KR100688404B1 - 세라믹 그린 시트 제조 방법 및 세라믹 그린 시트를사용한 전자 부품 제조 방법 - Google Patents

세라믹 그린 시트 제조 방법 및 세라믹 그린 시트를사용한 전자 부품 제조 방법 Download PDF

Info

Publication number
KR100688404B1
KR100688404B1 KR1020040067675A KR20040067675A KR100688404B1 KR 100688404 B1 KR100688404 B1 KR 100688404B1 KR 1020040067675 A KR1020040067675 A KR 1020040067675A KR 20040067675 A KR20040067675 A KR 20040067675A KR 100688404 B1 KR100688404 B1 KR 100688404B1
Authority
KR
South Korea
Prior art keywords
light
ceramic green
green sheet
photosensitive material
sheet
Prior art date
Application number
KR1020040067675A
Other languages
English (en)
Other versions
KR20050021342A (ko
Inventor
요시다마사유끼
스또오쥰이찌
아오끼슈운지
와따나베겐이찌
Original Assignee
티디케이가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티디케이가부시기가이샤 filed Critical 티디케이가부시기가이샤
Publication of KR20050021342A publication Critical patent/KR20050021342A/ko
Application granted granted Critical
Publication of KR100688404B1 publication Critical patent/KR100688404B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1258Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by using a substrate provided with a shape pattern, e.g. grooves, banks, resist pattern
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • H01F41/34Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film in patterns, e.g. by lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0023Etching of the substrate by chemical or physical means by exposure and development of a photosensitive insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0147Carriers and holders
    • H05K2203/016Temporary inorganic, non-metallic carrier, e.g. for processing or transferring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0514Photodevelopable thick film, e.g. conductive or insulating paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0073Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces
    • H05K3/0082Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces characterised by the exposure method of radiation-sensitive masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/107Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by filling grooves in the support with conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Capacitors (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

절연 층 등의 리세스 및 돌출부를 갖는 복잡한 형상의 두께 방향의 균등성과 형상 및 형성 위치의 정확성이 보장되는 다중층 전자 부품을 조제하는데 사용되는 시트가 제공된다. 특정한 전기적 특성을 갖는 분말을 포함하는 감광성 재료로 이루어진 층이 광 투과성 베이스 부재 상에 형성된다. 자외선 광에 대한 상이한 투과율을 갖는 복수의 패턴을 구비한 마스크가 베이스 부재의 후방측에 배치된다. 감광성 재료는 마스크를 통해 자외선 광 등으로 조사되는 노출 공정이 가해진다. 감광성 재료는 노출 공정 후 현상 공정이 가해진다.
노출 공정, 현상 공정, 세라믹 그린 시트, 감광성 재료, 전자 부품, 투과율

Description

세라믹 그린 시트 제조 방법 및 세라믹 그린 시트를 사용한 전자 부품 제조 방법 {METHOD FOR MANUFACTURING CERAMIC GREEN SHEET AND METHOD FOR MANUFACTURING ELECTRONIC PART USING THAT CERAMIC GREEN SHEET}
도1은 본 발명의 제1 실시예에 따른 세라믹 그린 시트 제조 공정을 개략적으로 도시.
도2는 본 발명의 제2 실시예에 따른 세라믹 그린 세트 제조 공정을 개략적으로 도시.
도3은 본 발명에 따른 방법에 의해 생산된 세라믹 그린 시트를 사용하여 다중층 세라믹 인덕터를 제조하는 공정을 개략적으로 도시.
도4는 본 발명에 따른 방법에 의해 생산된 세라믹 그린 세트를 사용하여 더 복잡한 회로 구조를 갖는 다중층 세라믹 전자 부품을 제조하는 공정을 개략적으로 도시.
도5는 광 차단 층이 미리 형성된 본 발명의 다른 실시예에 따른 세라믹 그린 시트 제조 공정을 개략적으로 도시.
도6은 광 차단 층이 미리 형성된 본 발명의 또 다른 실시예에 따른 세라믹 그린 시트 제조 공정을 개략적으로 도시.
본 발명은 전자 부품, 특히 소위 다중층 세라믹 전자 부품에 의해 예시되고, 세라믹 층을 라미네이팅하여 형성되는 전자 부품을 제조하기 위한 방법에 관한 것이다. 또한, 본 발명은 전술된 방법에서 사용되는 소위 세라믹 그린 시트를 제조하기 위한 방법에 관한 것이다. 본원에서 언급되는 다중층 전자 부품의 예들은 다중층 세라믹 커패시터, 다중층 세라믹 인덕턴스, 내부에 형성된 커패시터와 인덕턴스를 포함하는 LC 복합재 부품 또는 EMC 관련 부품 등을 포함한다.
최근에는, 셀룰러 폰으로 대표되는 전자 기기가 소형화되고 신속하게 보급되어, 이러한 기기에 사용되는 전자 부품들의 장착 밀도의 증가와 성능의 개선이 요구된다. 특히, 소형화, 두께의 감소, 층 수의 증가 및 각 층의 균등화에 대한 요구가 상기 조건을 만족시키기 위해 패시브 소자로 사용되는 다중층 전자 부품에 부가된다. 또한, 이러한 요구 조건을 만족시킬 수 있는 제조 방법의 개발도 요구되었다.
예컨대, 일본 특허 출원 공개 제2001-110662호 및 제2001-85264호에 개시된 소위 메탈세라믹(metal-ceramic) 복합 소결은 전술한 요구 조건을 만족시킬 수 있으며 내부에 형성된 전극을 갖는 다중층 세라믹 커패시터에 의해 예시되는 전술한 다중층 전자 부품을 제조하기 위한 종래의 제조 방법이다. 본원에서, 메탈세라믹 복합 소결 기술은 간략하게 설명될 것이다. 이 기술에서는, 복수의 전극이 금속 분말과 유기 교결제 재료를 포함하는 전기 전도성 페이스트(paste)를 사용하는 동 시에 소위 세라믹 그린 시트 상에 형성된다.
따라서, 복수의 간단한 세라믹 그린 시트들과 전극들이 형성된 세라믹 그린 시트들이 세라믹 다중층 부재를 형성하도록 적층된다. 전극들은 마무리될 때 다중 전자 부품의 내부 전극을 구성할 것이다. 또한, 세라믹 다중층 부재는 그린 시트들이 서로 밀접하게 접촉되도록 두께 방향으로 가압된다. 밀접하게 접촉된 다중층 부재는 소결되도록 소정의 크기로 절단되어 분리된다. 따라서, 소결된 부재의 다른 면상에는 외부 전극들이 적절하게 형성된다. 이와 같이, 다중층 전자 부품이 얻어진다.
최근에는, 전술된 다중층 전자 부품들의 추가적인 소형화와 두께 감소가 요구되었으며, 내부 전극들 사이에 개재된 세라믹 등으로 이루어진 유전체 층의 두께를 감소시키는 것이 필요하다. 따라서, 세라믹 다중층 부재를 구성하는 세라믹 그린 시트의 두께를 추가로 감소시키면서 상술된 공정을 수행하는 것이 요구된다. 이러한 요구 조건들이 비춰, 현재 사용되고 있는 가장 얇은 세라믹 그린 시트의 두께는 약 2 내지 3㎛이다. 또한, 세라믹 그린 시트 상에 인쇄된 전극의 두께는 약 1.5 내지 2.0㎛이다.
세라믹 그린 시트와 그 표면상에 형성된 전극의 두께, 전극들의 폭과 패턴 형상은 전극이 형성될 때 대체로 결정되고, 전극이 형성된 후 그들을 성형하는 공정을 부가하는 것은 실질적으로 불가능하다. 종래에는, 전극 등이 스크린 인쇄에 의해 형성되었다. 스크린 인쇄에서, 형성 영역에서의 두께의 변화는 ±10 내지 20%이고, 형성될 수 있는 패턴 폭의 제한 값은 약 50㎛일 수 있다. 일본 특허 출 원 공개 제2002-184648호에 개시된 바와 같이, 스크린 인쇄에 의해 형성된 시트의 표면상에는, 메쉬의 효과와 같은 불균일성이 존재한다. 이러한 점에 비춰, 개선된 두께의 균일성과 개선된 표면 균등성을 갖는 시트를 생산하기 위해 새로운 생산 방법이 고안될 필요가 있다.
그 해결책으로서, 소정의 두께를 갖는 시트 또는 층이 감광성을 갖는 세라믹 슬러리 또는 감광성을 갖는 전극 페이스트에 의해 형성되어, 폭과 형상 등에서 높은 정밀도를 갖는 전극 등을 생성하도록 노출 및 현상 처리된다. 이러한 방식에서, 패턴 두께를 더 얇게 하는 것이 가능하고, 패턴 형성의 위치 정밀도도 인쇄 공정에 비해 강화될 수 있다. 하지만, 노출될 층이 인쇄 공정에 의해 형성되는 경우, 전술한 층 표면의 불균일성이 존재할 것이며, 이러한 불균일성은 일반적인 노출 및 현상 처리가 적용된 경우에도 불변할 것이다.
시트 또는 층이 형성된 후, 시트 또는 층을 가압하는 것과 같은 기계적 처리를 가하여 불균일성을 감소시킬 수 있다. 하지만, 공정이 길어지게 되므로 바람직하지 않다. 코팅기 또는 스핀 코팅기 공정을 사용한 방법이 불균일성이 없거나 감소된 시트 또는 층을 형성하기 위한 다른 방법이다. 하지만, 전술된 코팅 공정에 의해 얻어진 층의 표면상에는, 블레이드 등의 흔적이 잔류하고 두께가 ±3 내지 5%변화하는데, 이러한 두께의 변화는 노출 및 현상 처리 후에도 계속 잔류된다. 따라서, 개선된 특성을 갖는 전자 부품을 제조하기 위해, 표면 균일성 또는 두께 변형의 감소라는 측면에서의 개선이 요구된다.
메탈 페이스트가 전극 층을 형성하도록 코팅기를 사용하거나 또는 스크린 인 쇄하여 베이스 부재 상에 도포되는 경우, 전극의 모서리 부분의 처짐 또는 모서리 부분의 직진성의 악화가 금속 페이스트 등의 점성과 같은 조건에 따라 발생될 수 있다. 또한, 넘치거나(run-over) 또는 열화되는 부분이 슬러리를 도포할 때 발생될 수 있으며, 이는 전자 부품에 조립될 때 단락이나 전도 불량을 초래할 수 있다. 또한, 코팅 두께를 감소시킬 때, 점성과 같은 다양한 조건에 따라 형성될 수 있는 코팅 두께의 하한이 존재한다. 또한, 두께 방향의 치수의 변화를 약간 퍼센트 미만으로 감소시키는 것은 어렵다. 또한, 이는 세라믹 그린 시트가 세라믹 슬러리를 사용하여 생산되는 경우이다.
인덕터 형태의 전자 부품을 형성하도록 사용되는 세라믹 그린 시트의 경우, 관통 전극 등이 몇몇 경우에 형성될 수 있다. 이 경우, 관통 전극의 길이(또는 전극의 두께)는 인덕터의 전기적 특성을 한정하도록 정밀하게 제어되는 것이 바람직하다. 그러나 최근에는, 전극의 두께는 세라믹 시트의 두께에 따라 결정되고 일본 특허 출원 공개 제2003-48303호에 개시된 바와 같이 세라믹 그린 시트의 두께와 독립적으로 전극의 두께를 제어하는 것은 실질적으로 어렵다.
또한, 인덕터 등을 제조할 때, 전극 또는 다른 부품들은 한 평면에서 복잡한 형상으로 패터닝되도록 요구된다. 스크린 인쇄는 정확한 측정으로 이러한 복잡성을 극복할 수 있지만, 전자 부품과 같은 제품의 특성을 추가로 개선하는 것은 어렵다. 또한, 전극 또는 다른 부품의 소정의 단면 형상을 달성하는 것이 어렵다.
또한, 인덕터의 제조 시에는 라미네이션 정밀도, 부품의 소형화 또는 다른 요소들의 관점에서 단일 시트에 형성된 관통 전극과 패턴 전극을 갖는 세라믹 그린 시트를 사용하는 것이 바람직하다. 이 경우, 가능하면 절연 재료로 이루어진 층상에 부분적으로 리세스된 부분을 형성하고 전극 페이스트로 다수의 리세스된 부분을 충전하여 패턴 전극 및 관통 전극을 형성하는 것이 인덕터의 특성을 개선하고 공정의 수를 줄인다는 면에서 바람직하다. 그러나, 높은 정밀도로 이러한 리세스를 형성하는 것은 종래 기술로는 불가능하다.
본 발명은 상술된 기술 배경에 비춰 이루어졌다. 본 발명의 목적은 표면 균일성 또는 두께의 변화를 감소시키면서 소정의 돌출 및 리세스된 부분을 갖는 세라믹 그린 시트 또는 전극 층을 제조하기 위한 방법을 제공하는 것이다. 본 발명의 다른 목적은 상기 방법에 의해 다중층 전자 부품의 전기적 특성의 변화를 감소시키고 개선된 전기 특성을 갖는 전자 부품을 제공하는 것이다.
전술된 문제점을 해결하기 위해, 본 발명에 따르면 특정 전기적 특성을 갖는 분말을 포함하는 감광성 재료를 상기 노출 공정에 사용되는 광을 투과시킬 수 있는 부분을 갖는 부재의 전방측 표면에 부착하는 단계와, 상기 광의 광량을 각각의 소정 영역에 대해 다르게 한 후 상기 감광성 재료 상에서 상기 노출 공정을 수행하도록 상기 감광성 재료를 상기 광으로 상기 부재의 후방측으로부터 조사하는 단계와, 상기 노출 공정 후, 상기 감광성 재료 상에서 상기 현상 공정을 수행하는 단계를 포함하며, 상기 감광성 재료는 상기 광에 대해 감광성이고, 상기 전방측 표면은 시트가 형성되는 표면인, 노출 공정 및 현상 공정을 이용하여 세라믹 그린 시트를 제조하는 방법이 제공된다.
상술된 제조 방법에서, 소정 영역에 상응하는 부분의 투과율이 서로 다른 마스크를 통과하므로써 광의 광량이 각각의 소정 영역에 대해 다르게 되는 것이 바람직하다. 상술된 제조 방법에서, 광량은 적어도 광을 완전히 차단하여 얻어지는 광량, 광을 완전히 투과시켜 얻어지는 광량 및 소정의 비율로 광을 부분적으로 투과시켜 얻어지는 광량으로 구별되는 것이 바람직하다. 상술된 제조 방법에서, 소정의 비율로 상기 광을 부분적으로 투과시켜 얻어지는 광량에 노출된 감광성 재료의 부분의 두께가 소정의 두께에 도달할 때 노출 공정이 종료되는 것이 바람직하다.
또한, 상술된 방법은 현상 공정에 의해 형성된 세라믹 그린 시트 상의 리세스된 부분을 전기 전도성 재료로 충전하는 단계를 더 포함하는 것이 바람직하다. 상술된 제조 방법은 전술된 부재의 전방측 표면에 감광성 재료를 부착하는 단계 이전에, 전술된 부재의 전방측 표면의 소정 영역에 광을 투과시키지 않는 재료로 구성된 광 차단부를 형성하는 단계를 더 포함하는 것이 바람직하다. 상술된 제조 방법에서, 착탈(release) 공정이 전술된 부재의 표면으로부터 세라믹 그린 시트의 착탈을 용이하게 하도록 저술된 부재에 가해지는 것이 바람직하다.
전술된 문제점을 해결하기 위해, 본 발명에 따른 시트 제조 방법은 특정 전기적 특성을 갖는 분말을 포함하는 감광성 재료를 상기 노출 공정에 사용되는 광을 투과시킬 수 있는 부분을 갖는 부재의 전방측 표면에 부착하는 단계와, 감광성 재료 상에서 노출 공정을 수행하도록 감광성 재료를 광으로 상기 부재의 후방측으로부터 조사하는 단계와, 노출 공정 후, 감광성 재료 상에서 현상 공정을 수행하는 단계를 포함하며, 감광성 재료는 상기 광에 대해 감광성이고, 전방측 표면은 시트 가 형성되는 표면이며, 상기 광의 광량은 각각의 소정 영역에 대해 상이하도록 된 것을 특징으로 한다. 전술된 방법에서, 광은 광 비임을 포함하고, 광량은 광 비임에 의한 스캐닝에 의해 각각의 소정 영역에 대해 상이한 것이 바람직하다. 이 경우, 광 비임으로 스캐닝하는 단계는 각각의 소정 영역에 상응하는 조건하에서 수행되는 것이 바람직하다.
전술된 문제점을 해결하기 위해, 본 발명에 따르면, 세라믹 그린 시트를 제조하는 전술된 방법 중 어느 하나에 따른 세라믹 그린 시트 제조하기 위한 방법에 의해 생산된 세라믹 그린 시트를 포함하는 복수의 세라믹 그린 시트를 적층하는 단계와, 라미네이팅된 부재를 형성하도록 적층된 세라믹 그린 시트에 대해 시트의 두께 방향으로 압력을 인가하는 단계를 포함하는 다중층 전자 부품을 제조하기 위한 방법이 제공된다.
본 발명에 따르면, 예컨대 코팅기 또는 스크린 인쇄를 사용하여 감광성 재료를 도포하는 종래의 공정에 의해 형성된 층은 노출 및 현상을 통해 처리되어, 위치 형상 및 두께의 변화가 감소될 수 있고 돌출부 및 리세스를 갖는 복잡한 구성을 형성하는 것이 가능하다. 그 결과, 종래의 대량 생산 공정에 본 발명에 따른 공정을 부가함으로써 종래 시트에 비해 개선된 품질을 갖는 다중층 전자 부품을 형성하는데 사용되는 시트를 생산하는 것이 가능하다.
또한, 본 발명에 따르면, 구멍 형성을 통해 패턴 형상과 층 두께를 동시에 제어하는 것이 가능하다. 그 결과, 패턴 또는 관통 구멍 등을 포함하는 층을 형성할 때, 형상, 두께 또는 다른 요소들의 정밀도가 우수하도록 층을 형상화하거나 처 리하는 것이 가능하다. 따라서, 종래 방법보다 이상적인 형상에 더 근접한 형상을 갖는 다중층 전자 부품을 제조하는데 사용되는 바람직한 시트를 제조하는 것이 가능하다. 특히, 2 내지 3% 또는 그 미만의 두께 변화와 30㎛의 패턴 폭을 갖는 시트를 생산하는 것이 가능하다.
본 발명에 따른 전자 부품 제조 공정에 사용되는 시트(즉, 소위 세라믹 그린 시트)를 생산하는 방법의 일 실시예가 간략하게 설명될 것이다. 이 실시예에서, 소정의 전기적 특성을 갖는 분말을 포함하는 감광성 재료로 이루어진 층이 이하 설명되는 노출 공정에 사용되는 자외선 광과 같은 광을 투과할 수 있는 베이스 부재의 표면상에 우선 형성된다. 층을 구성하는 감광성 재료는 자외선 광과 같은 전술한 광에 대해 감광성이다. 그 후, 소정의 패턴을 갖는 마스크가 베이스 부재의 후방측 상에 배치되고, 베이스 부재 상의 감광성 재료는 마스크를 통해 자외선 광과 같은 광으로 조사된다.
이 공정에서, 감광성 재료의 노출량은 노출 시간, 자외선 광의 강도 또는 다른 요소를 조절하여 제어된다. 마스크 상의 패턴은 상이한 투과율을 갖는 복수의 패턴으로 구성된다. 그 후, 노출 후 감광성 재료는 현상 공정이 가해지고 베이스 부재는 감광성 재료로부터 착탈된다. 따라서, 소정의 형상과 층을 갖는 세라믹 그린 시트가 얻어진다.
이하에서 설명되는 실시예들은 상이한 투과율을 갖는 두 개의 패턴이 마스크에 존재하는 경우에 관한 것이다. 하지만, 본 발명은 이에 제한되지 않으며, 상이 한 투과율을 갖는 더 많은 패턴을 갖는 마스크가 사용될 수 있다. 감광성 재료는 자외선 광과 같은 광에 대해 감광성이도록 설계되었지만, 특정한 광과 이러한 광에 대해 감광성인 재료가 함께 사용된다면, 사용되는 광은 자외선 광에 제한되지 않는다. 전술한 소정의 특성은 예컨대, 전기 전도율, 유전율 및 저항을 포함한다. 감광성 재료를 베이스 부재에 부착하는 방법은 예컨대, 코팅 또는 인쇄일 수 있지만, 이에 제한되지는 않는다. 베이스 부재의 예는 광 투과적인 PET 필름이다. 베이스 부재 상에 형성된 감광성 재료로 이루어진 층의 착탈을 용이하게 하기 위한 착탈 처리가 가해지는 부재가 베이스 부재로 사용될 수 있다. 복수의 광 투과성 층이 형성된 부재는 베이스 부재로 사용될 수 있다. 소정의 패턴을 갖는 전술된 마스크가 베이스 부재의 후방 표면과 밀접하게 접촉하는 것이 바람직하지만, 상기 마스크는 노출 조건 또는 다른 조건에 따라 베이스 부재의 후방 표면과 이격되어 배치될 수 있다.
이 실시예에서, 감광성 층의 노출 공정에 사용된 광은 베이스 부재의 후방측에 배치된 마스크를 통해 패터닝된다. 하지만, 마스크의 위치는 베이스 부재의 후방측에 제한되지 않는다. 동일한 방식에서 마스크로 기능하는 광 차단부가 베이스 부재 자체에 제공될 수 있다. 다르게는, 마스크와 동일한 기능을 갖는 광 차단 층은 베이스 부재의 후방 측 표면에 제공될 수 있다. 즉, 본 발명의 효과는 감광성 재료의 베이스 부재 측에 광을 패터닝하는 구조를 제공하여 구현될 수도 있다. 또한, 패턴닝된 광은 감광성 재료에 대해 노출 공정을 수행하기 위해 소정의 패턴으로 레이저 비임 등을 스캐닝하거나, 또는 패터닝될 수 있는 도트 매트릭스를 포함 하는 LED 패널과 같은 면 광원을 사용하여 발생될 수 있다. 특히, 레이저 비임 등에 의한 스캐닝 공정에서, 스캐닝 시간이 변하고 스캐닝은 반복적으로 수행되고 스캐닝의 회수가 변하거나 또는 레이저 비임 등의 강도가 변하는 것이 각 노출 영역에 대해 바람직하다. 즉, 노출 공정은 각 노출 영역에 적합한 레이저 스캐닝 조건에서 수행되는 것이 바람직하다. 전술된 방법은 전자 비임 등을 사용하여 감광성 재료에 직접 패턴을 도안하는 것으로서, 마스크를 사용하는 노출 공정을 대체하는 기술로 최근에 연구되고 있다. 이 방법에서, 설계 데이터를 기초로 작업편 상에 직접적으로 패턴을 형성하는 것이 가능하며, 마스크 비용의 절감과 노출 정밀도의 개선이 예측될 수 있다. 이 공정에 따르면, 전술된 변화 공정 또는 이 변화 공정의 조합에 의해 각 소정 영역에 대해 상이한 광량으로 노출을 수행하는 것이 가능하다.
패터닝된 광이 공급될 때, 2차원으로 배열된 다중 광원을 키거나 꺼서 소정의 형상으로 면 광원을 형상화하면서, 노출 공정이 수행될 수 있다. 또한, 전술된 소정의 형상을 연속적으로 변화하면서 여러 번의 노출을 수행하여 각 소정 영역에 대해 상이한 광량으로 노출을 수행하는 것이 가능하다.
(제1 실시예)
실시예들의 상기 일반적인 설명에서 설명된 바와 같이, 간단한 광원 및 마스크를 사용하여 각 영역에 대해 상이한 광량으로 노출을 수행하는 방법은 간단한 광원 및 마스크를 사용하는 방법과, 레이저 광과 같은 상당한 강도를 갖는 광을 사용하여 패턴을 도안하는 방법과, 복수의 광원이 배열된 면 광원을 사용하여 패턴을 형성하는 방법을 포함한다. 하지만, 최근에 가장 일반적으로 사용되며 가장 신뢰성있다고 고려되어 지는 공정은 마스크를 사용하는 방법이다. 따라서, 마스크를 사용하는 공정이 예로서 설명될 것이다.
도1은 본 발명의 제1 실시예에 따른 층 형성 공정을 도시한다. 도1은 공정의 다양한 단계에서 두께 방향으로 취해진 층들 또는 시트의 단면 구조를 도시한다. 이 실시예에서, 소정의 전기적 특성을 갖는 분말을 포함하는 감광성 층(3)은 예컨대 PET 필름으로 이루어진 베이스 부재(2) 상에 코팅되어 형성된다.(단계 1) 다음으로 단계 2에서는, 감광성 층(3)은 노출 공정이 가해지는데, 즉 감광성 층(3)은 베이스 부재(2)의 후방측으로부터 자외선 광과 같은 광으로 조사된다.
본 발명과 관련하여, 본 특허 출원의 출원인은 광 투과성 부재(이 경우, 베이스 부재(2))의 표면으로부터 측정된 감광성 층(3)의 경화된 부분(노출량)의 두께(또는 깊이)가 노출 시 자외선 광과 관련된 강도, 방사 시간 또는 다른 요소들을 제어하여 제어될 수 있다는 사실을 발견하였다. 노출량으로 경화되는 부분의 두께의 제어 가능성을 확인할 때, 슬러리에 혼합된 세라믹 분말의 비율, 분말의 평균 분말 직경, 분말의 투과율과 같은 조건들이 다양한 방식으로 변화되었으며, 노출될 수 있는 슬러리의 두께는 각 조건에 대해 측정되었다.
세라믹 분말 등과 감광성 교결제가 혼합(반죽)된 재료가 광에 노출될 때, 광의 발산이 세라믹 분말 등의 존재로 인해 일반적으로 발생되어, 노출된 부분의 모서리가 무뎌진다. 본 특허 출원의 출원인은 각각 1.0㎛, 0.8㎛, 0.6㎛, 0.4㎛ 및 0.2㎛의 상이한 평균 입자 직경을 갖는 바륨 티타늄 분말 및 음형 교결제(negative type binder)가 1 대 1의 체적비로 혼합되는 혼합물을 준비하고 현상 후 잔류하는 필름의 두께와 조사 시간 사이의 관계를 조사하였다. 그 결과, 잔류 필름의 두께가 수 마이크론인 경우, 특히 임의의 분말에 대해 잔류 필름의 두께가 약 10㎛ 이하인 경우, 노출 시간과 얻어진 시트의 두께는 선형 관계이며, 평균 필름 두께 값의 변화는 ±0.5 내지 2.0%의 범위를 갖는다는 것을 확인했다. 또한, 시트의 평탄성을 유지하기 위해, 더 작은 입자 직경들이 바람직할 수 있다. 이것은 시트의 두께에 따라 결정되고, 더 작은 두께 범위에서는 입자 직경이 중요한 요소이다. 특히, 시트 두께가 5㎛ 이하인 경우, 평균 입자 직경이 0.8㎛ 이하인 바륨 티타늄 분말을 사용하는 것이 바람직하며, 평균 입자 직경이 0.2㎛ 이하인 바륨 티타늄 분말을 사용하면 더욱 바람직하다. 즉, 평균 입자 직경이 편평한 시트는 얻어질 시트 두께의 약 1/5 이하인 분말을 포함한 슬러리를 사용하여 얻어질 수 있다. 또한, (산술 평균 거칠기 Ra에 대한) 표면 불균일성의 정도가 직경이 감소된 시트가 얻어질 시트 두께의 약 1/20 이하인 분말을 포함하는 슬러리를 사용하여 얻어질 수 있다. 여기서, 노출 시간은 광 강도를 고려하면 노출량으로 해석될 수 있으며, 그 결과는 노출량과 잔류 필름의 두께가 선형 관계라는 것을 나타낸다. 따라서, 세라믹 분말과 감광성 교결제가 사용된 경우, 잔류 필름의 두께가 전극의 두께와 같이 약 5.0㎛이면, 정확한 시트 두께와 시트 표면의 균일성을 유지하는 것이 가능하다. 특정 연구의 설명이 광 투과 특성이 열등한 바륨 티타늄 분말이 사용된 경우와 관련하여 이루어졌지만, 우리는 광 투과 특성이 우수한 소위 유리 세라믹 분말, 광 흡수 특질을 갖는 페라이트 분말 및 금속 분말도 조사했다. 그 결과, 요구된 노출 량이 상이했지만, 이들 분말 역시 바륨 티타늄 분말과 유사한 특성을 나타내었다. 그 결과, 현상 후 잔류하는 필름의 두께가 금속 또는 세라믹 분말과 감광성 교결제를 혼합한 슬러리를 사용하면서 노출량을 조절하여 제어되는 경우에, 사용된 분말의 평균 입자 직경이 1.0㎛보다 작으면, 표면 거칠기는 작게 이루어질 수 있고 평균 필름 두께의 변화를 감소시킬 수 있는 제어 공정이 가능하다. 또한, 상술된 실험 이외의 실험에서는, 조건들이 허락되면, 현상 후 잔류하는 필름의 두께가 약 50㎛ 이하의 범위 내에서 제어될 수 있다.
이 실시예에서, 상술된 발견을 기초로, 감광성 층(3)이 소정의 두께(또는 깊이)까지 노출되도록 노출량이 제어될 수 있다. 이 공정에서, 자외선 광에 대한 상이한 투과율을 갖는 두 개의 전극 패턴이 형성된 마스크(13)는 베이스 부재(2)의 후방 표면과 밀접하게 접촉하여 배치되고, 감광성 층(3)은 노출 공정이 가해져 마스크(13)를 통해 자외선 광으로 조사된다.
마스크(13)의 패턴(13a)은 완전 투과를 의미하는 약 100%의 자외선 광에 대한 투과율을 갖도록 설계된 반면에, 패턴(13b)은 약 50%의 자외선 광에 대한 투과율을 갖도록 설계된다. 그 결과, 패턴(13a)에 상응하는 감광성 층(3)의 일부분이 두께(t1)까지 노출되는 노출량으로 감광성 층(3) 상에서 노출 공정을 수행하여, 패턴(13b)에 상응하는 부분은 두께(t1)의 약 절반인 두께(t2)까지 노출된다. 자외선 광을 완전히 차단하는 마스크(13)의 패턴(13c)에 상응하는 감광성 층(3)의 부분은 노출되지 않는다.
노출 공정 후, 현상 공정이 수행되어, 단지 노출되어 경화된 부분만이 잔류 하고, 다른 부분들은 제거된다. 따라서, 단계 3에서 도시된 바와 같이 리세스된 부분(4a)과 관통 구멍(4b)을 갖는 소정의 형상과 두께를 갖는 절연(또는 유전체) 층(4)이 얻어진다. 리세스된 부분(4a)은 패턴(13b)에 상응하고 관통 구멍(4c)은 패턴(13c)에 상응한다. 이후에 설명되는 바와 같이, 베이스 층(2)은 베이스 부재(2)와 절연 층(4)을 포함하는 얻어진 시트로부터, 상기 시트가 얻어질 때 또는 추가적인 층이 상기 시트의 상부에 형성된 후 제거된다. 베이스 부재가 제거된 시트의 리세스된 부분(4a)과 관통 구멍(4b)은 전극 재료로 충전된 후, 시트는 동일한 공정 또는 유사한 공정에 의해 이루어진 다른 시트와 함께 라미네이팅되고, 다양한 공정들을 겪은 후 인덕터와 같은 다중층 전자 부품으로 형성된다.
이 실시예에 따르면, 경화 부분의 두께를 정확하게 제어하면서 경화 부분의 표면을 균일하거나 편평하게 하는 것이 가능하다. 베이스 부재(2)와 절연 층(4)이 광 투과성이라면, 이 실시예는 종래의 코팅 공정의 상부에 노출 공정과 현상 공정을 부가하여 수행될 수 있다.
이 실시예에서, 전극의 형상 또는 다른 요소들은 마스크 패턴 및 제어된 노출량에 의해 결정되어, 감광성 층은 임의의 공정에 의해 도포될 수 있다. 하지만, 현상 공정에서의 제거량을 감소시키기 위해, 베이스 부재(2) 상에 형성된 감광성 층(3)의 두께 및 다른 요소들은 형성될 절연 층의 두께 및 다른 요소들과 유사한 것이 바람직하다. 이런 점에 비춰, 블레이드를 사용하는 코팅 공정을 포함하는 다양한 방법이 감광성 층(3)을 형성하도록 채택될 수 있다. 이 실시예에서, 절연 층(4)은 베이스 부재(2) 상에 직접 형성된다. 하지만, 광 투과 특질을 갖는 다양한 층들이 절연 층(4)과 베이스 부재(2) 사이에 형성될 수 있다. 절연 층(4)을 형성하는 공정이 예에 의해 설명되었지만, 돌출부와 리세스를 갖는 전극 층은 감광성 재료에 포함된 분말을 전기 전도성 분말과 대체하여 형성될 수 있다.
(제2 실시예)
도2는 도1과 유사한 도면으로서, 공정의 다양한 단계에서 두께 방향으로 취해진 시트 또는 층들의 단면 구조를 도시한다. 후속하여 참조될 다른 도면도 공정의 다양한 단계에서의 시트의 단면 구조를 도시한다. 이 실시예는 관통 구멍이 절연 층(4)에 형성된 경우에 관한 것이다. 특히, 감광성 재료(3)는 PET 필름으로 이루어진 베이스 부재(2)에 도포된다. (단계 1) 다음으로 단계 2에서는, 소정의 전극 패턴(15b)과 관통 구멍 패턴(15c)이 개별적으로 형성된 마스크(15)는 베이스 부재(2)의 후방 표면과 밀접하게 접촉 배치되고, 자외선 방사는 베이스 부재의 후방 표면으로부터 인가된다.
이 공정에서, 감광성 층(3)의 경화 부분의 두께가 t1이 되도록 노출량이 제어된다. 패턴(15b)의 자외선 광에 대한 투과율은 패턴(15a)의 자외선 광에 대한 투과율의 약 절반에 되도록 설계되어, 내부 전극(4a)에 상응하는 경화 부분의 두께(t2)는 두께(t1)의 약 절반이 된다. 노출 공정 후, 현상 공정이 수행되어, 단지 노출되어 경화된 부분만이 잔류하고 나머지 부분들은 제거된다. 따라서, 단계 4에 도시된 바와 같이, 리세스된 부분(4a)과 관통 구멍(4b)을 갖는 소정의 형상과 두께를 갖는 절연(또는 유전체) 층(4)이 얻어진다.
이 실시예를 수행하면, 처짐 또는 넘침과 같은 바람직하지 않은 부분들을 제 거하는 것이 가능하며, 이러한 처짐 도는 넘침은 상기 바람직하지 않은 부분들을 노출되지 않도록 유지시켜 베이스 부재 등의 표면에 감광성 재료가 도포될 때 발생된다. 또한, 도포된 감광성 재료 층을 얇게 할 필요가 없기 때문에, 열화된 부분이 발생되지 않을 것이다. 또한, 본 발명에 따르면, 노출량을 제어하여 잔류 층의 두께를 정밀하게 제어하는 것이 가능하다. 따라서, ±2 내지3% 미만으로 두께의 변화를 감소시키면서, 예컨대 0.5㎛보다 작은 두께를 갖는 층을 형성하는 것이 가능하다. 또한, 노출과 현상에 의해 얻어진 패터닝된 형상의 모서리 부분을 더욱 사각 형상으로 하는 것이 가능하다. 따라서, 소정 치보다 작은 시트를 라미네이팅하여 생산되는 전자 부품의 전기적 특성의 변화가 가능하다.
(본 발명에 따른 시트를 사용한 전자 부품의 제조 공정의 예)
이하에서, 본 발명에 따른 상술된 시트 형성 방법에 의해 생산된 시트를 사용하여 전자 부품을 제조하는 공정이 설명될 것이다. 공정의 설명에서 참조되는 도3 및 도4는 측면으로부터 볼 때, 두께 방향으로 추해진 시트 또는 라미네이팅된 시트의 단면을 도시한다. 도3은 다중층 세라믹 인덕터를 제조하는 공정의 다양한 단계를 도시한다. 도4는 더욱 복잡한 회로 구조를 갖는 전자 부품을 제조하는 공정의 다양한 단계를 도시한다.
도3은 제1 실시예에 따른 방법에 의해 생산된 절연 층(4)을 포함하는 시트를 사용하여 세라믹 인덕터를 생산하기 위한 제조 공정의 예를 도시한다. 이 제조 공정에서는, 우선 베이스 부재(2) 상에 형성된 절연 층(4)의 리세스된 부분(4a)과 관통 구멍(4b)이 예컨대, 스크린 인쇄에 의해 전극 재료(10)로 충전된다. (단계 1) 다음으로, 베이스 부재(2)는 전극 재료(10)로 충전하여 얻어진 내부 전극(10a) 및 관통 전극(10b)을 갖는 절연 층(4)으로부터 착탈되어 제거된다. (단계 2) 그 후, 이러한 방식으로 생산된 전극을 갖는 인덕터를 제조하는데 사용된 소정 수(도3에 도시된 예에서는 3)의 세라믹 그린 시트(16)들이 적층된다. (단계 3)
압력이 시트들이 서로에 대해 압력 접촉하도록 두께 방향으로 적층된 시트에 인가된다. 이 압축 공정에서, 세라믹 인덕터의 주요 부분이 형성된다. 이 제조 공정에서, 전극 재료(10)는 전극 재료(10)의 표면이 절연 층(4)의 돌출된 부분의 표면과 대체로 동일 평면상에 있는 방식으로 리세스(4a)와 관통 구멍(4b)을 충전한다. 따라서, 인덕터를 제조하는 데 사용되는 세라믹 그린 시트(14)의 두께는 전체 면적에 걸쳐 대체로 균일하다.
그 결과, 작은 부하 압력에서도 양호하게 성형된 상태를 유지할 수 있는 라미네이팅된 부재를 얻는 것이 가능하다. 이러한 라미네이팅된 부재는 특정 크기로 절단되고 소결되어, 소정의 다중층 세라믹 인덕터가 생산된다. 본 발명에 따른 방법에 의해 생산된, 표면 균일성, 형상 및 두께의 변화가 감소된 절연 층(4)을 사용하여, 소정의 전기 특성의 변화가 종래의 다중층 세라믹 인덕터에 비해 작은 다중층 세라믹 인덕터를 생산하는 것이 가능하다.
본 발명의 방법에 의해 생산된 패턴 전극 또는 다른 부품의 단면은 사각형인 것이 바람직하며, 그 결과 소정 값으로부터의 인덕터의 저항의 변화의 감소 또는 DC 저항의 감소와 같은 유리한 효과가 구현된다.
도3의 단계 1에 도시된 시트는 도5에 도시된 본 발명의 다른 실시예에 따른 방법에 의해 생산될 수 있다. 도5는 상술된 다른 도면에서와 같이 시트의 단면을 도시하며, 상술된 실시예와 관련하여 도시된 구조에서의 것과 유사한 부품들은 동일한 참조 번호로 지시된다. 이 실시예의 공정에서는, 단계 1에서 감광성 층(3)이 베이스 부재(2)와 베이스 부재(2) 상의 소정 위치에 형성된 전극 재료로 이루어진 광 차단층(5)의 상부 표면상에 형성된다. 이러한 시트는 (도5의 단계 2와 단계 3에 상응하는) 도1에 도시된 단계 2와 단계 3의 공정이 가해진다. 따라서, 광 차단 충(5)과 연속적으로 리세스된 부분(4a)을 갖는 시트가 생산된다. 이 실시예에 사용된 마스크(14)에서, 패턴(14a)은 완전 투과를 의미하는 약 100%의 자외선 광에 대한 투과율을 갖도록 설계되는 반면에, 패턴(14b)은 약 50%의 자외선 광에 대한 소정의 투과율을 갖도록 설계된다. 리세스(4a)는 광 차단 층(5)과 관련된 내부 전극(10a)(관통 전극(10b))이 형성되도록 소정의 공정에 의해 전극 재료(10)로 충전된다. 그 후, 베이스 부재(2)는 전극 재료(10)로의 충전 후 시트로부터 착탈되어 제거된다. 따라서, 단계5에 도시된 인덕터를 형성하기 위해 사용되는 시트가 얻어진다. 이 방법에 따르면, 층들 간의 연결을 가능하게 하는 높은 종횡비(aspect ratio)를 갖는 관통 전극이 미리 형성되기 때문에, 관통 전극의 형상에 있어서의 안정성 또는 전극의 신뢰성 있는 접속과 같은 유리한 효과를 구현할 수 있다.
도4는 더욱 복잡한 회로 구조를 갖는 다중 전자 부품을 제조하는 공정을 도시한다. 도4에 도시된 세라믹 그린 시트(18)는 내부 전극(10a)과 관통 전극(10b)을 개별적으로 형성하도록 제3 실시예에 따른 방법에 의해 형성된 절연 층(4)을 스크린 인쇄에 의해 전극 재료로 충전하여 생산된다. 세라믹 그린 시트(19)는 절연 층(4c)과 전극(10c)으로 구성된다. 세라믹 그린 시트(20)는 절연 층(4d)과 전극(10d)으로 구성된다. 관통 전극(10b)은 세라믹 그린 시트(18)의 상부 및 하부에 배치된 세라믹 그린 시트(19, 20)의 내부 전극(10c)과 내부 전극(10d)을 접속하도록 제공된다. 내부 전극(10a)은 하부 시트(20)의 내부 전극(10d)으로부터 절연되고, 상부 시트(19)의 내부 전극(10c)과 접속된다. 본 발명에 따른 시트를 사용하면, 상술된 구조를 갖는 전자 부품이 용이하게 제조될 수 있다.
도4에 도시된 시트(18)는 도6에 도시된 본 발명의 다른 실시예에 따른 방법에 의해 생산될 수 있다. 도6은 상술된 다른 도면에서와 같이 시트의 단면을 도시하며, 상술된 실시예들과 관련하여 도시된 구조에서의 부품과 유사한 도6의 부품들은 동일한 참조 번호로 지시되었다. 이 실시예의 공정에서는, 단계 1에서 감광성 층(3)이 베이스 부재(2)와 베이스 부재(2) 상의 소정 위치에서 형성된 전극 재료로 이루어진 광 차단 층(5)의 상부 표면상에 형성된다. 이러한 시트는 (도6의 단계 2와 단계 3에 상응하는) 도2에 도시된 단계 2와 단계 3의 공정이 가해진다. 따라서, 리세스된 부분(4a)을 갖는 시트가 생산된다. 이 실시예에서 사용된 마스크(16)에서, 패턴(16a)은 완전 투과를 의미하는 약 100%의 자외선 광에 대한 투과율을 갖도록 설계된 반면에, 패턴(16b)은 약 50%의 자외선 광에 대한 소정의 투과율을 갖도록 설계된다. 리세스된 부분(4a)은 내부 전극(10a)을 형성하도록 소정 공정에 의해 전극 재료(10)로 충전된다. 베이스 부재(2)는 전극 재료(10)로의 충전 후, 시트로부터 착탈되어 제거된다. 따라서, 도5에 도시된 전자 부품을 형성하는데 사용된 시트가 얻어진다. 이 방법에 따르면, 층들 사이의 연결을 가능하게 하 도록 높은 종횡비를 갖는 관통 전극이 미리 형성되기 때문에, 관통 전극의 형상의 안정성 또는 전극의 신뢰성 있는 접속과 같은 유리한 효과가 구현될 수 있다.
본 발명에 따르면, 표면 균일성 또는 두께의 변화를 감소시키면서 소정의 돌출 및 리세스된 부분을 갖는 세라믹 그린 시트 또는 전극 층을 제조하기 위한 방법이 제공된다.

Claims (13)

  1. 노출 공정 및 현상 공정을 사용하여 세라믹 그린 시트를 제조하기 위한 방법이며,
    특정 전기적 특성을 갖는 분말을 포함하는 감광성 재료를 상기 노출 공정에 사용되는 광을 투과시킬 수 있는 부분을 갖는 부재의 전방측 표면에 부착하는 단계와,
    상기 광의 광량을 각각의 미리 설정된 영역에 대해 다르게 한 후 상기 감광성 재료 상에서 상기 노출 공정을 수행하도록 상기 감광성 재료를 상기 광으로 상기 부재의 후방측으로부터 조사하는 단계와,
    상기 노출 공정 후, 상기 감광성 재료 상에서 상기 현상 공정을 수행하는 단계를 포함하며,
    상기 감광성 재료는 상기 광에 대해 감광성이고, 상기 전방측 표면은 시트가 형성되는 표면인, 노출 공정 및 현상 공정을 사용한 세라믹 그린 시트 제조 방법.
  2. 제1항에 있어서, 상기 미리 설정된 영역에 상응하는 부분의 투과율이 서로 다른 마스크를 통과하므로써 상기 광의 광량이 상기 각각의 미리 설정된 영역에 대해 다르게 되는, 노출 공정 및 현상 공정을 사용한 세라믹 그린 시트 제조 방법.
  3. 제1항에 있어서, 상기 광량은 적어도 상기 광을 완전히 차단하여 얻어지는 광량, 상기 광을 완전히 투과시켜 얻어지는 광량 및 미리 설정된 비율로 상기 광을 부분적으로 투과시켜 얻어지는 광량으로 구별되는, 노출 공정 및 현상 공정을 사용한 세라믹 그린 시트 제조 방법.
  4. 제3항에 있어서, 미리 설정된 비율로 상기 광을 부분적으로 투과시켜 얻어진 상기 광량에 노출된 상기 감광성 재료의 부분의 두께가 미리 설정된 두께에 도달할 때 상기 노출 공정이 종료되는, 노출 공정 및 현상 공정을 사용한 세라믹 그린 시트 제조 방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 현상 공정에 의해 형성된 세라믹 그린 시트 상의 리세스된 부분을 전기 전도성 재료로 충전하는 단계를 더 포함하는, 노출 공정 및 현상 공정을 사용한 세라믹 그린 시트 제조 방법.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 부재의 전방측 표면에 상기 감광성 재료를 부착하는 단계 이전에, 상기 부재의 전방측 표면의 미리 설정된 영역에 상기 광을 투과시키지 않는 재료로 구성된 광 차단부를 형성하는 단계를 더 포함하는, 노출 공정 및 현상 공정을 사용한 세라믹 그린 시트 제조 방법.
  7. 제1항에 있어서, 착탈 공정이 상기 부재의 표면으로부터 상기 세라믹 그린 시트의 착탈을 용이하게 하도록 상기 부재에 가해지는, 노출 공정 및 현상 공정을 사용한 세라믹 그린 시트 제조 방법.
  8. 노출 공정과 현상 공정을 사용하여 세라믹 그린 시트를 제조하기 위한 방법이며,
    특정 전기적 특성을 갖는 분말을 포함하는 감광성 재료를 상기 노출 공정에 사용되는 광을 투과시킬 수 있는 부분을 갖는 부재의 전방측 표면에 부착하는 단계와,
    상기 감광성 재료 상에서 상기 노출 공정을 수행하도록 상기 감광성 재료를 상기 광으로 상기 부재의 후방측으로부터 조사하는 단계와,
    상기 노출 공정 후, 상기 감광성 재료 상에서 상기 현상 공정을 수행하는 단계를 포함하며,
    상기 감광성 재료는 상기 광에 대해 감광성이고, 상기 전방측 표면은 시트가 형성되는 표면이며, 상기 광의 광량은 각각의 미리 설정된 영역에 대해 상이하도록 된, 노출 공정 및 현상 공정을 사용한 세라믹 그린 시트 제조 방법.
  9. 제8항에 있어서, 상기 광은 광 비임을 포함하고, 광량은 상기 광 비임에 의한 스캐닝에 의해 상기 각각의 미리 설정된 영역에 대해 상이하도록 된, 노출 공정 및 현상 공정을 사용한 세라믹 그린 시트 제조 방법.
  10. 제9항에 있어서, 상기 광 비임으로 스캐닝하는 단계는 상기 각각의 미리 설정된 영역에 상응하는 조건하에서 수행되는, 노출 공정 및 현상 공정을 사용한 세라믹 그린 시트 제조 방법.
  11. 다중층 전자 부품을 제조하기 위한 방법이며,
    제1항 내지 제4항 또는 제7항 내지 제10항 중 어느 한 항에 따른 세라믹 그린 시트를 제조하기 위한 방법에 의해 생산된 세라믹 그린 시트를 포함하는 복수의 세라믹 그린 시트를 적층하는 단계와,
    라미네이팅된 부재를 형성하도록 적층된 세라믹 그린 시트에 대해 시트의 두께 방향으로 압력을 인가하는 단계를 포함하는, 다중층 전자 부품 제조 방법.
  12. 다중층 전자 부품을 제조하기 위한 방법이며,
    제5항에 따른 세라믹 그린 시트를 제조하기 위한 방법에 의해 생산된 세라믹 그린 시트를 포함하는 복수의 세라믹 그린 시트를 적층하는 단계와,
    라미네이팅된 부재를 형성하도록 적층된 세라믹 그린 시트에 대해 시트의 두께 방향으로 압력을 인가하는 단계를 포함하는, 다중층 전자 부품 제조 방법.
  13. 다중층 전자 부품을 제조하기 위한 방법이며,
    제6항에 따른 세라믹 그린 시트를 제조하기 위한 방법에 의해 생산된 세라믹 그린 시트를 포함하는 복수의 세라믹 그린 시트를 적층하는 단계와,
    라미네이팅된 부재를 형성하도록 적층된 세라믹 그린 시트에 대해 시트의 두께 방향으로 압력을 인가하는 단계를 포함하는, 다중층 전자 부품 제조 방법.
KR1020040067675A 2003-08-28 2004-08-27 세라믹 그린 시트 제조 방법 및 세라믹 그린 시트를사용한 전자 부품 제조 방법 KR100688404B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003304218 2003-08-28
JPJP-P-2003-00304218 2003-08-28

Publications (2)

Publication Number Publication Date
KR20050021342A KR20050021342A (ko) 2005-03-07
KR100688404B1 true KR100688404B1 (ko) 2007-03-02

Family

ID=34407970

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040067675A KR100688404B1 (ko) 2003-08-28 2004-08-27 세라믹 그린 시트 제조 방법 및 세라믹 그린 시트를사용한 전자 부품 제조 방법

Country Status (4)

Country Link
US (1) US20050079450A1 (ko)
KR (1) KR100688404B1 (ko)
CN (1) CN100446137C (ko)
TW (1) TWI256651B (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3683891B2 (ja) * 2003-01-31 2005-08-17 Tdk株式会社 セラミックグリーンシートの製造方法および当該セラミックグリーンシートを用いた電子部品の製造方法
JP4372493B2 (ja) * 2003-08-28 2009-11-25 Tdk株式会社 セラミックグリーンシートの製造方法および当該セラミックグリーンシートを用いた電子部品の製造方法
JP2005072539A (ja) * 2003-08-28 2005-03-17 Tdk Corp セラミックグリーンシートの製造方法および当該セラミックグリーンシートを用いた電子部品の製造方法
CN107123540B (zh) * 2017-04-26 2018-06-29 贵阳顺络迅达电子有限公司 一种微型叠层片式元器件的制造方法
EP3466485B1 (en) * 2017-10-05 2022-11-30 Heraeus Deutschland GmbH & Co. KG Internal cermet routing for complex feedthroughs

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159322A (en) * 1996-06-17 2000-12-12 Toray Industries, Inc. Photosensitive ceramic green sheet, ceramic package, and process for producing the same
CN1174445C (zh) * 2000-07-18 2004-11-03 佳叶科技有限公司 蚀刻式单层及积层片状电感的制造方法
JP3683891B2 (ja) * 2003-01-31 2005-08-17 Tdk株式会社 セラミックグリーンシートの製造方法および当該セラミックグリーンシートを用いた電子部品の製造方法
JP4372493B2 (ja) * 2003-08-28 2009-11-25 Tdk株式会社 セラミックグリーンシートの製造方法および当該セラミックグリーンシートを用いた電子部品の製造方法
JP2005072539A (ja) * 2003-08-28 2005-03-17 Tdk Corp セラミックグリーンシートの製造方法および当該セラミックグリーンシートを用いた電子部品の製造方法
US7008735B2 (en) * 2003-09-02 2006-03-07 Macronix International Co., Ltd Mask for improving lithography performance by using multi-transmittance photomask

Also Published As

Publication number Publication date
CN1595560A (zh) 2005-03-16
US20050079450A1 (en) 2005-04-14
TWI256651B (en) 2006-06-11
CN100446137C (zh) 2008-12-24
KR20050021342A (ko) 2005-03-07
TW200512775A (en) 2005-04-01

Similar Documents

Publication Publication Date Title
US7232496B2 (en) Multilayer ceramic electronic part, circuit board and method for producing ceramic green sheet used for manufacturing those part and circuit board
KR100688404B1 (ko) 세라믹 그린 시트 제조 방법 및 세라믹 그린 시트를사용한 전자 부품 제조 방법
US7387870B2 (en) Method for manufacturing ceramic green sheet and method for manufacturing electronic part using that ceramic green sheet
KR100676337B1 (ko) 세라믹 그린 시트를 제조하는 방법 및 세라믹 그린 시트를사용하여 전자 부품을 제조하는 방법
US7540931B2 (en) Method of producing ceramic green sheet and method of producing electronic component using this ceramic green sheet
JP4573025B2 (ja) セラミックグリーンシートの製造方法および当該セラミックグリーンシートを用いた電子部品の製造方法
JP2003324026A (ja) 積層型電子部品の製造方法
US7611982B2 (en) Method of forming sheet having foreign material portions used for forming multi-layer wiring board and sheet having foreign portions
JPS59207651A (ja) 膜回路基板の製造方法
JP2006185987A (ja) セラミックグリーンシートの製造方法及び当該セラミックグリーンシートを用いた電子部品の製造方法。
CN100580830C (zh) 陶瓷生片及电子元件的制造方法
JP4205049B2 (ja) セラミックグリーンシートの製造方法および当該セラミックグリーンシートを用いた電子部品の製造方法
JP4148474B2 (ja) セラミックグリーンシートの製造方法および当該セラミックグリーンシートを用いた電子部品の製造方法
JP4205045B2 (ja) セラミックグリーンシートの製造方法および当該セラミックグリーンシートを用いた電子部品の製造方法
JP2005175501A (ja) セラミックグリーンシートの製造方法および当該セラミックグリーンシートを用いた電子部品の製造方法
JP2000101235A (ja) セラミック多層基板の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee