에 적합하며, 이로써 구조화된 표면층 내에 센서 구조물을 생성하기에 적합하다. 이는 통상적으로 예컨대 수성 플루오르화수소산과 같은 액상 에칭 매체에 사용되기에 적합하다. 왜냐하면, 예컨대 고주파 방사선이 전해질 내로 조사되는 것은 강한 방사선 댐핑으로 인해 어려워지기 때문이다.
본 발명의 실시예는 도면에 의해 하기에서 더 자세히 설명된다.
도 1은 구조화된 표면층을 갖는 층 구조의 단면도.
도 2는 도 1에 대한 평면도.
도 3은 추가의 외부 부품 그룹을 갖는, 도 1에 따른 층 구조의 추가 실시예의 도면.
도 1은 구조화된 표면층(23), 희생층(21) 및 기본층(20)을 갖는 층 구조를 도시한다. 상기 표면층(23)은 표면이 금속 증착된 실리콘 또는 폴리실리콘으로 구성되며, 희생층(21)은 이산화 규소로, 기본층(20)은 실리콘 웨이퍼로 형성된다. 상기와 같은 구조는 예컨대 독일 특허 출원 제 DE 198 47455.5 호에 이미 공지되어 있다. 또한 표면층(23)으로부터 부분적으로 적어도 하나의 패시브 전자 부품(31)이 코일(30)의 형태로 구조화되며, 상기 코일(30)은 제 1 코일 단부(13)와 제 2 코일 단부(12) 및 코일 권선(14)을 가지며, 코일 권선(14)은, 표면층(23)에서 구조화되며 희생층(21)까지 이르는 트렌치(15)에 의해 서로 분리된다. 제 1 코일 단부(13)는 콘택 홀(22)에 의해 기본층(20)에 연결되며, 기본층(20)은 도전성을 갖는다. 따라서 인덕턴스(L)를 갖는 코일(30)은 기본층(20)과 함께 커패시턴스(C) 및 유전체로서의 희생층(21)을 갖는 커패시터를 형성한다.
또한 구조화된 표면층(23)으로부터 언더컷되거나 노출될 적어도 하나의 구조물(11)은 트렌치(15')에 의해 구조화되며, 상기 트렌치(15')의 깊이는 희생층(21)에까지 이른다. 실제로 상기 표면층(23)으로부터 경우에 따라 상이한 다수의 구조물(11)이 구조화되지만, 통상적으로 최대 몇몇의 패시브 전자 부품(31) 만으로 측방향 언더컷의 폭을 결정하기에 충분하다. 구조물(11)의 형태는 어떠한 제한도 없다. 노출될 구조물(11)은 마이크로 공진 미러, 센서 또는 단지 표면층(23)의 영역 의 형태를 갖는다. 특히 상기 구조물(11)은 트렌치(15')에 의해 둘러싸이지 않아도 되며, 단지 예컨대 홀로서 형성될 수 있는 트렌치(15')에 의해서만 구조물(11)의 측방향 언더컷이 가능한 것으로도 충분하다.
도 2는 도 1에 대한 평면도이며, 여기서 코일(30)은 예컨대 구조물(11)의 바로 옆에 배치되며, 구조물(11)은 완전히 또는 부분적으로 언더컷될 플레이트(11)이다. 이때 언더컷의 폭은 패시브 전자 부품(31)에 의해, 또는 코일(30)에 의해 결정될 수 있다. 또한 제 1 및 제 2 코일 단부(12, 13)는 각각 코일 권선(14)에 비해 큰 면적으로 형성될 수 있으며, 이에 따라 코일 단부(12 또는 13) 중 적어도 하나의 완전한 언더컷을 피할 수 있다. 상기 코일 단부(12, 13)의 치수, 코일 권선(14)의 수, 트렌치(15, 15')의 폭, 그리고 도 2에서 직각의 곡류 형태로 형성된 코일(30)의 형태는 개별적 경우에서 언더컷의 결정될 측방향 폭에 의해 생긴다. 이러한 크기에 관련해서 볼 때 도 1 내지 도 3은 척도에 맞지 않다고 할 수 있다. 특히 코일(30)의 권선은 나선형으로 형성되며, 코일 단부(12, 13)가 차지하는 표면은 구조물(11)의 표면보다 훨씬 더 클 수 있으며 트렌치(15)의 폭은 구조물(11)의 폭에 비교될 수 있다. 당업자는 구체적인 경우에 간단한 실험과 예비 실험에 의해 개별 부품의 적합한 치수를 알 수 있다. 여기서 치수는 예컨대 작동할 수 있는 주파수 영역에 의해 좌우된다.
도 3은 추가의 외부 부품을 갖는 도 1의 변형예를 도시한다. 여기서 외부 송신기(43)에 의해 제 1 신호가 방사되며, 상기 신호는 패시브 전자 부품(31) 또는 코일(30)과 상호 작용하고 이를 통해 제 1 신호를 제 2 신호로 변형하거나, 또는 제 2 신호를 방사한다. 수신기(44)는 제 2 신호를 수신한다. 송신기(43) 및 수신기(44)는 연속적으로(송신과 수신을 동시에) 교대로(송신과 수신을 교대로) 작동할 수 있다. 또한 공지된 방식으로 제 2 신호로부터 또는 제 1 신호와 제 2 신호간의 차이로부터 물리학적 측정값을 측정하는 상관기(45)가 제공된다. 도 3에서 송신기(43), 수신기(44) 및 상관기(45)가 처리 유닛(40)을 형성하며, 상기 처리 유닛(40)은, 실리콘 웨이퍼 외부에 배치되고 전자기 방사선에 의해 코일(30) 또는 상기 코일(30) 및 기본층(20)으로 형성된 공진 회로와 무접촉으로 상호 작용한다. 이로써 상기 처리 유닛(40)은 에칭 시스템 외부에 배치될 수도 있으며 거기서 특히 침식성 에칭 매체의 침식에 노출되지 않는다. 따라서, 코일(30)과의 결선은 필요하지 않다.
도 3은 구조화된 표면층(23)의 언더컷이 희생층(21)의 에칭에 의해, 예컨대 공지된 방식으로 플루오르화수소산 증기로 트렌치 바닥(15, 15')에서 에칭 영역(50, 50')으로부터 시작되는 것을 도시한다.
개별적으로, 도 1에 따라 설명된 실시예에서 기본층(20)인 실리콘 웨이퍼 위에는 희생층(21)인 이산화 규소층이 도포된다. 상기 희생층(21) 위에는 실리콘 또는 폴리실리콘으로 이루어진 표면층(23)이 도포되며, 상기 표면층(23)의 표면은 금속 증착된다. 이어서 상기 표면층(23)은 공지된 방식으로 마스킹에 의해 구조화되며, 깊이가 희생층(21)에까지 이르는 트렌치(15, 15')가 표면층(23)에서 에칭된다. 트렌치(15')는 언더컷될, 특히 노출된 적어도 하나의 구조물(11)을 둘러싼다. 동시에 표면층(23)의 구조화를 위한 에칭 프로세스에 의해, 하나 또는 다수의 패시브 전자 부품(31)이 코일(30)의 형태로 표면층(23) 내로 에칭되거나, 또는 상기 표면층(23)으로부터 구조화됨으로써, 다수의 코일 권선(14)이 상기 표면층(23)의 실리콘 내에 형성되며, 상기 코일 권선(14)은 노출될 구조물(11)과 마찬가지로 동일한 희생 산화물 형태 또는 동일한 희생층(23) 위에 배치된다.
코일(30)의 제 1 코일 단부(13) 또는 제 2 코일 단부(12)는 추가로 접촉홀의 형태인 콘택 홀(22)에 의해 기본층(20)에 전기 접속된다(도 1 참조). 대안으로서, 2 개의 코일 단부(12, 13) 중 적어도 하나는, 언더컷시 노출될 구조물(11)이 완전히 언더컷되지 않을 정도로 넓혀지므로, 상기 코일(30)의 적어도 한 쪽 면은 희생층(21)에 고정된다(도 3 참조). 또한 두 코일(12, 13)은 언더컷시 완전히 언더컷되지 않도록 처리될 수 있다. 상기 코일 단부(12, 13) 중 하나가 넓혀지지 않고, 노출할 구조물(11)의 언더컷시에 완전히 언더컷되면, 언더컷의 종료 후 코일(30)의 자체 지지 구성을 얻을 수 있다. 이는 각각 다른 코일 단부가 넓혀지거나, 또는 특히 바람직하게 콘택 홀(22)에 의해 기본층(20)에 연결될 경우에 가능한 것이다. 콘택 홀(22)에 의해 기본층(20)에 연결된 코일 단부와 넓혀진 코일 단부의 결합이 특히 바람직하게 제조될 수 있다.
희생층(21)의 이산화 규소 상에 배치되어 있는 코일 권선(14)은 기본층(20) 쪽으로, 코일 권선(14)의 길이에 걸쳐서 분포된 커패시턴스(C)를 갖는 커패시터를 형성한다. 코일(30)은 전기 도체로서 동시에 인덕턴스(L)를 가지므로, 모든 경우 공진 회로가 생성되며, 상기 공진 회로의 공진 주파수(f0)는 인덕턴스(L) 및 커패시턴스(C)에 의해 하기의 수학식 1로 주어진다.
Figure 112000023684186-pct00001
바람직한 실시예에서 표면층(23)의 표면은 코일(30)의 영역에서 예컨대 알루미늄, AlSiCu 또는 AlSi에 의해 금속 증착되며, 이러한 금속 증착은 동시에 구조물(11)을 위한 접촉 재료로서 사용될 수도 있다. 이러한 금속 증착에 의해 코일 권선(14)의 옴 저항은 상당히 감소하므로, 형성된 LC-공진 회로의 가능한한 높은 공진값이 달성된다. 따라서, 형성된 공진 회로의 공진 주파수는 낮은 전기 댐핑으로 인한 높은 공진값에 의해 확실히 규정된다.
공기의 유전율 εair = 1 에 비한 3.88의 이산화 규소(εoxid)의 유전율로 인해, 커패시터의 커패시턴스(C)는, 희생층(21)이 코일(30) 또는 코일 단부(14 ,13) 아래에서 측방향 언더컷에 의해 플루오르화수소산 증기로 에칭되어 공기 또는 플루오르화수소산 증기로 대체될 정도로 감소한다. 따라서 유전체로서의 희생층(21)은 언더컷시 지속적으로 그 유효 유전율을 변경시키며, 언더컷의 함수로서 조정되는 유효 유전율은 코일(30)의 언더컷의 측방향 범위에 비례한다. 상기 코일(30) 및 기본층(20)에 의해 형성된 커패시터의 커패시턴스(C)의 변경에 대해서는 하기 수학식 2가 적용된다.
Figure 112000023684186-pct00002
여기서, ΔA는 코일(30)의 하부에 제공된, 언더컷에 의해 제거된 희생층(21)의 표면을 나타내고, d는 코일(30)과 기본층(20)의 간격, 다시 말해 원래 존재하는 희생층(21)의 두께를 나타낸다.
따라서 코일(30)의 언더컷의 측정된 측방향 폭은 구조물(11)의 언더컷의 측방향 폭에 대한 척도이다.
공진 회로의 커패시턴스(ΔC)의 변화는 재차 LC-공진 회로의 공진 주파수의 변화(Δf0)에 의해 매우 정확하게 측정될 수 있으며, 이때 1차 근사값에는 하기 수학식 3이 적용된다.
Figure 112000023684186-pct00003
공진 회로의 공진 주파수(f0) 또는 진전된 언더컷에 의한 상기 주파수의 변화(Δf0)에 대한 측정 기술상 검출은 공지된 다양한 방식으로 이루어질 수 있다. 조사된 또는 유도된 고주파 출력의 공진 흡수 및 재방사는 매우 바람직하다. 이를 위해 예컨대 도 3에 따라 처리 유닛(40)으로서의 소위 "그리드-디퍼(Grid-Dipper)"에 의해 플루오르화수소산 증기 내 언더컷시 이를 위해 사용된 에칭 장치로 고주파가 조사되며, 상기 장치의 주파수 위치는 수동 또는 자동으로 변한다. 자동 변경의 경우는 "주파수-스위프(frequency-sweep)" 또는 "워블(wobble)"이다. 공진의 경우, 즉 외부로부터 인가되거나 조사된 주파수가 공진 회로의 공진 주파수와 일치하는 경우, 상기 공진 회로는 검출된 적어도 하나의 특성화된 전기적 또는 물리적 측정값의 변화를 일으킨다. 따라서 패시브 전기 부품(31)에 의한 또는, 코일(30) 및 기본층(20)으로 형성된 LC-공진 회로에 의한 공진 흡수는 외부의 고주파 방사선장으로부터 이미터측에, 즉 송신기(43)에 전압, 전류 또는 전압과 전류 사이의 위상을 변경시키며, 상기 변경은 측정값으로서 송신기(43) 자체에서 검출될 수 있다. 이를 위해서는 예컨대 조사되거나 유도된 고주파를 발생시키는 고주파 발생기로서 사용되는 발진관(전극관)의 그리드 전류가 적합하며, 상기 발진관의 그리드 전류(grid)는 외부 공진 회로에 의해 공진이 발생하는 경우 강하하여 양호하게 측정될 수 있기 때문에, 이러한 발진관으로부터 상기 측정 장치에 대해 "그리드-디퍼"라는 명칭이 도출된다.
그러나 조사된 고주파수에 의해 외부 공진 회로에 공진이 일어나고, 방사선장으로부터 에너지가 얻어질 때, 트랜지스터 발진기에서도 상응하는 전기 값이 나타난다. 상술한 실시예 내에서 공진 흡수에 의한 방사선장의 변화는 항상, 각각 공지된 다양한 방법으로 검출되며 예컨대 그 주파수와 관련하여 정확하게 측정될 수 있다.
또 다른 실시예, 특히 공진 회로의 공진 주파수 측정을 위한 실시예에서, 코일(30)로 형성된 공진 회로 내에서 소위 "처프(chirped)" 고주파 펄스, 즉 프리세팅된 시간 함수(예컨대 선형 함수)에 의해 급속히 변하는 주파수를 가진 고주파 펄스는 도 3에 따른 처리 유닛(40)의 송신기(43)를 통해 조사된다. 이 경우 처프된 고주파 펄스의 소인(sweepd) 고주파 범위는, 형성된 공진 회로의 공진 주파수도 소인하며, 따라서 조사된 펄스가 지속되는 동안 언제라도 상기 공진 회로는 공진되어 여자된다. 각각의 고주파 펄스가 처프된 다음, 송신 포즈(pause)시 수신기(44)에 의해 공진 회로로 인한 전자기 방사의 방사가 측정되고("Echo") 조사된 공진 주파수의 값, 측정할 측방향 언더컷에 재차 비례하는, 공진 회로의 공진 주파수의 값이 표준 주파수 측정 방법으로 검출된다.
또 다른 실시예에서는, 상술한 실시예가 변형되어, 처프된 일련의 고주파 펄스 대신 일련의 광대역 잡음 펄스가 즉, 구조화된 코일(30)로 형성된 공진 회로의 공진 주파수를 실리콘 웨이퍼 상에 포함하는 통계적 주파수 스펙트럼으로부터의 펄스가 송신기(43)로부터 표면층(23)의 표면으로 조사된다. 각 잡음 펄스의 끝에는 상술한 바와 같이, 송신 포즈시 LC-공진 회로로부터 방사된 고주파 출력("Echo")이 수신기(44)에 의해 다시 검출되고, 처리 유닛(40)에서는 그 주파수에 관하여 평가된다. 따라서 공진 회로는 그 공진 주파수에 이르자마자, 조사되는 동안 에너지를 흡수한 다음, 다시 상기 주파수로 방사한다. 펄스 포즈 동안에는 강한 송신 신호가 중첩되지 않기 때문에 재방사("Echo")이 매우 쉽게 검출될 수 있다.
상기 실시예에서, 물리적 측정값인 공진 주파수 또는 공진 회로의 공진 주파수 변동은 측방향 언더컷의 측정될 폭에 비례한다.
결국 송신기(43)에 의해 광대역 잡음 스펙트럼이 지속적으로 조사될 수 있고, 상기 잡음 스펙트럼은 송신기(44)를 사용하여 지속적으로 검출될 수 있다. LC-공진 회로의 방사는 그 공진 주파수 주변의 좁은 대역 내에서 이루어지기 때문에, 이 경우 중첩된 송신 신호는 LC-공진 회로의 방사에 의해 확실하고 간단하게 분리될 수 있으며 상기 방사가 식별될 수 있다.
분명하게, 공진 회로의 공진 주파수 외에도, 공진 회로에 의해 흡수되거나 방사된 전자기 방사의 세기 또는, 언더컷의 함수인 방사선장 내의 위상 변동도 물리적 측정값으로서 적합하다.

Claims (22)

  1. 희생층(21) 상에 구조화된 표면층(23)의 적어도 부분적인 측방향 언더컷의 폭을 결정하기 위한 장치에 있어서,
    상기 구조화된 표면층(23)은 부분적으로 적어도 하나의 패시브 전자 부품(31)을 포함하며, 상기 부품(31)에 의해 측방향 언더컷의 폭에 비례하는 물리적 측정값이 검출될 수 있는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치.
  2. 제 1 항에 있어서, 상기 물리적 측정값은 커패시턴스, 흡수된 또는 방사된 전자기 방사선의 세기, 흡수된 또는 방사된 주파수, 특히 공진 주파수, 또는 전자기 방사선의 흡수된 또는 방사된 주파수 스펙트럼인 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치.
  3. 제 1 항에 있어서, 제 1 신호를 방사하는 적어도 하나의 송신기(43), 및 제 2 신호를 검출하는 적어도 하나의 수신기(44)가 제공되며, 상기 패시브 전자 부품(31)은 상기 제 1 신호와 상호 작용하여 상기 제 2 신호를 발생시키거나 상기 제 1 신호를 제 2 신호로 변형시키는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치.
  4. 제 3 항에 있어서, 상기 물리적 측정값은 상기 제 2 신호로부터, 또는 상기 제 1 신호와 상기 제 2 신호 간의 차이로부터 결정될 수 있는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치.
  5. 제 3 항에 있어서, 상기 송신기(43)와 상기 수신기(44)는 하나의 부품, 특히 처리 유닛(40) 내에 통합되고 또는 상기 송신기(43)는 동시에 상기 수신기(44)인 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치.
  6. 제 3 항에 있어서, 상기 제 1 신호는 상기 패시브 전자 부품(31)에 인가된 전압, 전자기 방사선의 세기, 상기 패시브 전자 부품(31) 내로 조사되어 연속적으로 또는 펄스 방식으로 방사된 프리세팅된(preset) 주파수 또는 프리세팅된 주파수 스펙트럼의 고주파 출력 또는 전자기 방사선의 처프(chirped) 고주파 펄스 시퀀스 또는 광대역 잡음 펄스이며, 상기 제 2 신호는 전압, 흡수된 또는 방사된 전자기 방사선의 세기, 주파수, 특히 공진 주파수, 또는 전자기 방사선의 주파수 스펙트럼인 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치.
  7. 제 1 항에 있어서, 상기 패시브 전자 부품(31)은, 제 1 코일 단부(13) 및 제 2 코일 단부(12)를 포함하고, 상기 표면층(23)으로부터 구조화된 코일(30)이며, 기본층(20)을 갖는 상기 코일(30)은 유전체로서 희생층(21)을 갖는 커패시터를 형성하고, 상기 커패시터의 커패시턴스(C)는 상기 표면층(23)의 측방향 언더컷의 결정될 폭에 비례하는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치.
  8. 제 7 항에 있어서, 상기 코일(30)은 그 커패시턴스(C)와 함께, 공진 주파수(f0)를 가진 공진 회로를 형성하며, 상기 공진 주파수(f0)의 변화(△f0)는 상기 표면층(23)의 측방향 언더컷의 결정될 폭에 비례하는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치.
  9. 제 7 항에 있어서, 상기 코일 단부(12, 13) 중 하나를 상기 기본층(20)에 연결하는 콘택 홀(22)이 제공되는 것을 특징으로 하는 장치.
  10. 제 7 항에 있어서, 상기 코일 단부(12, 13) 중 적어도 하나의 폭은, 상기 코일 단부(12, 13)의 완전한 언더컷이 행해지지 않도록 설계되는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치.
  11. 제 1 항에 있어서, 상기 구조화된 표면층(23)은 적어도 상기 패시브 전자 부품(31)의 영역에서 상기 희생층(21)에 의해 상기 기본층(20)으로부터 분리되는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치.
  12. 제 11 항에 있어서, 상기 기본층(20)은 실리콘 또는 폴리 실리콘으로 구성되거나 실리콘 웨이퍼인 것을 특징으로 하는 장치.
  13. 제 1 항에 있어서, 상기 표면층(23)은 적어도 상기 패시브 전자 부품(31)의 영역에서 도전되며, 실리콘 또는 폴리실리콘으로 구성되거나, 표면이 금속 증착되거나 도핑된 실리콘 또는 폴리실리콘으로 구성되는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치.
  14. 제 1 항에 있어서, 상기 희생층(21)은 적어도 상기 패시브 전자 부품(31)의 영역에서 전기적으로 절연되며, 산화 규소층으로 이루어지는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치.
  15. 제 1 항에 있어서, 상기 표면층(23)에는 깊이가 상기 희생층(21)에까지 이르는 트렌치(15, 15')가 제공되는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치.
  16. 제 15 항에 있어서, 상기 트렌치(15)는 상기 표면층(23)에서 언더컷될 구조물(11)을 제한하는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치.
  17. 희생층(21) 상에 구조화된 표면층(23)의 측방향 언더컷의 폭을 결정하기 위한 방법으로서, 표면층(21)의 적어도 일부에는 제 1 에칭 방법으로 구조화에 의해 트렌치(15')가 제공되며, 구조화된 표면층(23)의 적어도 일부는 제 2 에칭 방법으로 상기 트렌치(15')로부터 출발하여 측방향 언더컷이 실행되는, 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 방법에 있어서,
    제 1 에칭 방법으로, 적어도 하나의 패시브 전자 부품(31)이 상기 표면층(23)의 일부로부터 추가로 구조화되며, 상기 패시브 전자 부품(31)은 상기 표면층(23)의 언더컷시 마찬가지로 언더컷되고, 언더컷의 폭에 비례하는 물리적 측정값은 언더컷시에 상기 패시브 전자 부품에 의해 결정되는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 방법.
  18. 제 17 항에 있어서, 상기 표면층(23)의 구조화는 마스킹에 의해 이루어지는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 방법.
  19. 제 17 항에 있어서, 상기 희생층(21)은 기본층(20) 상에 도포되는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 방법.
  20. 제 17 항에 있어서, 상기 부품(31)의 구조화는 상기 트렌치(15)의 에칭에 의해 이루어지는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 방법.
  21. 제 17 항에 있어서, 상기 코일(30)은 패시브 전자 부품(31)으로서 상기 표면층(23)으로부터 구조화되는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 방법.
  22. 제 21 항에 있어서, 상기 코일(30)의 언더컷시 상기 코일(30)에 의해 형성된 공진 회로의 공진 주파수가 측정되며, 이로부터 측방향 언더컷의 폭이 결정되는 것을 특징으로 하는 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 방법.
KR1020007012571A 1999-03-12 2000-03-13 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치 및 방법 KR100692881B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19910983A DE19910983A1 (de) 1999-03-12 1999-03-12 Vorrichtung und Verfahren zur Bestimmung der lateralen Unterätzung einer strukturierten Oberflächenschicht
DE19910983.4 1999-03-12

Publications (2)

Publication Number Publication Date
KR20010043488A KR20010043488A (ko) 2001-05-25
KR100692881B1 true KR100692881B1 (ko) 2007-03-12

Family

ID=7900685

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020007012571A KR100692881B1 (ko) 1999-03-12 2000-03-13 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치 및 방법

Country Status (6)

Country Link
US (1) US6911348B1 (ko)
EP (1) EP1080492B1 (ko)
JP (1) JP2002539639A (ko)
KR (1) KR100692881B1 (ko)
DE (2) DE19910983A1 (ko)
WO (1) WO2000055899A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19941042A1 (de) * 1999-08-28 2001-03-15 Bosch Gmbh Robert Verfahren zur Herstellung oberflächenmikromechanischer Strukturen durch Ätzung mit einem dampfförmigen, flußsäurehaltigen Ätzmedium
WO2003044863A1 (en) * 2001-11-20 2003-05-30 The Regents Of The University Of California Methods of fabricating highly conductive regions in semiconductor substrates for radio frequency applications
GB0615343D0 (en) * 2006-08-02 2006-09-13 Point 35 Microstructures Ltd Improved etch process
EP2202197B1 (en) * 2008-12-29 2014-03-05 Imec Method for testing MEMS devices
US10546780B2 (en) * 2016-09-07 2020-01-28 Texas Instruments Incorporated Methods and apparatus for scribe seal structures

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039370A (en) * 1975-06-23 1977-08-02 Rca Corporation Optically monitoring the undercutting of a layer being etched
US5126284A (en) * 1991-10-25 1992-06-30 Curran Patrick A Method of inductively contacting semiconductor regions
WO1994017558A1 (en) * 1993-01-29 1994-08-04 The Regents Of The University Of California Monolithic passive component
US5466614A (en) * 1993-09-20 1995-11-14 At&T Global Information Solutions Company Structure and method for remotely measuring process data
TW359019B (en) * 1995-06-08 1999-05-21 Niigata Seimitsu Co Ltd Semiconductor device
US5739909A (en) * 1995-10-10 1998-04-14 Lucent Technologies Inc. Measurement and control of linewidths in periodic structures using spectroscopic ellipsometry
US6008713A (en) * 1996-02-29 1999-12-28 Texas Instruments Incorporated Monolithic inductor
SE510443C2 (sv) * 1996-05-31 1999-05-25 Ericsson Telefon Ab L M Induktorer för integrerade kretsar
DE19847455A1 (de) 1998-10-15 2000-04-27 Bosch Gmbh Robert Verfahren zur Bearbeitung von Silizium mittels Ätzprozessen

Also Published As

Publication number Publication date
DE50015718D1 (de) 2009-10-01
EP1080492A1 (de) 2001-03-07
DE19910983A1 (de) 2000-09-21
WO2000055899A1 (de) 2000-09-21
JP2002539639A (ja) 2002-11-19
KR20010043488A (ko) 2001-05-25
US6911348B1 (en) 2005-06-28
EP1080492B1 (de) 2009-08-19

Similar Documents

Publication Publication Date Title
US11114321B2 (en) Apparatus and method for real-time sensing of properties in industrial manufacturing equipment
CN110325869B (zh) 金刚石磁传感器
US11646210B2 (en) Reduced interference, real-time sensing of properties in manufacturing equipment
KR101142308B1 (ko) 플라즈마 모니터링 장치, 플라즈마 모니터링 방법, 및 플라즈마 장치
DE19853135B4 (de) Vorrichtung und Verfahren zur drahtlosen Druckmessung
US9087677B2 (en) Methods of electrical signaling in an ion energy analyzer
JP6825129B2 (ja) プラズマ発生器
US6356097B1 (en) Capacitive probe for in situ measurement of wafer DC bias voltage
JP2020008566A5 (ko)
KR960039250A (ko) 막 두께 변화를 인-시투 모니터링하는 장치 및 방법
JP2009532916A (ja) Pifプロービング構成を用いるプラズマ処理の制御
KR100692881B1 (ko) 구조화된 표면층의 측방향 언더컷의 폭을 결정하기 위한 장치 및 방법
US10772182B2 (en) Device for producing a non-thermal atmospheric-pressure plasma and method for the frequency control of a piezoelectric transformer
RU2107927C1 (ru) Устройство для измерения расстояния посредством ультразвука
KR102434039B1 (ko) 절연 오일로 채워져 있는 하우징을 갖는 전기 장치와, 이러한 전기 장치를 모니터링하기 위한 측정 장치 및 방법
EP0541775B1 (en) Acoustic web edge sensor
CN113471094A (zh) 一种膜厚测量方法和化学机械抛光设备
CN111566459A (zh) 探针单元
JP4129419B2 (ja) 路面状態判別方法およびその装置
JP2009192497A (ja) 表面電位測定方法および表面電位計
US10866133B2 (en) Capacitive limit level switch
JP2893391B2 (ja) プラズマパラメータ測定装置
KR101916702B1 (ko) 컷오프 프로브를 이용한 정자기장 측정 방법
US7187191B2 (en) Sensor device for determining the layer thickness of a thin layer
JPS5839307B2 (ja) コタイマイクロハソウチ

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee