KR100649822B1 - BC PMOSFET and manufacturing method using the same - Google Patents

BC PMOSFET and manufacturing method using the same Download PDF

Info

Publication number
KR100649822B1
KR100649822B1 KR1020000086304A KR20000086304A KR100649822B1 KR 100649822 B1 KR100649822 B1 KR 100649822B1 KR 1020000086304 A KR1020000086304 A KR 1020000086304A KR 20000086304 A KR20000086304 A KR 20000086304A KR 100649822 B1 KR100649822 B1 KR 100649822B1
Authority
KR
South Korea
Prior art keywords
oxide film
pmosfet
active region
device isolation
silicon
Prior art date
Application number
KR1020000086304A
Other languages
Korean (ko)
Other versions
KR20020058257A (en
Inventor
이가원
이제희
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020000086304A priority Critical patent/KR100649822B1/en
Publication of KR20020058257A publication Critical patent/KR20020058257A/en
Application granted granted Critical
Publication of KR100649822B1 publication Critical patent/KR100649822B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps

Abstract

본 발명은 BC PMOSFET에 관한 것으로서, 특히 채널영역이 소자분리산화막 상에 일정 폭 중첩되도록 활성영역 프로파일을 변화시킨 FCBC PMOSFET를 형성하여 게이트전극에 전압 인가시 채널 하부의 포텐셜 최소 부분을 표면으로 이동시켜 게이트 필드 조절을 통해 짧은 채널 마진을 확보하였으므로, 전기적 게이트산화막 두께가 30Å 이하로 매우 적은 소자에서 채널 양자화에 따른 산화막 두께 증가에 의한 전류 구동력 감소를 방지하고, 소자를 더욱 얇게 형성할 수 있으며, 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있다. The present invention relates to a BC PMOSFET, and more particularly, to form an FCBC PMOSFET whose active region profile is changed so that a channel region overlaps a predetermined width on a device isolation oxide layer, thereby moving a potential minimum portion of a channel lower portion to the surface when a voltage is applied to a gate electrode. The short channel margin is secured by controlling the gate field, which prevents the reduction of the current driving force due to the increase of the oxide film thickness due to the channel quantization and makes the device thinner. Yield and reliability of device operation can be improved.

Description

BC PMOSFET 및 그 제조방법{BC PMOSFET and manufacturing method using the same}BC PMOSFET and manufacturing method {BC PMOSFET and manufacturing method using the same}

도 1a는 종래 BC PMOSFET의 실리콘 기판 깊이에 따른 도핑 프로파일. 1A is a doping profile according to silicon substrate depth of a conventional BC PMOSFET.

도 1b는 도 1a소자의 기판 깊이에 따른 전기 포텐셜 분포 그래프. FIG. 1B is a graph of electric potential distribution according to the substrate depth of the device of FIG. 1A; FIG.

도 2는 본 발명에 따른 반도체소자의 평면도. 2 is a plan view of a semiconductor device according to the present invention.

도 3은 도 2의 선A-A에 따른 단면도. 3 is a cross-sectional view taken along the line A-A of FIG.

도 4a 내지 도 4c는 본 발명의 실시예에 따른 FCBC PMOSFET의 제조 공정도. 4A-4C are fabrication process diagrams of an FCBC PMOSFET in accordance with an embodiment of the present invention.

도 5a는 마스크 상의 채널 길이에 따른 Vth 그래프. 5A is a graph of V th versus channel length on a mask.

도 5b는 마스크 상의 채널 길이에 따른 서브문턱 기울기 그래프. 5B is a graph of sub-threshold slope over channel length on mask.

도 5c는 마스크 상의 채널 길이에 따른 Ioff 그래프. 5C is an I off graph versus channel length on mask.

<도면의 주요 부분에 대한 부호의 설명>         <Explanation of symbols for main parts of the drawings>

10 : 반도체 기판 12 : 활성영역10 semiconductor substrate 12 active region

14 : 소자분리산화막 16 : 실리콘 에피층14 device isolation oxide film 16 silicon epi layer

18 : 게이트산화막 20 : 게이트전극 18 gate oxide film 20 gate electrode

22 : 질화막 패턴 30 : 감광막 패턴 22 nitride film pattern 30 photosensitive film pattern

본 발명은 BC PMOSFET 및 그 제조방법에 관한 것으로서, 특히 매립채널(buried channel; 이하 BC라 칭함) P형 모스 전계효과 트랜지스터(Metal Oxide Semiconductor Field Effect Transistor; 이하 PMOSFET라 칭함)의 활성영역 프로파일을 변화시켜 전계조절(field controlled ; 이하 FC라 칭함) BC PMOSFET를 형성하여 짧은 채널 효과에 대한 내성을 확보하여 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있는 BC PMOSFET 및 그 제조방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a BC PMOSFET and a method of fabricating the same, and in particular, changes an active region profile of a buried channel (hereinafter referred to as BC) P-type MOS field effect transistor (hereinafter referred to as PMOSFET). The present invention relates to a BC PMOSFET and a method of manufacturing the same, which form a field controlled BC PMOSFET to secure resistance to short channel effects, thereby improving process yield and reliability of device operation.

반도체소자가 고집적화되어 감에 따라 소자의 크기를 감소시키기 위하여 MOSFET의 게이트전극이나 소오스/드레인영역 및 이들과의 콘택등 공정 전반의 디자인 룰이 감소되고 있으나, 게이트전극의 폭과 전기저항은 비례 관계에 있어 폭이 N배 줄어들면 전기 저항이 N배 증가되어 반도체소자의 동작 속도를 떨어뜨리는 문제점이 있다. 따라서 게이트전극의 저항을 감소시키기 위하여 가장 안정적인 MOSFET 특성을 나타내는 폴리실리콘층/산화막 계면의 특성을 이용하여 폴리실리콘층과 실리사이드의 적층 구조인 폴리사이드가 저 저항 게이트로서 사용하기도 한다. As semiconductor devices become more integrated, the overall design rules such as gate electrodes, source / drain regions of MOSFETs, and contacts with them are decreasing to reduce the size of the devices, but the width and electrical resistance of the gate electrodes are proportional to each other. When the width is reduced by N times, the electrical resistance is increased by N times, which causes a problem of lowering the operation speed of the semiconductor device. Therefore, in order to reduce the resistance of the gate electrode, the polysilicon, which is a laminated structure of the polysilicon layer and the silicide, may be used as the low resistance gate by using the characteristics of the polysilicon layer / oxide layer interface having the most stable MOSFET characteristics.

또한 p 또는 n형 반도체기판에 n 또는 p형 불순물로 형성되는 pn 접합은 불순물을 반도체기판에 이온주입한 후, 열처리로 활성화시켜 확산영역을 형성한다. 따라서 채널의 폭이 감소된 반도체소자에서는 확산영역으로부터의 측면 확산에 의한 짧은 채널 효과(short channel effect)를 방지하기 위하여 접합 깊이를 얕게 형성하여야 하며, 드레인으로의 전계 집중에 의한 접합 파괴 방지와 열전하 효과에 의한 문턱전압 변화를 방지하기 위하여 소오스/드레인 영역을 저농도 불순물 영역을 갖는 엘.디.디(lightly doped drain; 이하 LDD라 칭함) 구조로 형성하는 등의 방법이 사용된다. In addition, a pn junction formed of n or p type impurity on a p or n type semiconductor substrate is ion implanted into the semiconductor substrate and then activated by heat treatment to form a diffusion region. Therefore, in semiconductor devices with reduced channel width, the junction depth should be shallow in order to prevent short channel effects due to side diffusion from the diffusion region. In order to prevent the threshold voltage change due to the lower effect, a method such as forming a source / drain region into an L.D.D (lightly doped drain) structure having a low concentration impurity region is used.

또한 MOSFET의 채널길이가 감소됨에 따라 Vt가 감소되어 N+형 다결정실리콘층을 게이트전극으로 사용하는(N+ poly-Si gate) PMOSFET의 제조에 카운터 도핑을 이용하는 BC PMOSFET를 사용하게 되었다. In addition, as the channel length of the MOSFET is reduced, Vt is reduced to use BC PMOSFET with counter doping in the manufacture of PMOSFET using an N + type polycrystalline silicon layer as a gate electrode (N + poly-Si gate).

도 1a는 종래 BC PMOSFET의 실리콘 기판 깊이에 따른 도핑 프로파일로서, N형 웰에 B이 도핑되어 있어, 게이트절연막 하부에 카운터 디핑 접합인 PN접합이 형성되어 서브문턱 기울기(subthreshold slop; mV/dec)가 열악해 진다. FIG. 1A is a doping profile according to a silicon substrate depth of a conventional BC PMOSFET, where B is doped in an N-type well, and a PN junction, which is a counter-dipped junction, is formed under the gate insulating layer, thereby forming a subthreshold slop (mV / dec). Becomes poor.

또한 도 1a 소자는 도 1b와 같은 전기 포텐셜 분포를 가지게 되는데, 게이트전극에 전압이 인가되지 않은 상태에서 N+형 다결정실리콘층을 게이트전극으로 사용하는 BC PMOSFET는 포텐셜 최소점이 표면이 아닌 벌크 쪽에 형성되므로, 포텐셜 최소점이 표면 바로 아래에 형성되는 P+형 다결정실리콘층을 게이트전극으로 사용하는 표면채널(surface channel; 이하 SC라 칭함) PMOSFET에 비해 표면 펀치쓰루 가능성이 높아져 같은 채널길이의 NMOSFET 보다 짧은 채널 효과에 취약하다. In addition, the device of FIG. 1A has the same electrical potential distribution as that of FIG. 1B. In a BC PMOSFET using an N + type polysilicon layer as a gate electrode without a voltage applied to the gate electrode, the potential minimum is formed on the bulk side rather than the surface thereof. As a gate electrode, a P + type polysilicon layer having a potential minimum point formed directly below the surface is used as a gate electrode. Thus, the possibility of surface punch through is higher than that of a PMOSFET, resulting in a shorter channel effect than an NMOSFET having the same channel length. Vulnerable to

이와 같은 문제점에도 불구하고, N+형 다결정 실리콘층을 게이트전극으로 사용하는 BC PMOSFET는 P+형 다결정 실리콘층을 게이트전극으로 사용하는 SC PMOSFET에 비해 공정이 간단하고, 보론 침투나 다결정실리콘층 고갈과 같은 문제점이 없어 다양하게 사용되고 있으나, 짧은 채널 마진 확보가 어려운 문제점이 있다. Despite these problems, BC PMOSFETs using N + type polycrystalline silicon layers as gate electrodes are simpler to process than SC PMOSFETs using P + type polycrystalline silicon layers as gate electrodes, such as boron infiltration or polycrystalline silicon depletion. There are no problems, but it is used in various ways, but it is difficult to secure a short channel margin.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 활성영역 프로파일을 변화시켜 FCBC PMOSFET를 형성하여 짧은 채널 마진을 확보할 수 있는 BC PMOSFET 및 그 제조방법을 제공함에 있다.  SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a BC PMOSFET and a method of fabricating the same to form an FCBC PMOSFET by changing an active region profile to secure a short channel margin.

상기와 같은 목적을 달성하기 위해 본 발명에 따른 BC PMOSFET의 특징은, Features of the BC PMOSFET according to the present invention to achieve the above object,

실리콘웨이퍼 반도체기판 상에 경사진 측벽을 가지고 활성영역 부분이 제거되어 있는 소자분리산화막과, A device isolation oxide film having an inclined sidewall on a silicon wafer semiconductor substrate, and an active region portion thereof removed;

상기 소자분리산화막에 의해 노출되어있는 반도체기판상에 역경사진 측벽을 가지고 형성되어있는 실리콘 에피층과, A silicon epi layer formed on the semiconductor substrate exposed by the device isolation oxide film and having an inclined sidewall;

상기 구조의 전표면에 형성되어있는 게이트산화막과, A gate oxide film formed on the entire surface of the structure;

상기 활성영역을 가로지르며 게이트산화막상에 형성되어있는 게이트전극을 구비함에 있다. And a gate electrode formed on the gate oxide film across the active region.

또한 상기 실리콘 에피층을 CVD 다결정실리콘층을 레이저 또는 저온 어닐하여 형성된 단결정 실리콘층으로 대신할 수도 있다. The silicon epi layer may also be replaced with a single crystal silicon layer formed by laser or low temperature annealing of the CVD polycrystalline silicon layer.

또한 본 발명에 따른 BC PMOSFET 제조방법의 특징은, In addition, the feature of the BC PMOSFET manufacturing method according to the present invention,

실리콘웨이퍼 반도체기판 상에 경사진 측벽을 가지고 활성영역 부분이 제거된 소자분리산화막을 형성하는 공정과, Forming a device isolation oxide film having an inclined sidewall on the silicon wafer semiconductor substrate and having an active region removed therefrom;

상기 소자분리산화막에 의해 노출되어있는 반도체기판상에 역경사진 측벽을 가지는 활성영역이 되는 실리콘 에피층을 형성하는 공정과, Forming a silicon epitaxial layer that becomes an active region having an inclined sidewall on the semiconductor substrate exposed by the device isolation oxide film;

상기 구조의 전표면에 게이트산화막을 형성하는 공정과, Forming a gate oxide film on the entire surface of the structure;                     

상기 활성영역을 가로지르는 게이트전극을 게이트산화막상에 형성하는 공정을 구비함에 있다. And forming a gate electrode crossing the active region on the gate oxide film.

이하, 첨부된 도면을 참조하여 본 발명에 따른 BC PMOSFET 및 그 제조방법에 대하여 상세히 설명을 하기로 한다. Hereinafter, a BC PMOSFET and a method of manufacturing the same according to the present invention will be described in detail with reference to the accompanying drawings.

도 2 및 도 3은 본 발명에 따른 PMOSFET 반도체소자를 설명하기 위한 도면들로서, 서로 연관시켜 설명한다. 2 and 3 are diagrams for explaining a PMOSFET semiconductor device according to the present invention, which will be described in association with each other.

먼저, 실리콘 웨이퍼로된 반도체기판(10)의 소자분리영역상에 소자분리산화막(14)이 측벽이 경사를 가지도록 형성되어 있으며, 상기 소자분리산화막(14)에 의해 노출되어있는 반도체기판(10)상에 활성영역이 되는 실리콘 에피층(16)이 선택적 에피택셜 성장(selective epitaxtial growth; 이하 SOG라 칭함) 방법으로 소자분리산화막(14)의 두께 만큼 형성되어 있다. 따라서 상기 실리콘 에피층(16)의 측벽은 역경사진 글로브 형태로 형성되어 있어 활성영역 표면이 소자분리산화막(14) 쪽으로 확장되어있다. First, a device isolation oxide film 14 is formed on the device isolation region of the semiconductor substrate 10 made of a silicon wafer so that sidewalls are inclined, and the semiconductor substrate 10 exposed by the device isolation oxide film 14 is exposed. The silicon epitaxial layer 16 serving as the active region is formed by the thickness of the device isolation oxide film 14 by the method of selective epitaxtial growth (hereinafter referred to as SOG). Therefore, the sidewalls of the silicon epitaxial layer 16 are formed in the shape of an inclined globe so that the surface of the active region extends toward the device isolation oxide layer 14.

그다음 상기 구조의 전표면에 게이트산화막(18)이 도포되어 있고, 상기 게이트산화막(18)상에 활성영역(12)을 가로지르는 게이트전극(20)이 형성되어있다. A gate oxide film 18 is then applied to the entire surface of the structure, and a gate electrode 20 is formed on the gate oxide film 18 to cross the active region 12.

상기의 FCBC PMOSFET 소자는 채널의 양측이 소자분리 산화막(14) 쪽으로 확장되어있어, 게이트전극(20)에 전압 인가시 채널 표면 아래쪽의 전기장을 감소시켜 도 1b에 도시되어있는 포텐셜 최소 위치를 표면 쪽으로 이동시킨다. In the FCBC PMOSFET device, both sides of the channel extend toward the isolation oxide layer 14, and when the voltage is applied to the gate electrode 20, the electric field under the channel surface is reduced, so that the potential minimum position shown in FIG. Move it.

도 4a 내지 도 4c는 본 발명에 따른 BC PMOSFET의 제조 공정도이다. 4A-4C are manufacturing process diagrams of a BC PMOSFET according to the present invention.

먼저, 실리콘웨이퍼 반도체기판(10)상에 화학기상증착(chemical vapor deposition; 이하 CVD라 칭함)이나 열산화 방법으로 소자분리산화막(14)을 형성하고, 상기 소자분리산화막(14)의 소자분리 영역 이외의 부분상에 감광막 패턴(30)을 형성한 후, 상기 감광막 패턴(30)에 의해 노출되어 있는 소자분리산화막(14)을 제거하여 반도체기판(10)을 노출시킨다. 이때 식각 조건을 조절하여 상기 소자분리산화막(14)의 측벽을 경사지도록하며, 경사 정도는 소자분리에 따른 불량이 발생되지 않는 정도로 하고, 상기 소자분리산화막(14) 식각 조건을 변화시켜 글러브의 경사각을 조절하면 게이트 필드 조절을 더욱 용이하게 할 수도 있다. (도 4a 참조). First, a device isolation oxide film 14 is formed on a silicon wafer semiconductor substrate 10 by chemical vapor deposition (hereinafter referred to as CVD) or thermal oxidation. Then, a device isolation region of the device isolation oxide film 14 is formed. After the photoresist pattern 30 is formed on other portions, the semiconductor substrate 10 is exposed by removing the device isolation oxide film 14 exposed by the photoresist pattern 30. In this case, the sidewalls of the device isolation oxide film 14 are inclined by adjusting the etching conditions, and the degree of inclination is such that a defect does not occur due to device isolation, and the inclination angle of the glove is changed by changing the etching condition of the device isolation oxide film 14. Adjusting may make the gate field easier to adjust. (See FIG. 4A).

그다음 상기 감광막 패턴(30)을 제거하고, 상기 노출되어있는 반도체기판(10) 상에 SEG 방법으로 실리콘 에피층(16)을 형성하되, 상기 소자분리산화막(14) 정도 두께로 형성한다. 따라서 상기 실리콘 에피층(16)은 측벽이 역경사면을 가지게 형성된다. (도 4b참조). Then, the photoresist layer pattern 30 is removed, and the silicon epitaxial layer 16 is formed on the exposed semiconductor substrate 10 by SEG, but the thickness of the device isolation oxide layer 14 is about the same. Accordingly, the silicon epitaxial layer 16 is formed such that sidewalls have a reverse slope. (See Figure 4b).

그후, 상기 구조의 전표면에 게이트산화막(18)을 형성하고, 상기 게이트산화막(18)상에 활성영역을 가로지르는 게이트전극(20)을 형성한다. (도 4c 참조). Thereafter, a gate oxide film 18 is formed on the entire surface of the structure, and a gate electrode 20 is formed on the gate oxide film 18 to cross the active region. (See FIG. 4C).

상기와 같이 형성된 FCBC PMOSFET는 활성영역 프로파일을 글로브 형태로 변형시켜 소자 특성이 개선되는데, 도 5a 내지 도 5c를 참조하면, 마스크 상의 채널 길이(Lmask)가 0.07㎛ 이고, 실리콘 에피층(16)의 두께는 200Å 이고, 도면상의 세로선은 Lmask = 0.13㎛이다. The FCBC PMOSFET formed as described above improves device characteristics by changing the active region profile into a globe shape. Referring to FIGS. 5A to 5C, the channel length L mask on the mask is 0.07 μm, and the silicon epilayer 16 is formed. Has a thickness of 200 Hz and the vertical line in the figure is L mask = 0.13 m.

여기서 도 7a와 같이, 종래 SC PMOSFET에 비해 본 발명에 따른 FCBC PMOSFET가 Vth의 롤-오프(roll off) 특성이 개선되고, 도 7b와 같이, 서브문턱 기울기가 우 수해지고, 도 7c와 같이, VGS=VDS=-1.5V에서의 드레인 전류 Ioff도 개선되는 것을 볼 수 있다. Here, as shown in FIG. 7A, the roll-off characteristic of V th of the FCBC PMOSFET according to the present invention is improved as compared to the conventional SC PMOSFET. As shown in FIG. 7B, the sub-threshold slope is excellent, as shown in FIG. 7C. It can be seen that the drain current I off at V GS = V DS = -1.5V is also improved.

또한 상기 에피 실리콘층 대신에 화학기상증착(chemical vapor deposition; 이하 CVD라 칭함) 다결정실리콘층을 형성하고, 이를 레이저 어닐이나 저온 어닐하여 단결정화할 수도 있으며, 이때 기판은 실리콘 반도체 기판이 아닌 유리나 석영 기판 등을 사용할 수도 있다. In addition, instead of the epi silicon layer, a chemical vapor deposition (hereinafter referred to as CVD) polycrystalline silicon layer may be formed, which may be annealed by laser annealing or low temperature annealing. A substrate or the like can also be used.

상기한 바와 같이, 본 발명에 따른 BC PMOSFET 및 그 제조방법은 FCBC PMOSFET에서 채널영역이 소자분리산화막 상에 일정 폭 중첩되도록 활성영역 프로파일을 변화시켜 게이트전극에 전압 인가시 채널 하부의 포텐셜 최소 부분을 표면으로 이동시켜 게이트 필드 조절을 통해 짧은 채널 마진을 확보하였으므로, 전기적 게이트산화막 두께가 30Å 이하로 매우 적은 소자에서 채널 양자화에 따른 산화막 두께 증가에 의한 전류 구동력 감소를 방지하고, 소자를 더욱 얇게 형성할 수 있으며, 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있는 이점이 있다.As described above, the BC PMOSFET and a method of manufacturing the same according to the present invention change the active region profile so that the channel region overlaps a predetermined width on the device isolation oxide film in the FCBC PMOSFET, thereby reducing the potential minimum portion of the lower portion of the channel when voltage is applied to the gate electrode. Since the channel field is secured by controlling the gate field by moving to the surface, it is possible to prevent the reduction of the current driving force due to the increase of the oxide film thickness due to the channel quantization and to form the device thinner in the device having the electric gate oxide film thickness of 30 μm or less. And, there is an advantage that can improve the process yield and the reliability of device operation.

Claims (4)

실리콘웨이퍼 반도체기판 상에 경사진 측벽을 가지고 활성영역 부분이 제거되어 있는 소자분리산화막과, A device isolation oxide film having an inclined sidewall on a silicon wafer semiconductor substrate, and an active region portion thereof removed; 상기 소자분리산화막에 의해 노출되어있는 반도체기판상에 역경사진 측벽을 가지고 형성되어있는 실리콘 에피층과, A silicon epi layer formed on the semiconductor substrate exposed by the device isolation oxide film and having an inclined sidewall; 상기 구조의 전표면에 형성되어있는 게이트산화막과, A gate oxide film formed on the entire surface of the structure; 상기 활성영역을 가로지르며 게이트산화막상에 형성되어있는 게이트전극을 구비하는 BC PMOSFET. And a gate electrode formed on the gate oxide film across the active region. 제 1 항에 있어서,The method of claim 1, 상기 실리콘 에피층을 CVD 다결정실리콘층을 레이저 또는 저온 어닐하여 형성된 단결정 실리콘층으로 대신하는 것을 특징으로 하는 BC PMOSFET. And replacing the silicon epi layer with a single crystal silicon layer formed by laser or low temperature annealing of the CVD polycrystalline silicon layer. 실리콘웨이퍼 반도체기판 상에 경사진 측벽을 가지고 활성영역 부분이 제거된 소자분리산화막을 형성하는 공정과, Forming a device isolation oxide film having an inclined sidewall on the silicon wafer semiconductor substrate and having an active region removed therefrom; 상기 소자분리산화막에 의해 노출되어있는 반도체기판상에 역경사진 측벽을 가지는 활성영역이 되는 실리콘 에피층을 형성하는 공정과, Forming a silicon epitaxial layer that becomes an active region having an inclined sidewall on the semiconductor substrate exposed by the device isolation oxide film; 상기 구조의 전표면에 게이트산화막을 형성하는 공정과, Forming a gate oxide film on the entire surface of the structure; 상기 활성영역을 가로지르는 게이트전극을 게이트산화막상에 형성하는 공정 을 구비하는 BC PMOSFET. And forming a gate electrode across the active region on the gate oxide film. 제 3 항에 있어서, 상기 실리콘 에피층을 CVD 다결정실리콘층을 레이저 또는 저온 어닐하여 형성된 단결정 실리콘층으로 대신하는 것을 특징으로 하는 BC PMOSFET의 제조방법.4. The method of claim 3, wherein the silicon epi layer is replaced with a single crystal silicon layer formed by laser or low temperature annealing of the CVD polycrystalline silicon layer.
KR1020000086304A 2000-12-29 2000-12-29 BC PMOSFET and manufacturing method using the same KR100649822B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000086304A KR100649822B1 (en) 2000-12-29 2000-12-29 BC PMOSFET and manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000086304A KR100649822B1 (en) 2000-12-29 2000-12-29 BC PMOSFET and manufacturing method using the same

Publications (2)

Publication Number Publication Date
KR20020058257A KR20020058257A (en) 2002-07-12
KR100649822B1 true KR100649822B1 (en) 2006-11-24

Family

ID=27689357

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000086304A KR100649822B1 (en) 2000-12-29 2000-12-29 BC PMOSFET and manufacturing method using the same

Country Status (1)

Country Link
KR (1) KR100649822B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100673101B1 (en) * 2000-12-29 2007-01-22 주식회사 하이닉스반도체 BC PMOSFET and manufacturing method using the same
KR101417764B1 (en) * 2008-09-26 2014-07-09 삼성전자주식회사 Vertical semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
KR20020058257A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
KR100212693B1 (en) Si/sige mos fet transistor and its fabrication process
US7741659B2 (en) Semiconductor device
US6548862B2 (en) Structure of semiconductor device and method for manufacturing the same
US7629645B2 (en) Folded-gate MOS transistor
US5552329A (en) Method of making metal oxide semiconductor transistors
US20120267724A1 (en) Mos semiconductor device and methods for its fabrication
JP4424887B2 (en) Manufacturing method of semiconductor device
KR100579188B1 (en) thin film transistor having LDD structure
US7514747B2 (en) Silicon-on-insulator semiconductor device
KR100871976B1 (en) Semiconductor device and method for fabricating the same
KR100649822B1 (en) BC PMOSFET and manufacturing method using the same
KR100259593B1 (en) A method of fabricating semiconductor device
US6727149B1 (en) Method of making a hybrid SOI device that suppresses floating body effects
US7453121B2 (en) Body contact formation in partially depleted silicon on insulator device
KR100673101B1 (en) BC PMOSFET and manufacturing method using the same
KR100479820B1 (en) Manufacturing method of semiconductor device
US6720224B2 (en) Method for forming transistor of semiconductor device
KR100269633B1 (en) Method of fabricating mos field effect transistor
KR100304974B1 (en) Method for manufacturing mos transistor
KR100935249B1 (en) High Voltage Device and Method for the same
KR100405450B1 (en) Dmos transistor having structure of pocket type junction layer and manufacturing method thereof
KR100575612B1 (en) Method of fabricating a MOSEET
KR0130626B1 (en) Structure and fabrication of mosfet
KR100448090B1 (en) Method for fabricating high-performance semiconductor device by reducing junction capacitance
KR100498592B1 (en) Most transistors and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101025

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee