KR100689154B1 - Refractory materials for mgo-c brick - Google Patents

Refractory materials for mgo-c brick Download PDF

Info

Publication number
KR100689154B1
KR100689154B1 KR1020050127620A KR20050127620A KR100689154B1 KR 100689154 B1 KR100689154 B1 KR 100689154B1 KR 1020050127620 A KR1020050127620 A KR 1020050127620A KR 20050127620 A KR20050127620 A KR 20050127620A KR 100689154 B1 KR100689154 B1 KR 100689154B1
Authority
KR
South Korea
Prior art keywords
carbon
magnesia
weight
graphite
corrosion resistance
Prior art date
Application number
KR1020050127620A
Other languages
Korean (ko)
Inventor
홍기곤
조문규
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020050127620A priority Critical patent/KR100689154B1/en
Application granted granted Critical
Publication of KR100689154B1 publication Critical patent/KR100689154B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/606Agents for neutralising Ca(OH)2 liberated during cement hardening
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A magnesia-carbon material based refractory composition for refractory bricks is provided to show excellent corrosion resistance and oxidation resistance to steel species having high oxygen content and be employed as interior material for furnace parts such converter or ladle by comprising nano-carbon, flake graphite and magnesia clinker as the residue. The refractory composition comprises: 1 to 20wt.% of flake graphite with more than 98% of purity; 1 to 10wt.% of nano-carbon having specific surface area of 5 to 10 times compared to the flake graphite; and magnesia clinker as the residue of the composition, in addition to, liquid and solid phenol resin, metal and inorganic anti-oxidant. The produced composition is used to manufacture a magnesia-carbon based refractory brick which has excellent corrosion resistance and oxidation resistance in case of treating steel species having high oxygen content or non-deoxidized steels and improves durability of furnace parts such as convert or ladle.

Description

내식성 및 내산화성이 우수한 마그네시아-카본질 내화벽돌용 내화조성물{Refractory materials for MgO-C brick}Refractory materials for MgO-C brick with excellent corrosion resistance and oxidation resistance

도 1은 본원 발명의 실시 예와 비교 예의 비교 결과를 나타내는 도면이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the comparison result of the Example of this invention, and a comparative example.

본원 발명은 마그네시아-카본질 내화벽돌용 내화조성물에 관한 것으로서, 더욱 상세하게는 전로(Converter)나 래들(Ladle) 등의 노체용 내장 내화물로 사용되는 것으로서 산소 함유량이 높은 강종에 대한 내산화성이 우수한 마그네시아-카본질 내화벽돌용 내화조성물에 관한 것이다.The present invention relates to a refractory composition for magnesia-carbon refractory bricks, and more particularly, to be used as an internal refractories for furnaces such as converters or ladles, and has excellent oxidation resistance to steel grades having high oxygen content. A fireproof composition for magnesia-carbon refractory bricks.

최근 고급강의 제조 및 전로에 부하 경감을 목적으로 석회 또는 소오다계 플럭스 투입에 의한 용손 및 탈규, 탈인, 탈황과 같은 노외정련이 활발히 진행되고 있는데, 상기 플럭스 투입 및 노외정련은 수강온도의 상승, 용강체류시간의 연장, 강한 교반등을 수반하므로 래들용 내장 내화물이 커다란 손상을 받게된다. 특히, 래들의 슬래그 라인에 일반적으로 사용되고 있는 MgO-C질 내화벽돌은 상기한 플럭스의 투입 및 노외정련 시에 급열급냉에 의한 열적스폴링, 슬래그의 침윤에 의한 구조적 스폴링, 슬래그와의 반응에 의한 저융점 화합물의 생성, 용강의 와류에 의 한 기계적인 마모 및 카본의 산화반응 등에 의하여 심한 손상을 받게 된다.Recently, in order to reduce the load on the manufacture of high-grade steel and to reduce the load, external furnace refining such as melting loss, desulfurization, dephosphorization, and desulfurization by lime or soda-based flux injection is actively progressed. Due to the prolonged molten steel retention time and strong stirring, the internal refractories for the ladle are subject to great damage. In particular, MgO-C quality refractory bricks commonly used in the slag line of the ladle are subjected to thermal spalling by rapid quenching, structural spalling by infiltration of slag, and reaction with slag during the introduction and fluxing of the flux. The low melting point compound, the mechanical wear caused by the vortex of molten steel and the oxidation reaction of carbon are severely damaged.

이러한 이유로 마그네시아-카본(MgO-C)질 내화벽돌의 내식성 증진을 위해서 종래기술에서는 어스펙트 비(aspect ratio)를 조정한 구상 흑연을 사용(JP 00246272)하거나 피치로 열처리한 메소페이스(mesophase) 탄소분말을 사용(JP 00342456)하는 방법 등이 사용되어 왔다.For this reason, in order to improve the corrosion resistance of magnesia-carbon (MgO-C) fire-resistant bricks, in the prior art, spherical graphite with an adjusted aspect ratio (JP 00246272) or pitch-treated mesophase carbon The method of using powder (JP 00342456), etc. has been used.

그러나, 상술한 바와 같은 종래기술의 마그네시아-카본질 내화벽돌의 내식성 증진방법은 고 산소강이나 미탈산강을 처리하는 노체에 사용될 경우에는 카본의 산화를 효과적으로 억제하지 못하여 마그네시아-카본질 내화벽돌의 내식성이 급격히 저하되는 문제점을 가진다. 또한, 카본의 산화로 생성된 산화층의 소결성이 미약하여 용강의 와류에 의한 마모저항성을 저하시키거나 슬래그(Slag)에 의한 침윤을 증가시키는 문제가 있다.However, the above-described method of improving the corrosion resistance of the magnesia-carbon refractory brick of the prior art does not effectively inhibit the oxidation of carbon when used in a furnace treating high oxygen steel or mithalated acid steel, and thus the corrosion resistance of the magnesia-carbon refractory brick. This has a problem of sharply lowering. In addition, there is a problem in that the sintering property of the oxide layer produced by the oxidation of carbon is weak, thereby reducing the wear resistance caused by the vortex of molten steel or increasing the infiltration by slag.

따라서 상술한 바와 같이 어스펙트 비(aspect ratio)를 조정한 구상 흑연을 사용(JP 00246272)하거나 피치로 열처리한 메소페이스(mesophase) 탄소분말을 사용(JP 00342456)하는 방법 등에서 발생하는 문제점을 해결하기 위하여 일본 공개특허공보 평10-226573호는 금속유기화합물이나 금속염 등을 액체상태로 하여 탄소 성형체의 표면에 코팅하는 방법을 제시하고 있다.Therefore, to solve the problems caused by the use of spherical graphite with an adjusted aspect ratio as described above (JP 00246272) or using mesophase carbon powder heat treated to pitch (JP 00342456). Japanese Patent Laid-Open No. Hei 10-226573 discloses a method of coating a surface of a carbon molded body with a metal organic compound or a metal salt in a liquid state.

그러나 이 경우에는 원료가 매우 고가라는 약점과 더불어 표면에 형성된 코팅층이 쉽게 손상될 수 있다는 문제점을 가진다.However, in this case, there is a problem that the coating layer formed on the surface can be easily damaged with the disadvantage that the raw material is very expensive.

따라서 본원 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로서, 산소 함유량이 높은 강종에 대한 내산화성을 증진시킴으로써 전로(Convert)나 래들(Ladle) 등의 노체에 사용되는 경우 노체의 수명을 향상시킬 수 있도록 하는 내식성 및 내산화성이 우수한 마그네시아-카본질 내화벽돌 내화조성물을 제공하는 것을 그 목적으로 한다.Therefore, the present invention is to solve the above-mentioned problems of the prior art, by improving the oxidation resistance for steel species with high oxygen content to improve the life of the furnace body when used in a furnace such as a converter (Convert) or ladle (Ladle) It is an object of the present invention to provide a magnesia-carbon refractory brick refractory composition having excellent corrosion resistance and oxidation resistance.

상술한 목적을 달성하기 위한 본원 발명의 내식성 및 내산화성이 우수한 마그네시아-카본질 내화벽돌 내화조성물은, 인상 흑연과의 비표면적 비가 5~20배인 나노 카본이 1~10 중량% 및 인상 흑연이 1~20 중량% 이고 잔부는 마그네시아 클링커이며, 액상 및 고상 페놀수지와 금속 및 무기산화방지제로 구성되는 것을 특징으로 한다.The magnesia-carbon refractory brick refractory composition excellent in corrosion resistance and oxidation resistance of the present invention for achieving the above object has 1 to 10% by weight of nano carbon having a specific surface area ratio of 5 to 20 times and 1 to 1 weight of graphite graphite. It is ˜20% by weight and the balance is magnesia clinker, characterized by consisting of liquid and solid phenolic resins and metals and inorganic antioxidants.

상술한 본원 발명에서 마그네시아-카본질 내화벽돌의 결합제 및 산화방지제의 종류 및 함량에 대해서는 특별히 한정하는 것은 없으며 통상의 것을 사용할 수 있다.In the present invention described above, the type and content of the binder and the antioxidant of the magnesia-carbon refractory brick are not particularly limited and conventional ones may be used.

본원 발명에서 상기 인상 흑연으로서는 특별히 한정하는 것은 없으나, 제조상의 용이성과 분산성을 고려하여 비표면적이 0.5m2/g인 것이 바람직하다. 또한, 불순물에 의한 영향을 최소화 하기 위해서 순도가 98% 이상인 것이 바람직하다.Although it does not specifically limit as said pulling graphite in this invention, It is preferable that a specific surface area is 0.5 m <2> / g in consideration of ease of manufacture and dispersibility. In addition, the purity is preferably 98% or more in order to minimize the influence of impurities.

본원 발명에서 상기 나노 카본의 비표면적은 인상 흑연의 5~20배가 되는 것이 바람직하다. 비표면적이 5배 이하가 되면 혼련시 나노 카본의 응집물이 분산되지 않아서 혼련 불균일성을 일으키기 때문이다. 또한, 나노 카본의 비표면적이 인 상 흑연의 20배 이상이 되면 혼련시 결합제 흡입으로 결합제의 증량이 필요하며 결과적으로 결합제 소실시 기공율 증가로 마그네시아-카본질 내화벽돌의 내식성이 저하된다.In the present invention, the specific surface area of the nano carbon is preferably 5 to 20 times that of the graphite graphite. This is because when the specific surface area is 5 times or less, aggregates of nano carbon are not dispersed during kneading, causing kneading nonuniformity. In addition, when the specific surface area of the nano-carbon is more than 20 times that of the phosphate graphite, it is necessary to increase the binder by inhaling the binder during kneading.

본원 발명의 내화 조성물에 첨가되는 상기 나노 카본의 함유량은 1~10중량% 인 것이 바람직하다. 나노 카본의 함유량이 1~ 10중량% 이하가 되면 마그네시아-카본질 내화벽돌 중에 나노 카본이 차지하는 유효 부피가 작아서 내식성 증진효과가 발현되지 않는다. 또한, 나노 카본의 함유량이 10중량% 이상이 되면 내산화성이 취약한 나노 카본 고유의 특성 때문에 마그네시아-카본질 내화벽돌의 고산소 용강에 의한 내식성이 저하된다.It is preferable that content of the said nano carbon added to the fireproof composition of this invention is 1-10 weight%. When the content of the nano carbon is 1 to 10% by weight or less, the effective volume occupied by the nano carbon in the magnesia-carbon refractory brick is small so that the effect of improving corrosion resistance is not expressed. In addition, when the content of the nano carbon is 10% by weight or more, corrosion resistance due to the high oxygen molten steel of the magnesia-carbon refractory brick decreases due to the inherent properties of the nano carbon, which are poor in oxidation resistance.

본원 발명의 내화 조성물에 첨가되는 상기 인상 흑연의 함유량은 1~20중량% 인 것이 바람직하다. 상기 인상 흑연의 함유량이 1중량% 이하가 되면 마그네시아-카본질 내화벽돌의 내스폴링(spalling)성이 급격히 저하되어 사용중 박리현상을 일으킨다. 또한, 인상 흑연의 함유량이 20중량% 이상이 되면 마그네시아-카본질 내화벽돌의 고산소 용강에 의한 내식성이 저하된다.It is preferable that content of the said impression graphite added to the fireproof composition of this invention is 1-20 weight%. When the content of the pulling graphite is 1% by weight or less, the spalling resistance of the magnesia-carbon refractory brick rapidly decreases, causing peeling during use. Moreover, when content of impression graphite becomes 20 weight% or more, corrosion resistance by the high oxygen molten steel of magnesia-carbon refractory brick will fall.

이하, 본원 발명의 실시예를 나타내는 첨부 도면을 참조하여 본원 발명을 더욱 상세히 설명한다.Hereinafter, with reference to the accompanying drawings showing an embodiment of the present invention will be described the present invention in more detail.

도 1은 본원 발명의 실시 예와 비교 예의 비교 결과를 나타내는 도면이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the comparison result of the Example of this invention, and a comparative example.

도 1에서 나타낸 인상 흑연과의 비표면적 비가 5~20배인 나노 카본이 1~10 중량% 및 인상 흑연이 1~20 중량% 이고 잔부는 마그네시아 클링커이며, 통상의 액상 및 고상 페놀수지와 금속 및 무기 산화방지제로 구성되는 내화조성물을 혼련한 후, 1600kg/cm2의 압력으로 성형하고 200oC에서 24시간 건조하여 마그네시아-카본질 내화벽돌을 제조하였다. 제조된 시편을 1650oC에서 고산소 용강을 침식제로 사용하여 회전침식시험을 실시하여 실시예 1~2를 얻었다. 여기서, 실시예1은 비표면적의 비(인상흑연:나노카본) 5, 나노카본 함유량 10중량%, 인상흑연 함유량 1중량%로 하여 제조하였고, 실시예2는 비표면적의 비(인상흑연:나노카본) 20, 나노카본 함유량 1중량%, 인상흑연 함유량 20중량%로 하여 제조하였다.1 to 10% by weight of nano carbon, 1 to 20% by weight of graphite, and the remainder of magnesia clinker with a specific surface area ratio of 5 to 20 times higher than that of the impression graphite shown in FIG. After kneading the refractory composition consisting of antioxidant, it was molded at a pressure of 1600kg / cm 2 and dried at 200 ° C. for 24 hours to prepare a magnesia-carbon refractory brick. The prepared specimens were subjected to a rotary erosion test using high oxygen molten steel as an erosion agent at 1650 o C to obtain Examples 1 and 2. Here, Example 1 was prepared by the ratio of the specific surface area (imprinted graphite: nanocarbon) 5, the nanocarbon content 10% by weight, the impression graphite content 1% by weight, and Example 2 was the ratio of the specific surface area (imprinted graphite: nano Carbon) 20, nanocarbon content 1% by weight, and prepared graphite content 20% by weight.

또한, 본 발명의 마그네시아-카본질 내화벽돌용 내화조성물의 실시예의 범위를 벗어난 범위에서 마그네시아-카본질 내화벽돌을 제조하여 침식시험을 행하여 비교예 1~6을 얻었다.Further, magnesia-carbon refractory bricks were prepared in the range outside the range of the examples of the fireproof composition for the magnesia-carbon refractory bricks of the present invention, and erosion tests were carried out to obtain Comparative Examples 1 to 6.

여기서 비교예 들의 조성은 다음과 같다.The composition of the comparative examples is as follows.

비교예1: 비표면적의 비(인상흑연:나노카본) 3, 나노카본 함유량 5중량%, 인상흑연 함유량 10중량%.Comparative example 1: ratio of specific surface area (impression graphite: nanocarbon) 3, nanocarbon content 5 weight%, impression graphite content 10 weight%.

비교예2: 비표면적의 비(인상흑연:나노카본) 25, 나노카본 함유량 5중량%, 인상흑연 함유량 10중량%.Comparative Example 2: Ratio of specific surface area (impression graphite: nanocarbon) 25, nanocarbon content 5% by weight, and impression graphite content 10% by weight.

비교예3: 비표면적의 비(인상흑연:나노카본) 10, 나노카본 함유량 0.1중량%, 인상흑연 함유량 10중량%.Comparative Example 3: Ratio of specific surface area (impression graphite: nanocarbon) 10, 0.1% by weight of nanocarbon content, 10% by weight of graphite content.

비교예4: 비표면적의 비(인상흑연:나노카본) 10, 나노카본 함유량 15중량%, 인상흑연 함유량 10중량%.Comparative Example 4: Ratio of specific surface area (imprinted graphite: nanocarbon) 10, nanocarbon content 15% by weight, and impression graphite content 10% by weight.

비교예5: 비표면적의 비(인상흑연:나노카본) 10, 나노카본 함유량 7중량%, 인상흑연 함유량 0.1중량%.Comparative Example 5: Ratio of specific surface area (imprinted graphite: nanocarbon) 10, nanocarbon content 7% by weight, and impression graphite content 0.1% by weight.

비교예6: 비표면적의 비(인상흑연:나노카본) 10, 나노카본 함유량 7중량%, 인상흑연 함유량 25중량%.Comparative Example 6: Ratio of specific surface area (impression graphite: nanocarbon) 10, nanocarbon content 7% by weight, impression graphite content 25% by weight.

도 1의 비교는 실시예1의 침식지수를 100으로 하였을 때, 실시예 2와 비교예 1 ~ 6을 비교한 것으로서, 실시예2의 경우에는 침식지수가 97로 나타났고, 비교예의 침식지수는 각각 비교예1의 경우는 배토 불균일 혼합으로 성형시 균열이 발생하였으며, 비교예2는 140, 비교예 3은 120, 비교예 4는 121, 비교예 5는 115로서 시험후 시험편에 균열이 발생하였고, 비교예 6은 125로 나타났다.1 compares Example 2 with Comparative Examples 1 to 6 when the erosion index of Example 1 is set to 100. In Example 2, the erosion index is 97, and the erosion index of Comparative Example is In each case of Comparative Example 1, cracking occurred during molding due to uneven mixing of clay, Comparative Example 2 was 140, Comparative Example 3 was 120, Comparative Example 4 was 121, and Comparative Example 5 was 115, and cracks were generated in the test specimens after the test. And Comparative Example 6 were found to be 125.

즉, 본원 발명과 같이 인상 흑연과의 비표면적 비가 5~20배인 나노 카본이 1~10 중량% 및 인상 흑연이 1~20 중량% 이고 잔부는 마그네시아 클링커이며, 통상의 액상 및 고상 페놀수지와 금속 및 무기 산화방지제로 구성되는 마그네시아-카본질 내화벽돌용 내화조성물에 의해 제조된 실시예 1~2는 본 발명의 목적을 달성할 수 있었으나, 본 발명의 범위를 벗어난 비교예 1~6은 내식성 증진 효과가 미약한 것을 알 수 있다.That is, as in the present invention, 1 to 10% by weight of nano carbon and 1 to 20% by weight of impression graphite, and the remainder are magnesia clinker with a specific surface area ratio of 5 to 20 times with the impression graphite, and the balance of the usual liquid and solid phenol resins and metals. And Examples 1 to 2 prepared by the fire-resistant composition for magnesia-carbon refractory bricks composed of an inorganic antioxidant was able to achieve the object of the present invention, Comparative Examples 1 to 6 out of the scope of the present invention to improve the corrosion resistance It can be seen that the effect is weak.

상술한 본원 발명의 내식성 및 내산화성이 우수한 마그네시아-카본질 내화벽돌용 내화조성물을 이용하여 제조되는 마그네시아-카본질 내화벽돌은 산소 함유량이 높은 강종이나 미탈산강을 처리하는 경우에 우수한 내식성 및 내산화성을 나타내어 전로(Convert)나 래들(Ladle) 등의 노체에 사용되는 경우 노체의 수명을 향상시키는 효과를 제공한다.Magnesia-carbon refractory bricks prepared using the above-described magnesia-carbon refractory bricks having excellent corrosion resistance and oxidation resistance have excellent corrosion resistance and oxidation resistance when treating high grade oxygen or oxidized steel. When used in a furnace such as a converter (Convert) or ladle (Ladle) provides an effect to improve the life of the furnace body.

또한 상술한 본원 발명은 저가의 원료를 사용하게 됨으로서 종래기술에서와 같은 고가의 원료를 사용하지 않고도 내식성 및 내산화성을 현저히 향상시킬 수 있도록 하는 효과를 제공한다.In addition, the present invention described above provides an effect of remarkably improving corrosion resistance and oxidation resistance without using expensive raw materials as in the prior art by using inexpensive raw materials.

Claims (2)

삭제delete 순도가 98% 이상인 인상 흑연:1~20중량%,Impression graphite whose purity is 98% or more: 1-20 wt%, 상기 인상 흑연과의 비표면적 비가 5~20배인 나노 카본:1~10중량%,Nano carbon: 1 to 10% by weight, with a specific surface area ratio of 5 to 20 times with the impression graphite, 잔부는 마그네시아 클링커이며, 액상 및 고상 페놀수지와 금속 및 무기산화방지제로 구성되는 것을 특징으로 하는 내식성 및 내산화성이 우수한 마그네시아-카본질 내화벽돌용 내화조성물.The remainder is a magnesia clinker, and a magnesia-carbon refractory brick having excellent corrosion resistance and oxidation resistance, comprising a liquid and solid phenol resin, a metal and an inorganic antioxidant.
KR1020050127620A 2005-12-22 2005-12-22 Refractory materials for mgo-c brick KR100689154B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050127620A KR100689154B1 (en) 2005-12-22 2005-12-22 Refractory materials for mgo-c brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050127620A KR100689154B1 (en) 2005-12-22 2005-12-22 Refractory materials for mgo-c brick

Publications (1)

Publication Number Publication Date
KR100689154B1 true KR100689154B1 (en) 2007-03-02

Family

ID=38102314

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050127620A KR100689154B1 (en) 2005-12-22 2005-12-22 Refractory materials for mgo-c brick

Country Status (1)

Country Link
KR (1) KR100689154B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107892560A (en) * 2017-12-12 2018-04-10 安徽省萧县华龙耐火材料有限责任公司 A kind of low-carbon nano refractory brick
KR20190046389A (en) * 2017-10-26 2019-05-07 (주)포스코케미칼 Composition of hole sleeve refractory for B.O.F

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000006654A (en) * 1999-09-17 2000-02-07 신현준 MgO-C BASED REFRACTORY
KR20000041154A (en) * 1998-12-21 2000-07-15 신승근 Low resilient and high oxidative resistant magnesia-carbonaceous refractory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000041154A (en) * 1998-12-21 2000-07-15 신승근 Low resilient and high oxidative resistant magnesia-carbonaceous refractory
KR20000006654A (en) * 1999-09-17 2000-02-07 신현준 MgO-C BASED REFRACTORY

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190046389A (en) * 2017-10-26 2019-05-07 (주)포스코케미칼 Composition of hole sleeve refractory for B.O.F
KR101995391B1 (en) * 2017-10-26 2019-07-02 (주)포스코케미칼 Composition of hole sleeve refractory for B.O.F
CN107892560A (en) * 2017-12-12 2018-04-10 安徽省萧县华龙耐火材料有限责任公司 A kind of low-carbon nano refractory brick

Similar Documents

Publication Publication Date Title
JP4681456B2 (en) Low carbon magnesia carbon brick
US4605635A (en) Carbon-containing refractory
JP2013072090A (en) Method for operating converter, magnesia carbon brick used in the converter, method for manufacturing the brick, and lining structure of the converter
KR100689154B1 (en) Refractory materials for mgo-c brick
JPH0352428B2 (en)
CN114315391B (en) Expandable magnesium-carbon fire clay and preparation method and application thereof
KR100674620B1 (en) Compound for mgo-c brick improving oxidation resistance
KR960011347B1 (en) Refractory material comprising low-silica electrofused magnesia clinker and product obtained therefrom
JP2003171170A (en) Magnesia-carbon brick
JPH08259340A (en) Magnesia-carbon-based castable refractory
KR20200025788A (en) The compisition for RH snorkel refractory
KR101167157B1 (en) Magnesia-graphite type refractory
JP3330811B2 (en) Carbon-containing refractory and melting and refining vessel for molten metal lined with the refractory
KR100744712B1 (en) Refractory materials for alumina-carbon bricks
JPH06220517A (en) Sleeve brick for steel tapping hole in converter
JPH0585805A (en) Carbon-containing fire-resistant material
JP2003226583A (en) Unshaped refractory for hot metal
KR101144488B1 (en) Carbon based refractory composition
JP2005139062A (en) Low carbon unfired brick
KR100492223B1 (en) Refractory Mortar Containing Carbon
JPS6127349B2 (en)
KR19990059266A (en) High Magnesium-Carbon Refractory
JPH02283656A (en) Carbon-containing refractory
JPH03141152A (en) Carbon-containing unburned refractory brick
JPH03205348A (en) Magnesia-carbon brick

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130222

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140224

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150217

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160223

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee