KR100683657B1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
KR100683657B1
KR100683657B1 KR1020000057115A KR20000057115A KR100683657B1 KR 100683657 B1 KR100683657 B1 KR 100683657B1 KR 1020000057115 A KR1020000057115 A KR 1020000057115A KR 20000057115 A KR20000057115 A KR 20000057115A KR 100683657 B1 KR100683657 B1 KR 100683657B1
Authority
KR
South Korea
Prior art keywords
separator
lithium secondary
secondary battery
silane
organosilane
Prior art date
Application number
KR1020000057115A
Other languages
Korean (ko)
Other versions
KR20020025379A (en
Inventor
이진영
임현정
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020000057115A priority Critical patent/KR100683657B1/en
Publication of KR20020025379A publication Critical patent/KR20020025379A/en
Application granted granted Critical
Publication of KR100683657B1 publication Critical patent/KR100683657B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 복합 산화물을 포함하는 캐소드, 탄소재 또는 흑연재를 포함하는 애노드, 상기 캐소드와 애노드 사이에 삽입되는 세퍼레이타 및 리튬염과 유기용매를 포함하는 전해액을 포함하는 리튬 2차전지에 있어서, 상기 세퍼레이타는 OH기를 함유하는 폴리머로 이루어지며, 상기 세퍼레이타의 표면에 유기실란 자기조립(organosilane self-assembly)층이 형성되어 있는 것을 특징으로 하는 리튬 2차전지를 제공한다. 본 발명에 따라 세퍼레이타 표면에 유기 실란 자기조립층을 형성하면, 세퍼레이타의 물성과 이온전도도를 향상시키고 전해질과 전극판간의 접착력을 향상시킬 수 있다. 또한 전지의 누액 및 관통에 대한 안전성을 높일 수 있다.The present invention relates to a lithium secondary battery comprising a cathode including a lithium composite oxide, an anode including a carbon material or a graphite material, a separator inserted between the cathode and the anode, and an electrolyte solution containing a lithium salt and an organic solvent. In one embodiment, the separator is made of a polymer containing an OH group, it provides a lithium secondary battery characterized in that an organosilane self-assembly layer is formed on the surface of the separator. According to the present invention, when the organosilane self-assembled layer is formed on the surface of the separator, the physical properties and ionic conductivity of the separator can be improved, and the adhesion between the electrolyte and the electrode plate can be improved. In addition, it is possible to increase the safety against leakage and penetration of the battery.

Description

리튬 2차전지{Lithium secondary battery} Lithium secondary battery

본 발명은 리튬 2차전지에 관한 것으로서, 보다 상세하기로는 세퍼레이타와 전극판간의 접착성과 세퍼레이타의 전해액 함침성이 향상되면서 세퍼레이타 표면의 기계적 특성과 전지의 안전성이 개선된 리튬 2차전지에 관한 것이다.The present invention relates to a lithium secondary battery, and more specifically, to improve the adhesion between the separator and the electrode plate and the electrolyte impregnation of the separator, the mechanical properties of the surface of the separator and improved battery safety. It relates to a battery cell.

최근, 전해질과 전극판의 성능을 향상시키기 위하여 전해질 또는 극판의 표면에 고분자 물질을 코팅하는 기술이 제안되었다. 일본 특허 공개 평 10-172613호에 따르면, 세퍼레이타 표면에 다공질 폴리머를 코팅한 전지가 개시되어 있다. Recently, in order to improve the performance of the electrolyte and the electrode plate, a technique of coating a polymer material on the surface of the electrolyte or the electrode plate has been proposed. According to Japanese Patent Laid-Open No. 10-172613, a battery is disclosed in which a porous polymer is coated on a surface of a separator.

이와 같이 전해질이나 전극판 표면에 고분자를 코팅처리하면 전지의 안전성이 향상됨은 물론이고, 전해액 함침성과 전극판과 전해질간의 접착력이 증가되는 잇점이 있다. 그러나, 전해질 또는 전극판상의 코팅막 두께를 일정하게 제어하기가 어렵고 세퍼레이타에 존재하는 기공을 고분자가 막게 되어 고분자 코팅에 의하여 이온전도성이 오히려 감소할 우려가 있다. As described above, the coating of the polymer on the surface of the electrolyte or the electrode plate not only improves the safety of the battery but also increases the electrolyte impregnation and the adhesion between the electrode plate and the electrolyte. However, it is difficult to constantly control the thickness of the coating film on the electrolyte or the electrode plate, and the polymer blocks the pores present in the separator, which may reduce the ion conductivity by the polymer coating.

실제적으로 폴리에틸렌/폴리프로필렌 세퍼레이타에 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머를 코팅처리하면, 코팅처리하지 않는 경우와 비교하여 이온전도도가 50 내지 70% 감소하였다. 따라서, 이온전도도 특성을 저하시키지 않 으면서 안전성이 향상되도록 전해질 또는 전극판을 표면 처리하는 방법에 대한 개발 필요성이 점차 높아지고 있는 실정이다.In practice, coating the vinylidene fluoride-hexafluoropropylene copolymer on a polyethylene / polypropylene separator resulted in a 50-70% reduction in ionic conductivity compared to the case without coating. Therefore, there is a growing need to develop a method for surface-treating an electrolyte or an electrode plate so as to improve safety without deteriorating ion conductivity characteristics.

한편, 고분자 전해질의 표면 개조(modification)를 위해서 종래의 일렉트로크로믹(electrochromic) 코팅기술을 적용하는 방법이 제안되었다. 이 방법은 표면에 하이드록시기를 갖고 있는 ITO나 글래스 기판상에 유기실란을 코팅하는 것으로서, ITO 기판이나 글래스 기판 표면의 산소 원자가 알킬실란의 실리콘 원자를 공격하여 강한 Si-O-Si 표면결합을 형성하는 것이다(Langmuir 1997, 13, 2281-2278). 이러한 방법을 응용하여 유리섬유와 폴리머 매트릭스간의 접착성과 기계적 성질을 개선하기도 하였다(J.F.Compos.Interfaces 1995 3(2), 121). 또한 브롬화반응에 의하여 폴리에틸렌 표면을 개조하거나(Langmuir 1999, 15, 2089-2094) 고체 기질 상에 단일층 광역 밴드 반사방지막(single-layer broad band antireflective layer)을 형성하는 기술(미국 특허 제5,744,243호)이 개시되었다.Meanwhile, a method of applying a conventional electrochromic coating technique has been proposed for surface modification of a polymer electrolyte. This method is to coat an organosilane on ITO or glass substrate having a hydroxyl group on the surface, and oxygen atoms on the surface of the ITO substrate or glass substrate attack the silicon atoms of the alkylsilane to form a strong Si-O-Si surface bond. Langmuir 1997, 13, 2281-2278. This method has also been applied to improve the adhesion and mechanical properties between glass fibers and polymer matrices (JFCompos. Interfaces 1995 3 (2), 121). It is also known to modify the surface of polyethylene by bromination ( Langmuir 1999, 15, 2089-2094) or to form a single-layer broad band antireflective layer on a solid substrate (US Pat. No. 5,744,243). This has been disclosed.

이에 본 발명이 이루고자 하는 기술적 과제는 세퍼레이타와 전극판간의 접착성과 전해액 함침성을 향상시켜주면서 세퍼레이타 표면의 기계적 특성과 안전성이 개선된 리튬 2차전지를 제공하는 것이다.The technical problem to be achieved by the present invention is to provide a lithium secondary battery with improved mechanical properties and safety of the surface of the separator while improving the adhesion between the separator and the electrode plate and the electrolyte impregnation.

상기 기술적 과제를 이루기 위하여 본 발명에서는, 리튬 복합 산화물을 포함하는 캐소드, 탄소재 또는 흑연재를 포함하는 애노드, 상기 캐소드와 애노드 사이에 삽입되는 세퍼레이타 및 리튬염과 유기용매를 포함하는 전해액을 포함하는 리 튬 2차전지에 있어서,In order to achieve the above technical problem, in the present invention, an anode comprising a lithium composite oxide, an anode comprising a carbon material or graphite material, a separator inserted between the cathode and the anode and an electrolyte containing a lithium salt and an organic solvent. In the lithium secondary battery containing,

상기 세퍼레이타는 OH기를 함유하는 폴리머로 이루어지며,The separator consists of a polymer containing an OH group,

상기 세퍼레이타의 표면에 유기실란 자기조립(organosilane self-assembly)층이 형성되어 있는 것을 특징으로 하는 리튬 2차전지를 제공한다.It provides a lithium secondary battery characterized in that an organosilane self-assembly layer is formed on the surface of the separator.

상기 OH기 함유 폴리머는 아크릴레이트, 메타크릴레이트, 에틸렌 글리콜 비스메타크릴레이트, 에톡실레이티드(ethoxylated) 비스페놀 A 디메타크릴레이트, 비닐 아세테이트 및 비닐 알콜로 이루어진 군으로부터 선택된 반복단위를 갖는 호모폴리머, 코폴리머 또는 이들의 블랜드 폴리머이다. 그리고 상기 유기 실란 자기 조립층을 형성하는 유기 실란은 아미노프로필메틸디에톡시실란, 아미노프로필트리에톡시실란 및 알킬트리클로로실란으로 이루어진 군으로부터 선택된 하나 이상이다. 만약 유기 실란이 C4-C8 단쇄 알킬 실란인 경우에는 세퍼레이타에 실란을 불어 넣어 주면서 기상 표면 개조를 실시하여 유기 실란 자기조립층을 형성하고, 상기 유기 실란이 C18-C30 장쇄 알킬 실란인 경우에는 세퍼레이타를 실란의 유기용매 용액에 침적시킨 후, 이를 25 내지 100℃에서 반응시켜 유기 실란 자기 조립층을 형성한다.The OH group-containing polymer is a homopolymer having a repeating unit selected from the group consisting of acrylate, methacrylate, ethylene glycol bismethacrylate, ethoxylated bisphenol A dimethacrylate, vinyl acetate and vinyl alcohol. , Copolymers or blend polymers thereof. And the organic silane forming the organic silane self-assembled layer is at least one selected from the group consisting of aminopropylmethyldiethoxysilane, aminopropyltriethoxysilane and alkyltrichlorosilane. If the organosilane is a C4-C8 short-chain alkyl silane, the silane is blown into the separator to perform gas phase surface modification to form an organosilane self-assembled layer. The separator is immersed in an organic solvent solution of silane and then reacted at 25 to 100 ° C. to form an organic silane self-assembled layer.

본 발명은 세퍼레이타 표면의 OH기가 유기실란과 반응하여 실록산 Si-0-Si 결합을 형성하여 세퍼레이타 표면을 개조한 데 그 특징이 있다. 이 때 세퍼레이타 표면에 형성된 자기조립층은 격렬한 반응조건없이 자기 조립식으로 만들어진 것이다.The present invention is characterized in that the OH group on the surface of the separator reacts with the organosilane to form a siloxane Si-0-Si bond to modify the surface of the separator. At this time, the self-assembled layer formed on the surface of the separator is made of self-assembled without violent reaction conditions.

본 발명에 따른 세퍼레이타의 표면 처리 방법을 살펴보면 다음과 같다. Looking at the surface treatment method of the separator according to the invention as follows.                     

본 발명에서는 유기 실란으로는 C4-C8 단쇄 알킬 실란 화합물을 사용하고나 C18-C30의 장쇄 알킬 실란 화합물을 사용한다. 이에 대한 구체적인 예로는 아미노프로필메틸디에톡시실란, 아미노프로필트리에톡시실란, 알킬트리클로로실란 등이 있다.In the present invention, a C4-C8 short-chain alkyl silane compound is used as the organosilane or a C18-C30 long-chain alkyl silane compound is used. Specific examples thereof include aminopropylmethyldiethoxysilane, aminopropyltriethoxysilane, alkyltrichlorosilane, and the like.

먼저, 유기 실란으로서 C18-C30의 장쇄 실란 화합물을 사용하는 경우, 하기 과정에 따라 실시한다.First, when using the C18-C30 long chain silane compound as an organic silane, it carries out according to the following procedure.

OH기를 함유하고 있는 폴리머로 세퍼레이타 필름을 만든다. 이 세퍼레이타 필름을 유기 실란의 유기용매 용액에 침적시킨다. 이 때 유기 실란의 농도는 0.01 내지 1M인 것이 바람직하며, 유기용매는 톨루엔, 테트라하이드로퓨란 등을 사용한다. 여기에서 유기 실란의 구체적인 예로는 아미노프로필메틸디에톡시실란, 아미노프로필트리에톡시실란 및 알킬트리클로로실란이 있다.A separator film is made of a polymer containing OH groups. This separator film is immersed in the organic solvent solution of organic silane. In this case, the concentration of the organic silane is preferably 0.01 to 1 M, and toluene, tetrahydrofuran, or the like is used as the organic solvent. Specific examples of the organosilane here include aminopropylmethyldiethoxysilane, aminopropyltriethoxysilane and alkyltrichlorosilane.

무수 질소 가스 분위기하에서 상기 결과물을 25 내지 100℃의 온도에서 반응하여 세퍼레이타 표면에 유기 실란 자기조립층을 형성한다. The resultant is reacted at a temperature of 25 to 100 ° C. under anhydrous nitrogen gas atmosphere to form an organosilane self-assembled layer on the surface of the separator.

한편, 만약 유기 실란 화합물이 C4-C8의 단쇄 알킬 실란 화합물인 경우는 OH기 함유 폴리머로 된 세퍼레이타 필름을 무수 질소 가스 분위기하에서 실란을 불어 넣어주면서 기상 개조를 실시하여 세퍼레이타 표면에 자기 조립층을 형성한다.On the other hand, if the organosilane compound is a C4-C8 short-chain alkyl silane compound, the separator film made of an OH group-containing polymer is subjected to vapor phase reforming while blowing silane in anhydrous nitrogen gas atmosphere, and the surface is separated on the surface of the separator. Form an assembly layer.

그 후, 상기 과정에 따라 제조된 세퍼레이타를 캐소드와 애노드사이에 개재하여 전극 조립체를 만든다. 이 전극 조립체를 외장재에 넣고 마지막으로 전해액을 주입하여 리튬 2차전지를 완성한다.Thereafter, the separator manufactured according to the above procedure is interposed between the cathode and the anode to make an electrode assembly. The electrode assembly is placed in an outer packaging material, and finally, electrolyte is injected to complete a lithium secondary battery.

이하, 본 발명을 하기 실시예를 들어 상세히 설명하기로 하되, 본 발명이 하 기 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following examples, but the present invention is not limited to the following examples.

실시예Example

폴리아크릴레이트로 세퍼레이타 필름을 만들었다. 이 세퍼레이타 필름을 1M의 아미노프로필메틸디에톡시실란 톨루엔 용액을 침적시켰다. 무수 질소 가스 분위기하에서 상기 결과물을 25-40℃에서 4시간동안 방치하여 세퍼레이타 표면에 유기실란 자기 조립층을 만들었다. A separator film was made of polyacrylate. The separator film was deposited with a 1 M aminopropylmethyldiethoxysilane toluene solution. The resultant was allowed to stand at 25-40 ° C. for 4 hours under anhydrous nitrogen gas atmosphere to form an organosilane self-assembled layer on the surface of the separator.

상기 세퍼레이타를 캐소드와 애노드 사이에 배치하여 전극 조립체를 만들었다. 이 전극 구조체를 와인딩하여 원통형 전지 케이스에 넣은 다음, 여기에 전해액(Merck사, 1.5M LiPF6 in EC:DMC:DEC=3:3:4)을 주입하여 리튬 2차전지를 완성하였다.The separator was placed between the cathode and the anode to make an electrode assembly. The electrode structure was wound and placed in a cylindrical battery case, and then an electrolyte solution (Merck, 1.5M LiPF 6 in EC: DMC: DEC = 3: 3: 4) was injected thereto to complete a lithium secondary battery.

상기 과정에 따라 제조된 세퍼레이타를 사이에 두고 캐소드와 애노드를 배치하여 전극 조립체를 조립하였다. 이 전지구조체를 와인딩하여 원통형 전지 케이스에 넣은 다음, 여기에 전해액(Merck사, 1.5M LiPF6 in EC:DMC:DEC=3:3:4)을 주입하여 리튬 2차전지를 완성하였다.The electrode assembly was assembled by placing the cathode and the anode with the separator prepared according to the above process therebetween. The battery structure was wound and placed in a cylindrical battery case, and then an electrolyte solution (Merck, 1.5M LiPF 6 in EC: DMC: DEC = 3: 3: 4) was injected to complete a lithium secondary battery.

비교예Comparative example

유기실란 자기조립층 대신, 세퍼레이타 표면에 폴리비닐리덴플루오라이드와 N-메틸피롤리돈을 함유하는 조성물을 코팅처리한 것을 제외하고는, 실시예와 동일한 방법에 따라 실시하여 리튬 2차전지를 완성하였다.Instead of the organosilane self-assembled layer, a lithium secondary battery was prepared in the same manner as in Example, except that the composition containing polyvinylidene fluoride and N-methylpyrrolidone was coated on the surface of the separator. Completed.

상기 실시예 및 비교예에 따라 제조된 리튬 2차전지에 있어서, 세퍼레이타와 전극판간의 접착성 및 이온전도도 특성을 조사하였다.In the lithium secondary battery prepared according to the above Examples and Comparative Examples, the adhesion and ion conductivity between the separator and the electrode plate were investigated.

그 결과, 비교예의 경우는 세퍼레이타와 전극판간의 접착성은 개선되지만, 이온전도도 특성이 저하된 반면, 실시예의 경우는 이온전도도 특성이 저하되지 않으면서 세퍼레이타와 전극판간의 접착성이 우수하다는 것을 확인할 수 있었다.As a result, in the comparative example, the adhesion between the separator and the electrode plate is improved, but the ion conductivity characteristics are deteriorated, while in the example, the adhesion between the separator and the electrode plate is excellent without the ion conductivity characteristics being lowered. I could confirm that.

또한, 상기 실시예 및 비교예에 따라 제조된 리튬 2차전지에 있어서, 전지의 관통 및 누액에 따른 안전성을 평가하였다.In addition, in the lithium secondary battery manufactured according to the above Examples and Comparative Examples, the safety of the penetration and leakage of the battery was evaluated.

평가 결과, 실시예의 리튬 2차전지는 관통시 발화현상이 일어나지 않았고 전해액이 거의 누출되지 않은 것으로 볼 때 안전성이 양호하다는 것을 알 수 있었다. 비교예의 경우도 실시예의 경우와 마찬가지로 관통 및 누액에 대한 전지의 안전성이 동일한 수준을 나타냈다.As a result of the evaluation, it was found that the lithium secondary battery of the example did not have a ignition phenomenon when penetrated and that the electrolyte had little leakage, and thus the safety was good. The comparative example also showed the same level of safety of the battery against penetration and leakage as in the case of the example.

본 발명에 따라 세퍼레이타 표면에 유기 실란 자기조립층을 형성하면, 세퍼레이타의 물성과 이온전도도를 향상시키고 전해질과 전극판간의 접착력을 향상시킬 수 있다. 또한 전지의 누액 및 관통에 대한 안전성을 높일 수 있다.According to the present invention, when the organosilane self-assembled layer is formed on the surface of the separator, the physical properties and ionic conductivity of the separator can be improved, and the adhesion between the electrolyte and the electrode plate can be improved. In addition, it is possible to increase the safety against leakage and penetration of the battery.

본 발명에 대해 상기 실시예를 참고하여 설명하였으나, 이는 예시적인 것에 불과하며, 본 발명에 속하는 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.Although the present invention has been described with reference to the above embodiments, it is merely illustrative, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. . Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (5)

리튬 복합 산화물을 포함하는 캐소드, 탄소재 또는 흑연재를 포함하는 애노드, 상기 캐소드와 애노드 사이에 삽입되는 세퍼레이타 및 리튬염과 유기용매를 포함하는 전해액을 포함하는 리튬 2차전지에 있어서, A lithium secondary battery comprising a cathode including a lithium composite oxide, an anode including a carbon material or a graphite material, a separator inserted between the cathode and the anode, and an electrolyte solution containing a lithium salt and an organic solvent. 상기 세퍼레이타는 OH기를 함유하는 아크릴레이트, 메타크릴레이트, 에틸렌 글리콜 비스메타크릴레이트 및 에톡실레이티드 비스페놀 A 디메타크릴레이트로 이루어진 군으로부터 선택된 반복단위를 갖는 호모폴리머, 코폴리머 또는 이들의 블랜딩 폴리머로 이루어지며,The separator is a homopolymer, a copolymer having a repeating unit selected from the group consisting of acrylate containing OH, methacrylate, ethylene glycol bismethacrylate and ethoxylated bisphenol A dimethacrylate or a copolymer thereof. Made of blended polymer, 상기 세퍼레이타의 표면에 유기실란 자기조립(organosilane self-assembly)층이 형성되어 있는 것을 특징으로 하는 리튬 2차전지.A lithium secondary battery, characterized in that an organosilane self-assembly layer is formed on the surface of the separator. 삭제delete 제1항에 있어서, 상기 유기 실란 자기 조립층을 형성하는 유기 실란이 아미노프로필메틸디에톡시실란, 아미노프로필트리에톡시실란 및 알킬트리클로로실란으로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는 리튬 2차전지. The lithium secondary according to claim 1, wherein the organosilane forming the organosilane self-assembled layer is at least one selected from the group consisting of aminopropylmethyldiethoxysilane, aminopropyltriethoxysilane and alkyltrichlorosilane. battery. 제3항에 있어서, 상기 유기 실란이 C4-C8 단쇄 알킬 실란인 경우, 세퍼레이타에 실란을 불어 넣어 주면서 기상 표면 개조를 실시하여 세퍼레이타 표면에 유기 실란 자기 조립층을 형성하는 것을 특징으로 하는 리튬 2차전지. The method of claim 3, wherein when the organosilane is a C4-C8 short-chain alkyl silane, the organic silane self-assembled layer is formed on the surface of the separator by performing a gas phase surface modification while blowing the silane into the separator. Lithium secondary battery. 제3항에 있어서, 상기 유기 실란이 C18-C30 장쇄 알킬 실란인 경우, 세퍼레이타를 실란의 유기용매 용액에 침적시킨 후, 이를 25 내지 100℃에서 반응시켜 유기 실란 자기 조립층을 형성하는 것을 특징으로 하는 리튬 2차전지. The method of claim 3, wherein when the organic silane is a C18-C30 long-chain alkyl silane, the separator is immersed in an organic solvent solution of the silane, and then reacted at 25 to 100 ° C. to form an organic silane self-assembled layer. A lithium secondary battery characterized by the above.
KR1020000057115A 2000-09-28 2000-09-28 Lithium secondary battery KR100683657B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000057115A KR100683657B1 (en) 2000-09-28 2000-09-28 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000057115A KR100683657B1 (en) 2000-09-28 2000-09-28 Lithium secondary battery

Publications (2)

Publication Number Publication Date
KR20020025379A KR20020025379A (en) 2002-04-04
KR100683657B1 true KR100683657B1 (en) 2007-02-15

Family

ID=19690942

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000057115A KR100683657B1 (en) 2000-09-28 2000-09-28 Lithium secondary battery

Country Status (1)

Country Link
KR (1) KR100683657B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156961B1 (en) * 2006-08-21 2012-06-20 주식회사 엘지화학 Electrode Assembly Having Improved Adhesive Strength and conductivity and Electrochemical Cell Containing the Same
TWI775902B (en) * 2017-07-25 2022-09-01 荷蘭商蜆殼國際研究公司 An electric energy storage device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156918A (en) * 1991-03-28 1992-10-20 Northwestern University Self-assembled super lattices
WO1998032184A1 (en) * 1997-01-16 1998-07-23 Mitsubishi Paper Mills Limited Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for manufacturing separator for nonaqueous electrolyte batteries
KR19990043695A (en) * 1997-11-29 1999-06-15 전주범 Manufacturing method of separator for lithium battery
KR20000057115A (en) * 1999-01-07 2000-09-15 니시무로 타이죠 Coating device, discharge means and coating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156918A (en) * 1991-03-28 1992-10-20 Northwestern University Self-assembled super lattices
WO1998032184A1 (en) * 1997-01-16 1998-07-23 Mitsubishi Paper Mills Limited Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for manufacturing separator for nonaqueous electrolyte batteries
KR19990043695A (en) * 1997-11-29 1999-06-15 전주범 Manufacturing method of separator for lithium battery
KR20000057115A (en) * 1999-01-07 2000-09-15 니시무로 타이죠 Coating device, discharge means and coating method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1020000057115 - 714289
국제특허 제98/32184호(1998.07.23) 1부 *

Also Published As

Publication number Publication date
KR20020025379A (en) 2002-04-04

Similar Documents

Publication Publication Date Title
EP3336931B1 (en) Composite electrolyte structure and lithium metal battery including the same
KR101580995B1 (en) Lithium ion conductive protecting film, preparing method thereof and lithium air electrochemical battery using the same
KR100542213B1 (en) Negative electrode of lithium metal battery and lithium metal battery comprisng same
EP3123542B1 (en) Gel electrolytes and electrodes
US10414890B2 (en) Hybrid fluoropolymer composites
EP3140876B1 (en) Composite electrodes
KR20170126404A (en) Negative electrode for lithium metal battery and lithium metal battery comprising the same
EP1746673A1 (en) Lithium rechargeable battery
JP5192658B2 (en) Lithium ion polymer battery
Delaporte et al. Pre-treatments of Lithium foil surface for improving the cycling life of Li metal batteries
KR20190065157A (en) Electrolyte composition for lithium secondary battery and lithium secondary battery comprising the same
KR20180121391A (en) Negative electrode for lithium metal battery, preparing method thereof and lithium metal battery comprising the same
CN114175385A (en) Composite laminated chemically cross-linked separator
KR100683657B1 (en) Lithium secondary battery
WO2018070735A2 (en) Anode for lithium secondary battery and lithium secondary battery comprising same
US11695187B2 (en) Functionalized separator having zwitterionic coating and method of fabricating thereof
JP2023548598A (en) Lithium protective polymer layer for anodeless lithium metal secondary battery and method for manufacturing the same
KR100490543B1 (en) Methods for producing negative electrode and lithium battery
KR100368438B1 (en) Polymer electrolyte having multilayer structure, method for preparing the same and lithium secondary battery employing the same
Ogumi et al. Ionically Conductive Thin Polymer Films Prepared by Plasma Polymerization: III. Preparation and Characterization of Ultrathin Films Having Fixed Sulfonic Acid Groups with Only One Mobile Species
KR101763356B1 (en) Method of Preparing Polymer Film Using iCVD
KR102005868B1 (en) Separators comprising porous heat-resistant layer, electrochemical battery using the separator, and method for preparing the separator
WO1998053465A1 (en) Thin aprotic electrolyte films, immobilized liquid membrane conductors, and batteries
CN116722144B (en) Hydrophobic modifier, hydrophobic layer slurry, modified lithium negative electrode, lithium battery, and preparation methods and applications of hydrophobic modifier and hydrophobic layer slurry and modified lithium negative electrode
KR20010011032A (en) Methods for Treatment of Metallic Aluminum and Copper Current Collector for Secondary Batteries

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130122

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140123

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150120

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee