KR100651355B1 - Method for preparing ketones on inorganic oxide catalysts modified with cadmium oxide - Google Patents

Method for preparing ketones on inorganic oxide catalysts modified with cadmium oxide Download PDF

Info

Publication number
KR100651355B1
KR100651355B1 KR1020020006533A KR20020006533A KR100651355B1 KR 100651355 B1 KR100651355 B1 KR 100651355B1 KR 1020020006533 A KR1020020006533 A KR 1020020006533A KR 20020006533 A KR20020006533 A KR 20020006533A KR 100651355 B1 KR100651355 B1 KR 100651355B1
Authority
KR
South Korea
Prior art keywords
cadmium
oxide
inorganic oxide
reaction
cadmium oxide
Prior art date
Application number
KR1020020006533A
Other languages
Korean (ko)
Other versions
KR20030066200A (en
Inventor
곽병성
정기남
이상일
Original Assignee
에스케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이 주식회사 filed Critical 에스케이 주식회사
Priority to KR1020020006533A priority Critical patent/KR100651355B1/en
Publication of KR20030066200A publication Critical patent/KR20030066200A/en
Application granted granted Critical
Publication of KR100651355B1 publication Critical patent/KR100651355B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/60Platinum group metals with zinc, cadmium or mercury

Abstract

본 발명은 산화카드뮴이 담지된 무기산화물 촉매를 충진한 고정층 연속반응계에서 카르복시산 또는 그 유도체를 200 내지 550℃의 반응온도, 0.1 내지 100 psi의 반응압력 및 0.1 내지 30 h-1의 시간당 중량공간속도(WHSV)로 케톤을 제조하는 방법에 관한 것이다. 상기 방법에 따른 산화카드뮴이 담지된 무기산화물 촉매를 사용하여 선택성이 높은 경제적인 케톤의 제조가 가능하게 된다. The present invention relates to a carboxylic acid or its derivative in a fixed bed continuous reaction system filled with an inorganic oxide catalyst loaded with cadmium oxide, at a reaction temperature of 200 to 550 ° C., a reaction pressure of 0.1 to 100 psi, and a weight hourly space velocity of 0.1 to 30 h −1 . (WHSV) to a process for preparing ketones. By using the inorganic oxide catalyst supported on the cadmium oxide according to the above method, it is possible to produce economical ketones having high selectivity.

산화카드뮴, 무기산화물, 촉매, 고정층 연속반응계, 케톤 Cadmium Oxide, Inorganic Oxide, Catalyst, Fixed Bed Continuous Reaction System, Ketone

Description

산화카드뮴이 담지된 무기산화물 촉매상에서 케톤을 제조하는 방법{Method for preparing ketones on inorganic oxide catalysts modified with cadmium oxide}Method for preparing ketones on inorganic oxide catalysts modified with cadmium oxide}

도 1은 산화카드뮴이 담지된 무기산화물 촉매에서 케톤에 대한 선택도의 증가를 나타낸 그래프이다. 1 is a graph showing an increase in selectivity for ketone in a cadmium oxide-supported inorganic oxide catalyst.

도 2는 본 발명의 산화카드뮴이 담지된 무기산화물 촉매의 사용에 따른 3-아세틸피리딘의 수율을 반응시간에 따라 나타낸 그래프이다. 2 is a graph showing the yield of 3-acetylpyridine according to the reaction time according to the use of the cadmium oxide-supported inorganic oxide catalyst of the present invention.

본 발명은 산화카드뮴이 담지된 무기산화물 촉매상에서 케톤을 제조하는 방법에 관한 것으로, 좀 더 구체적으로는 산화카드뮴이 담지된 무기산화물 촉매를 충진한 고정층 연속 반응계에서 하기 화학식 1 및 2로 표시된 바와 같은 카르복시산 또는 그 유도체를 반응시켜 화학식 3으로 표시되는 케톤을 제조하는 방법에 관한 것이다. The present invention relates to a method for preparing a ketone on a cadmium oxide-supported inorganic oxide catalyst, and more particularly to a fixed bed continuous reaction system filled with a cadmium oxide-supported inorganic oxide catalyst as shown in Formulas 1 and 2 below. It relates to a method for producing a ketone represented by the formula (3) by reacting a carboxylic acid or a derivative thereof.                         

Figure 112002003783715-pat00001
Figure 112002003783715-pat00001

Figure 112002003783715-pat00002
Figure 112002003783715-pat00002

Figure 112002003783715-pat00003
Figure 112002003783715-pat00003

여기서, R1과 R3는 서로 같거나 다르게, 탄소수 1 내지 12의 알킬, 사이클로알킬, 아릴알킬, 아릴 또는 헤테로아릴기이고, R2는 하이드록시기, 수소원자, 염소원자, 탄소수 1 내지 6의 알콕시기, 또는 아미노기이고, R4는 하이드록시기 또는 수소원자이다. Here, R 1 and R 3 are the same as or different from each other, alkyl, cycloalkyl, arylalkyl, aryl or heteroaryl group having 1 to 12 carbon atoms, R 2 is a hydroxy group, a hydrogen atom, a chlorine atom, 1 to 6 carbon atoms Is an alkoxy group or an amino group, and R 4 is a hydroxy group or a hydrogen atom.

케톤의 제조방법에 대한 선행기술을 살펴보면, 국제공개특허 WO 01/15802호에서는 세리아 또는 아연 산화물이 담지된 알루미나 또는 지르코니아 촉매상에서 케톤을 제조하는 방법이 기재되어 있다. 상기 특허에서는 세리아 또는 아연산화물을 단층(Monolayer) 형태로 담지시켜 케톤 생성반응에 대한 촉매활성을 증가시켰 으며, 실시예에는 아세트산과 사이클로프로판카르복실산을 반응시켜 메틸사이클로프로필 케톤을 제조하는 방법이 기재되어 있으나, 이 때 생성물인 케톤에 대한 최고 반응수율은 71%이었다.Looking at the prior art for the preparation of ketones, WO 01/15802 describes a process for preparing ketones on alumina or zirconia catalysts carrying ceria or zinc oxide. In this patent, ceria or zinc oxide is supported in monolayer form to increase the catalytic activity for the ketone formation reaction. In the embodiment, a method of preparing methylcyclopropyl ketone by reacting acetic acid and cyclopropanecarboxylic acid is disclosed. Although described, the highest reaction yield for the product ketone was 71%.

미국특허 제3,966,822호에서는 알칼리 또는 알칼리토금속 산화물이 담지된 지르코니아 촉매상에서 케톤을 제조하는 방법이 기재되어 있다. 상기 특허에서는 알데히드를 반응물로 제한하였으며, 실시예에는 이소부틸알데히드로부터 디이소프로필케톤을 제조하는 방법이 기재되어 있으며 최고 반응 수율이 85%이었다.U. S. Patent No. 3,966, 822 describes a process for preparing ketones on zirconia catalysts supported with alkali or alkaline earth metal oxides. The patent limited aldehydes to reactants, and the examples describe a process for preparing diisopropylketone from isobutylaldehyde with a peak reaction yield of 85%.

미국특허 제4,950,763호에서는 티타니아 촉매상에서 카르복시산을 카르복시산 또는 아세톤과 반응시켜 케톤을 제조하는 방법이 기재되어 있다. 상기 특허에서는 ⅠA족 또는 ⅡA족 금속산화물이 담지된 아나타제(Anatase) 형태의 티타니아를 촉매로 한정하였고, 실시예에는 산화나트륨이 담지된 티타니아 촉매상에서 메틸 니코티네이트(Methyl nicotinate)와 아세트산을 반응시켜 3-아세틸피리딘을 제조하는 방법이 기재되어 있으나, 이 때 3-아세틸피리딘에 대한 선택도가 54%에 불과하였다.US Pat. No. 4,950,763 describes a process for preparing ketones by reacting carboxylic acid with carboxylic acid or acetone on a titania catalyst. The patent is limited to anatase (Tinata) in the form of anatase supported on Group IA or Group IIA metal oxide catalyst, in the embodiment, methyl nicotinate and acetic acid on a titania catalyst loaded with sodium oxide A method for preparing 3-acetylpyridine is described, but only 54% selectivity for 3-acetylpyridine.

미국특허 제4,528,400호와 제4,570,021호에서는 지르코니아, 세리아-알루미나, 산화토리움-알루미나 촉매상에서 피발릭산과 아세톤 또는 아세트산을 반응시켜 케톤을 제조하는 방법이 기재되어 있으나, 상기 특허에 사용된 촉매는 고가이며 방사성 물질이고, 수율 또한 만족스럽지 못하였다.U.S. Patent Nos. 4,528,400 and 4,570,021 describe methods for preparing ketones by reacting pivalic acid with acetone or acetic acid on zirconia, ceria-alumina and thorium oxide-alumina catalysts, but the catalyst used in the patent is expensive It is a radioactive material and the yield was also not satisfactory.

이에 본 발명에서는 산화카드뮴이 담지된 무기산화물의 저가 촉매를 사용하 여 반응수율 및 생산성을 높이고, 또한 촉매 비활성화를 낮추어 경제적으로 케톤을 제조할 수 있었고, 이에 기초하여 본 발명을 완성하였다.Accordingly, in the present invention, a low-cost catalyst of cadmium oxide-supported inorganic oxide was used to increase the reaction yield and productivity, and also to lower the catalyst deactivation, thereby economically preparing ketones, thereby completing the present invention.

따라서 본 발명의 목적은 수율과 생산성이 높고, 촉매 비활성화가 낮은 케톤의 제조방법을 제공하는데 있다.It is therefore an object of the present invention to provide a method for producing ketones with high yield and high productivity and low catalyst deactivation.

상기 목적을 달성하기 위한 본 발명의 제조방법은 산화카드뮴이 담지된 무기산화물 촉매를 충진한 고정층 연속반응계에서 화학식 1 및 화학식 2로 표시되는 카르복시산 또는 그 유도체를 200 내지 550℃의 반응온도, 0.1 내지 100 psi의 반응압력 및 0.1 내지 30 h-1의 시간당 중량공간속도(WHSV)로 반응시켜 하기 화학식 3의 케톤을 제조하는 것을 통하여 이루어진다.The production method of the present invention for achieving the above object is the reaction temperature of 200 to 550 ℃, the carboxylic acid or its derivatives represented by the formula (1) and formula (2) in a fixed bed continuous reaction system filled with a cadmium oxide-supported inorganic oxide catalyst, 0.1 to The reaction is carried out at a reaction pressure of 100 psi and a weight hourly space velocity (WHSV) of 0.1 to 30 h −1 to prepare a ketone of the following Chemical Formula 3.

화학식 1Formula 1

Figure 112002003783715-pat00004
Figure 112002003783715-pat00004

화학식 2Formula 2

Figure 112002003783715-pat00005
Figure 112002003783715-pat00005

화학식 3Formula 3

Figure 112002003783715-pat00006
Figure 112002003783715-pat00006

여기서, R1과 R3는 서로 같거나 다르게, 탄소수 1 내지 12의 알킬, 사이클로알킬, 아릴알킬, 아릴 또는 헤테로아릴기이고, R2는 하이드록시기, 수소원자, 염소원자, 탄소수 1 내지 6의 알콕시기, 또는 아미노기이고, R4는 하이드록시기 또는 수소원자이다. Here, R 1 and R 3 are the same as or different from each other, alkyl, cycloalkyl, arylalkyl, aryl or heteroaryl group having 1 to 12 carbon atoms, R 2 is a hydroxy group, a hydrogen atom, a chlorine atom, 1 to 6 carbon atoms Is an alkoxy group or an amino group, and R 4 is a hydroxy group or a hydrogen atom.

이하 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다.Looking at the present invention in more detail as follows.

전술한 바와 같이, 본 발명은 산화카드뮴이 담지된 무기산화물 촉매를 충진한 고정층 연속 반응계에서 카르복시산 또는 그 유도체를 반응시켜 상기 화학식 3과 같은 케톤을 제조하는 방법에 관한 것이다.As described above, the present invention relates to a method for preparing a ketone of Chemical Formula 3 by reacting carboxylic acid or a derivative thereof in a fixed bed continuous reaction system filled with an inorganic oxide catalyst loaded with cadmium oxide.

본 발명에 따르면, 카르복시산 또는 그 유도체로부터 케톤을 생성하는 방법에 있어서, 산화카드뮴이 담지된 무기산화물 촉매를 개발하여 사용함으로써 수율과 생산성이 향상되었고, 촉매수명을 연장시키는 효과를 얻었다. 상기 반응물 중 카르복시산 유도체로는 카르복시산의 하이드록시기를 수소원자, 염소원자, 알콕시기 또는 아미노기로 치환된 알데히드, 산염화물, 에스테르 또는 아미드 등을 사용할 수 있다.According to the present invention, in the method for producing a ketone from carboxylic acid or a derivative thereof, the yield and productivity are improved and the catalyst life is extended by developing and using an inorganic oxide catalyst carrying cadmium oxide. As the carboxylic acid derivative in the reactants, aldehydes, acid chlorides, esters, amides, etc. in which the hydroxy group of the carboxylic acid is substituted with a hydrogen atom, a chlorine atom, an alkoxy group or an amino group can be used.

또한, 상기 화학식 1의 반응물은 알데히드 또는 카르복시산 및 그 유도체로 이루어진 군으로부터 선택되고, 화학식 2의 반응물은 카르복시산 및 그 유도체로 이루어진 군으로부터 선택되고, 그리고, 화학식 3은 화학식 1과 2의 각각 R1과 R3로 이루어진 케톤이다. In addition, the reactant of Formula 1 is selected from the group consisting of aldehyde or carboxylic acid and derivatives thereof, the reactant of Formula 2 is selected from the group consisting of carboxylic acid and derivatives thereof, and Formula 3 is each R 1 of Formulas 1 and 2 And a ketone consisting of R 3 .

본 발명에 사용된 산화카드뮴-무기산화물 촉매를 제조하기 위한 산화카드뮴의 전구체로 카드뮴아세테이트, 염화카드뮴, 카드뮴하이드록사이드, 질산 카드뮴, 황산카드뮴 등을 사용할 수 있다. 이 전구체 용액을 무기산화물에 함침시킨 후 건조와 소성 과정을 거쳐 산화카드뮴이 담지된 무기산화물 촉매를 제조하였고, 이 때 촉매 내 산화카드뮴의 함량은 0.05 내지 50 중량%, 바람직하게는 0.1 내지 30 중량%이다. Cadmium acetate, cadmium chloride, cadmium hydroxide, cadmium nitrate, cadmium sulfate, and the like may be used as precursors of cadmium oxide for producing the cadmium oxide-inorganic oxide catalyst used in the present invention. The precursor solution was impregnated with an inorganic oxide, and then dried and calcined to prepare an inorganic oxide catalyst on which cadmium oxide was supported. At this time, the content of cadmium oxide in the catalyst was 0.05 to 50% by weight, preferably 0.1 to 30% by weight. %to be.

상기 무기산화물은 실리카, 알루미나, 지르코니아, 티타니아, 및 진크옥사이드로 이루어진 군으로부터 하나 또는 그 이상 선택되고, 바람직하게는 알루미나 또는 지르코니아이다. 한편, 상기 무기산화물에 담지된 산화카드뮴의 함량은 0.05 내지 50 중량%이고, 상기 범위를 벗어나면 선택도가 감소하거나, 촉매 비활성화 속도가 증가된다. The inorganic oxide is one or more selected from the group consisting of silica, alumina, zirconia, titania, and zinc oxide, preferably alumina or zirconia. On the other hand, the content of cadmium oxide supported on the inorganic oxide is 0.05 to 50% by weight, the selectivity is reduced or the catalyst deactivation rate is increased outside the above range.

상기 고정층 연속 반응계에서 반응은 200 내지 550℃의 반응온도, 0.1 내지 100 psi의 반응압력 및 0.1 내지 30 h-1의 시간당 중량공간속도(WHSV)에서 수행되고, 더욱 바람직하게는 300 내지 500℃의 반응온도, 0.1 내지 100 psi의 반응압력 및 0.2 내지20 h-1의 시간당 중량공간속도(WHSV)로 수행된다. In the fixed bed continuous reaction system, the reaction is carried out at a reaction temperature of 200 to 550 ° C., a reaction pressure of 0.1 to 100 psi and a weight hourly space velocity (WHSV) of 0.1 to 30 h −1 , more preferably of 300 to 500 ° C. The reaction temperature, reaction pressure of 0.1 to 100 psi and weight hourly space velocity (WHSV) of 0.2 to 20 h −1 are performed.

본 발명의 산화카드뮴이 담지된 무기산화물의 저가 촉매를 사용하면 반응수율 및 생산성을 높이고, 또한 촉매 비활성화가 낮은 공정으로 케톤을 제조할 수 있다.By using a low-cost catalyst of the inorganic oxide supported on the cadmium oxide of the present invention, ketones can be manufactured by a process of increasing reaction yield and productivity and lowering catalyst deactivation.

이하 실시예를 통하여 본 발명을 좀 더 구체적으로 설명하지만, 하기 실시예 에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.

비교예 1Comparative Example 1

지르코늄 하이드록사이드(Zirconium hydroxide)를 실린더형 펠릿으로 압출성형하고, 건조와 소성과정을 거쳐 비표면적이 100 ㎡/g이고, 기공 부피가 0.28 cc/g인 지르코니아 촉매를 제조한다. 이러한 방법으로 제조된 촉매 35 g을 고정층 상압 반응기에 충진하고, 20 L/hr의 유속으로 질소를 흘리면서 반응기 온도를 380℃로 승온시킨다. 반응기 내부온도가 안정된 다음, 메틸 니코티네이트 6 g/hr, 아세트산 36 g/hr, H2O 5.4 g/hr, 질소기체 20 L/hr을 주입하여 반응을 실시하였다. 일정한 시간간격으로 고성능 기체크로마토그래피(High performance gas chromatography)로 분석하였다. 이 때 메틸 니코티네이트의 전환율은 100%이고, 3-아세틸피리딘에 대한 선택도는 90 %이었다.Zirconium hydroxide (Zirconium hydroxide) is extruded into cylindrical pellets, and dried and calcined to prepare a zirconia catalyst having a specific surface area of 100 m 2 / g and a pore volume of 0.28 cc / g. 35 g of the catalyst prepared in this way were charged to a fixed bed atmospheric reactor and the reactor temperature was raised to 380 ° C. while flowing nitrogen at a flow rate of 20 L / hr. After the temperature inside the reactor was stabilized, 6 g / hr of methyl nicotinate, 36 g / hr of acetic acid, 5.4 g / hr of H 2 O, and 20 L / hr of nitrogen gas were injected. The analysis was performed by high performance gas chromatography at regular time intervals. At this time, the conversion of methyl nicotinate was 100%, and the selectivity to 3-acetylpyridine was 90%.

비교예 2Comparative Example 2

알루미늄 하이드록사이드(Aluminium hydroxide)를 실린더형 펠릿으로 압출성형하고, 소성로(calcining furnace)로 옮겨 공기 분위기에서 550℃로 3시간 동안 소성하여 알루미나 촉매를 제조한다. 이러한 방법으로 제조된 촉매 35 g을 고정층 상압 반응기에 충진하고, 20 L/hr의 유속으로 질소를 흘리면서 반응기 온도를 400℃로 승온시킨다. 반응기 내부온도가 안정된 다음, 메틸니코티네이트 6 g/hr, 아세트산 36 g/hr, H2O 5.4 g/hr, 질소 기체 20 L/hr을 주입하여 반응을 실시하였다. 이 때 메틸 니코티네이트의 전환율은 90%이고, 3-아세틸피리딘에 대한 선택도는 30%이었다.Aluminum hydroxide is extrusion molded into cylindrical pellets, transferred to a calcining furnace, and calcined at 550 ° C. for 3 hours in an air atmosphere to prepare an alumina catalyst. 35 g of the catalyst prepared in this way was charged to a fixed bed atmospheric reactor and the reactor temperature was raised to 400 ° C. while flowing nitrogen at a flow rate of 20 L / hr. After the temperature inside the reactor was stabilized, 6 g / hr of methyl nicotinate, 36 g / hr of acetic acid, 5.4 g / hr of H 2 O and 20 L / hr of nitrogen gas were injected to carry out the reaction. At this time, the conversion of methyl nicotinate was 90%, the selectivity to 3-acetylpyridine was 30%.

실시예 1Example 1

비교예 1의 방법으로 제조된 지르코니아에 카드뮴염 수용액을 담지하고, 500℃로 소성하여 산화카드뮴 함량이 5 중량%인 지르코니아-산화카드뮴 촉매를 제조하였다. 이러한 방법으로 제조된 촉매 35 g을 고정층 상압 반응기에 충진하고, 30 L/hr의 유속으로 질소를 흘리면서 반응기 온도를 380℃로 승온시킨다. 반응기 내부온도가 안정된 다음, 메틸 니코티네이트 9 g/hr, 아세트산 54 g/hr, H2O 8.1 g/hr, 질소 기체 30 L/hr을 주입하여 반응을 실시한 결과 메틸 니코티네이트의 전환율은 100%이고, 3-아세틸피리딘에 대한 선택도는 97%이었다.The zirconia prepared by the method of Comparative Example 1 was loaded with an aqueous solution of cadmium salt and calcined at 500 ° C. to prepare a zirconia-cadmium oxide catalyst having a cadmium oxide content of 5% by weight. 35 g of the catalyst prepared in this way were charged to a fixed bed atmospheric reactor and the reactor temperature was raised to 380 ° C. while flowing nitrogen at a flow rate of 30 L / hr. After the reactor temperature was stabilized, the reaction was carried out by injecting 9 g / hr of methyl nicotinate, 54 g / hr of acetic acid, 8.1 g / hr of H 2 O, and 30 L / hr of nitrogen gas. 100% and selectivity to 3-acetylpyridine was 97%.

실시예 2Example 2

비교예 2의 방법으로 제조된 알루미나에 카드뮴염 수용액을 담지하고 500℃로 소성하여 산화카드뮴 함량이 15 중량%인 알루미나-산화카드뮴 촉매를 제조하였다. 이러한 방법으로 제조된 촉매를 비교예 2와 동일한 방법으로 반응시켰을때, 메틸 니코티네이트의 전환율은 100%이고, 3-아세틸피리딘에 대한 선택도는 92%인 결과를 얻었다.The alumina prepared by the method of Comparative Example 2 was loaded with an aqueous solution of cadmium salt and calcined at 500 ° C. to prepare an alumina-cadmium oxide catalyst having a cadmium oxide content of 15% by weight. When the catalyst prepared in this manner was reacted in the same manner as in Comparative Example 2, the conversion of methyl nicotinate was 100%, and the selectivity to 3-acetylpyridine was 92%.

전술한 바와 같이, 상기 무기산화물 촉매에 산화카드뮴을 담지시킨 결과 케톤에 대한 선택성이 증가되었으며, 이에 따른 결과를 실시예와 비교예의 값을 대조하여 도 1에 나타내었다.As described above, as a result of supporting cadmium oxide on the inorganic oxide catalyst, selectivity to ketones was increased, and the results are shown in FIG. 1 by comparing the values of the examples and the comparative examples.

실시예 3-4 Example 3-4                     

지르코니아(ZrO2, 실시예 3)와 산화카드뮴 함량이 2 중량%인 지르코니아 촉매(2% CdO-ZrO2, 실시예 4)를 비교예 1의 방법으로 실시하였으며, 반응 시간의 경과에 따른 전환율과 선택도의 변화를 도 2에 나타내었다. 상기 지르코니아에 산화카드뮴을 담지시킨 결과, 케톤에 대한 선택성이 증가되었으며, 촉매 수명도 연장되는 결과를 나타내었다. Zirconia (ZrO 2 , Example 3) and zirconia catalyst (2% CdO-ZrO 2 , Example 4) having a cadmium oxide content of 2% by weight were carried out by the method of Comparative Example 1, The change in selectivity is shown in FIG. 2. As a result of supporting cadmium oxide in the zirconia, the selectivity to ketones was increased and the catalyst life was extended.

실시예 5Example 5

산화카드뮴 함량이 5 중량%인 지르코니아-산화카드뮴 촉매 35 g을 고정층 상압 반응기에 충진하고, 30 L/hr의 유속으로 질소를 흘리면서 반응기 온도를 400℃로 승온시킨다. 반응기 내부온도가 안정된 다음, 부틸산 10 g/hr, 아세트산 60 g/hr, H2O 9g/hr, 질소 기체 30 L/hr을 주입하여 반응을 실시하였다. 이때 부틸산의 전환율은 100%이고, 메틸프로필케톤에 대한 선택도는 94%이었다.35 g of a zirconia-cadmium oxide catalyst having a cadmium oxide content of 5% by weight is charged to a fixed bed atmospheric reactor and the reactor temperature is raised to 400 ° C. while flowing nitrogen at a flow rate of 30 L / hr. After the temperature inside the reactor was stabilized, 10 g / hr butyric acid, 60 g / hr acetic acid, 9 g / hr H 2 O and 30 L / hr nitrogen gas were injected to carry out the reaction. At this time, the conversion of butyric acid was 100%, selectivity to methyl propyl ketone was 94%.

실시예 6Example 6

산화카드뮴 함량이 18 중량%인 알루미나-산화카드뮴 촉매 35 g을 고정층 상압 반응기에 충진하고, 30 L/hr의 유속으로 질소를 흘리면서 반응기 온도를 400℃로 승온시킨다. 반응기 내부온도가 안정된 다음, 벤조산 10 g/hr, 아세트산 65 g/hr, H2O 9 g/hr, 질소 기체 30 L/hr을 주입하여 반응을 실시하였다. 이때 벤조산의 전환율은 100%이고, 아세토페논에 대한 선택도는 91%이었다.35 g of alumina-cadmium oxide catalyst having a cadmium oxide content of 18% by weight was charged to a fixed bed atmospheric reactor, and the reactor temperature was raised to 400 ° C. while flowing nitrogen at a flow rate of 30 L / hr. After the temperature inside the reactor was stabilized, 10 g / hr benzoic acid, 65 g / hr acetic acid, 9 g / hr H 2 O and 30 L / hr nitrogen gas were injected to carry out the reaction. In this case, the conversion of benzoic acid was 100%, and the selectivity to acetophenone was 91%.

실시예 7Example 7

산화카드뮴 함량이 5 중량%인 지르코니아-산화카드뮴 촉매 35 g을 고정층 상 압 반응기에 충진하고, 20 L/hr의 유속으로 질소를 흘리면서 반응기 온도를 390℃로 승온시킨다. 반응기 내부온도가 안정된 다음, 부탄아미드 6 g/hr, 아세트산 40 g/hr, H2O 5.4 g/hr, 질소 기체 20 L/hr을 주입하여 반응을 실시하였다. 이때 부탄아미드의 전환율은 100%이고, 메틸프로필케톤에 대한 선택도는 95%이었다.35 g of a zirconia-cadmium oxide catalyst having a cadmium oxide content of 5% by weight is charged to a fixed bed atmospheric reactor and the reactor temperature is raised to 390 ° C. while flowing nitrogen at a flow rate of 20 L / hr. After the temperature inside the reactor was stabilized, 6 g / hr of butanamide, 40 g / hr of acetic acid, 5.4 g / hr of H 2 O and 20 L / hr of nitrogen gas were injected to carry out the reaction. The conversion rate of butanamide was 100%, and the selectivity for methylpropyl ketone was 95%.

실시예 8Example 8

산화카드뮴 함량이 2 중량%인 지르코니아-산화카드뮴 촉매 35 g을 고정층 상압 반응기에 충진하고, 20 L/hr의 유속으로 질소를 흘리면서 반응기 온도를 380℃로 승온시킨다. 반응기 내부온도가 안정된 다음, 프로피온알데히드 12 g/hr, H2O 5.4 g/hr, 질소 기체 20 L/hr을 주입하여 반응을 실시하였다. 이때 프로피온알데히드의 전환율은 100%이고, 디에틸케톤 대한 선택도는 99%이었다.35 g of a zirconia-cadmium oxide catalyst having a cadmium oxide content of 2% by weight is charged to a fixed bed atmospheric reactor and the reactor temperature is raised to 380 ° C. while flowing nitrogen at a flow rate of 20 L / hr. After the temperature inside the reactor was stabilized, propionaldehyde was reacted by injecting 12 g / hr of propionaldehyde, 5.4 g / hr of H 2 O, and 20 L / hr of nitrogen gas. In this case, the conversion of propionaldehyde was 100%, and the selectivity for diethyl ketone was 99%.

상시 실시예 5-8의 산화카드뮴 함량에 따른 전환율 및 선택도를 하기 표 1에 나타내었다. The conversion and selectivity according to the cadmium oxide content of Example 5-8 at all times are shown in Table 1 below.

촉매catalyst 촉매 중 산화카드뮴 함량(중량%)Cadmium oxide content in the catalyst (% by weight) 반응기 온도(℃)Reactor temperature (℃) 전환율(%)% Conversion 선택도(%)Selectivity (%) 실시예 5Example 5 지르코니아-산화카드뮴Zirconia-Cadmium Oxide 55 400400 100100 9494 실시예 6Example 6 알루미나-산화카드뮴Alumina-Cadmium Oxide 1818 400400 100100 9191 실시예 7Example 7 지르코니아-산화카드뮴Zirconia-Cadmium Oxide 55 390390 100100 9595 실시예 8Example 8 지르코니아-산화카드뮴Zirconia-Cadmium Oxide 22 380380 100100 9999

상기 표 1에 따르면, 산화카드뮴을 담지시킨 무기산화물 촉매를 사용하여 전환율 및 선택도에서 높은 향상을 얻을 수 있다. According to Table 1, a high improvement in conversion and selectivity can be obtained by using an inorganic oxide catalyst carrying cadmium oxide.

전술한 바와 같이, 본 발명에서는 산화카드뮴이 담지된 무기산화물의 저가 촉매를 사용하여 반응수율 및 생산성을 높이고, 또한 촉매 비활성화가 낮은 공정으로 케톤을 제조할 수 있어 경제적인 효과가 기대된다. As described above, in the present invention, a ketone can be manufactured in a process using a low-cost catalyst of an inorganic oxide on which cadmium oxide is supported to increase reaction yield and productivity, and also have low catalyst deactivation, and thus economical effect is expected.

Claims (7)

산화카드뮴이 담지된 무기산화물 촉매를 충진한 고정층 연속반응계에서 하기 화학식 1 및 화학식 2로 표시되는 카르복시산 또는 그 유도체를 200 내지 550℃의 반응온도, 0.1 내지 100 psi의 반응압력 및 0.1 내지 30 h-1의 시간당 중량공간속도(WHSV)로 반응시키는 것을 특징으로 하는 화학식 3으로 표시되는 케톤의 제조방법:In a fixed bed continuous reaction system packed with a cadmium oxide-supported inorganic oxide catalyst, the carboxylic acid or its derivatives represented by the following Chemical Formulas 1 and 2 were subjected to a reaction temperature of 200 to 550 ° C., a reaction pressure of 0.1 to 100 psi, and 0.1 to 30 h . Method for preparing a ketone represented by the formula (3), characterized in that the reaction at a weight hourly space velocity (WHSV) of 1 : 화학식 1Formula 1
Figure 112002004131207-pat00007
Figure 112002004131207-pat00007
화학식 2Formula 2
Figure 112002004131207-pat00008
Figure 112002004131207-pat00008
화학식 3Formula 3
Figure 112002004131207-pat00009
Figure 112002004131207-pat00009
여기서, R1과 R3는 서로 같거나 다르게, 탄소수 1 내지 12의 알킬, 사이클로알킬, 아릴알킬, 아릴 또는 헤테로아릴기이고, R2는 하이드록시기, 수소원자, 염소원자, 탄소수 1 내지 6의 알콕시기, 또는 아미노기이고, R4는 하이드록시기 또는 수소원자이다. Here, R 1 and R 3 are the same as or different from each other, alkyl, cycloalkyl, arylalkyl, aryl or heteroaryl group having 1 to 12 carbon atoms, R 2 is a hydroxy group, a hydrogen atom, a chlorine atom, 1 to 6 carbon atoms Is an alkoxy group or an amino group, and R 4 is a hydroxy group or a hydrogen atom.
제1항에 있어서, 상기 산화카드뮴은 카드뮴아세테이트, 염화카드뮴, 카드뮴하이드록사이드, 질산카드뮴 및 황산카드뮴으로 이루어진 군으로부터 선택된 산화카드뮴 전구체로부터 유래됨을 특징으로 하는 케톤의 제조방법.The method of claim 1, wherein the cadmium oxide is derived from a cadmium oxide precursor selected from the group consisting of cadmium acetate, cadmium chloride, cadmium hydroxide, cadmium nitrate and cadmium sulfate. 제1항에 있어서, 상기 무기산화물은 실리카, 알루미나, 지르코니아, 티타니아, 및 진크옥사이드로 이루어진 군으로부터 하나 또는 그 이상 선택된 것을 특징으로 하는 케톤의 제조방법.The method of claim 1, wherein the inorganic oxide is one or more selected from the group consisting of silica, alumina, zirconia, titania, and zinc oxide. 제3항에 있어서, 상기 무기산화물은 알루미나 또는 지르코니아인 것을 특징으로 하는 케톤의 제조방법.4. The method of claim 3, wherein the inorganic oxide is alumina or zirconia. 제1항에 있어서, 상기 무기산화물에 담지된 산화카드뮴의 함량이 0.05 내지 50 중량%인 것을 특징으로 하는 케톤의 제조방법.The method of claim 1, wherein the content of cadmium oxide supported on the inorganic oxide is 0.05 to 50% by weight. 제5항에 있어서, 상기 무기산화물에 담지된 산화카드뮴의 함량이 0.1 내지 30 중량%인 것을 특징으로 하는 케톤의 제조방법. The method of claim 5, wherein the content of cadmium oxide supported on the inorganic oxide is 0.1 to 30% by weight. 제1항에 있어서, 상기 반응이 300 내지 500℃의 반응온도, 0.1 내지 100 psi의 반응압력 및 0.2 내지 20 h-1의 시간당 중량공간속도(WHSV)로 수행되는 것을 특징으로 하는 케톤의 제조방법. The method of claim 1, wherein the reaction is performed at a reaction temperature of 300 to 500 ° C., a reaction pressure of 0.1 to 100 psi, and a weight hourly space velocity (WHSV) of 0.2 to 20 h −1 . .
KR1020020006533A 2002-02-05 2002-02-05 Method for preparing ketones on inorganic oxide catalysts modified with cadmium oxide KR100651355B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020006533A KR100651355B1 (en) 2002-02-05 2002-02-05 Method for preparing ketones on inorganic oxide catalysts modified with cadmium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020006533A KR100651355B1 (en) 2002-02-05 2002-02-05 Method for preparing ketones on inorganic oxide catalysts modified with cadmium oxide

Publications (2)

Publication Number Publication Date
KR20030066200A KR20030066200A (en) 2003-08-09
KR100651355B1 true KR100651355B1 (en) 2006-11-28

Family

ID=32220571

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020006533A KR100651355B1 (en) 2002-02-05 2002-02-05 Method for preparing ketones on inorganic oxide catalysts modified with cadmium oxide

Country Status (1)

Country Link
KR (1) KR100651355B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101103647B1 (en) * 2011-05-12 2012-01-11 (주)두람 Corrugated dust colleting pope and its manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754074A (en) * 1986-12-22 1988-06-28 Amoco Corporation Preparation of dialkyl ketones from aliphatic carboxylic acids
KR890000373A (en) * 1987-06-04 1989-03-14 가와다니 유끼마로 Murite ceramic composition
WO2000030448A1 (en) * 1998-11-19 2000-06-02 Eagleview Technologies, Inc. Method and apparatus for the preparation of ketones

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754074A (en) * 1986-12-22 1988-06-28 Amoco Corporation Preparation of dialkyl ketones from aliphatic carboxylic acids
KR890000373A (en) * 1987-06-04 1989-03-14 가와다니 유끼마로 Murite ceramic composition
WO2000030448A1 (en) * 1998-11-19 2000-06-02 Eagleview Technologies, Inc. Method and apparatus for the preparation of ketones

Also Published As

Publication number Publication date
KR20030066200A (en) 2003-08-09

Similar Documents

Publication Publication Date Title
US6670303B1 (en) Catalyst having a bimodal pore radius distribution
JP4287909B2 (en) Process for producing olefins, in particular propylene, by dehydrogenation
EP0441430B1 (en) Catalytic dehydrogenation of C2-C5 paraffins
US4398051A (en) Production of tertiary olefins
WO2014199349A2 (en) Metal impregnated amorphous silicates for the selective conversion of ethanol to butadiene
EP0030110B1 (en) Process for the production of an oxygenated hydrocarbon product containing ethanol
JP2002114746A (en) Method for producing oxime
KR100651355B1 (en) Method for preparing ketones on inorganic oxide catalysts modified with cadmium oxide
JP5225026B2 (en) Copper catalyst regeneration method
US4789502A (en) Carboxylic acid production
US4866179A (en) Process for the manufacture of pyridine in high yield and selectivity during a prolonged period of operation
US5243081A (en) Aldol condensation dehydration catalyst, a process for preparing the same and a process for preparing an aldol condensation dehydrate using the process
EP0934115B1 (en) Process for the preparation of a catalyst based on cobalt and scandium
EP2558453B1 (en) Process for controlling a gas phase oxidation reactor for preparation of phthalic anhydride
SE425734B (en) PROCEDURE FOR PREPARING PYRIDINE AND 3-METHYLPYRIDINE
JPH06279012A (en) Production of carbon monoxide
JPH0688916B2 (en) Method for producing vinylcyclohexane
CA1182476A (en) Process for the manufacture of acetic acid, acetic aldehyde and ethanol from synthesis gas
US6111113A (en) Process for the preparation of 2,3,5-collidine and 2-ethyl-5-methylpyridine
JPH10120675A (en) Production of 2-para-dioxanones
US5679869A (en) Preparation of aldehydes
JP3036938B2 (en) Method for oxidizing saturated hydrocarbons
EP1363886B1 (en) Process and catalyst for the preparation of acetylpyridines
JP4714924B2 (en) Method for producing carbonate ester
JPH05237387A (en) Catalyst for synthesis of methylal and production of methylal

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120912

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130912

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140916

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151002

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160926

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180927

Year of fee payment: 13