KR100641064B1 - Treat method of surface for blade and blade - Google Patents

Treat method of surface for blade and blade Download PDF

Info

Publication number
KR100641064B1
KR100641064B1 KR1020050074549A KR20050074549A KR100641064B1 KR 100641064 B1 KR100641064 B1 KR 100641064B1 KR 1020050074549 A KR1020050074549 A KR 1020050074549A KR 20050074549 A KR20050074549 A KR 20050074549A KR 100641064 B1 KR100641064 B1 KR 100641064B1
Authority
KR
South Korea
Prior art keywords
blade
boride
treatment method
surface treatment
minutes
Prior art date
Application number
KR1020050074549A
Other languages
Korean (ko)
Inventor
한관희
남재윤
김승진
박주오
Original Assignee
주식회사 코메트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코메트 filed Critical 주식회사 코메트
Priority to KR1020050074549A priority Critical patent/KR100641064B1/en
Application granted granted Critical
Publication of KR100641064B1 publication Critical patent/KR100641064B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/68Boronising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

A blade surface treatment method which improve wear resistance and corrosion resistance of the blade by diffusion infiltration of boron into the surface of a blade, prolongs the life of the blade by enhancing surface hardness of the blade, and enables the boride hardening layer to be formed on the tool steels regardless of types of tool steels by removing an alpha-ferrite layer during formation of a boride hardening layer, and a blade of which surface is treated by the same are provided. A blade surface treatment method comprises: a pretreatment process of removing organic matters, inorganic matters and the like adhered to the surface of a blade manufactured using STD61 steel and SKH9 steel; an injection process of loading a blade into a heat resistant sealed container containing a boride powder preparation mixed with B4C, KBF4 and the like, and closing a cover of the sealed container; a heating process of heating the heat resistant sealed container to a temperature of 900 to 950 deg.C at a heating rate of 5 deg.C/min in an inert atmosphere, holding the blade at the same temperature for 30 to 180 minutes, and subjecting the blade to furnace cooling; a diffusion process of holding the boronized blade at a temperature of 990 to 1,100 deg.C for 120 minutes, and rapidly cooling the blade to obtain quenching effect and diffuse Si accumulated in an alpha-ferrite layer into a subject; and a tempering process of tempering a blade formed through the diffusion process.

Description

블래이드의 표면처리방법 및 그 블래이드{Treat method of surface for blade and blade}Surface method of blade and its blade {Treat method of surface for blade and blade}

도 1은 일반적인 블래이드를 도시한 정면도,1 is a front view showing a typical blade,

도 2는 본 발명이 적용된 블래이드의 표면처리방법을 통해 생성된 붕화물 경화층을 도시한 상세도,Figure 2 is a detailed view showing the boride cured layer produced through the surface treatment method of the blade to which the present invention is applied,

도 3은 본 발명이 적용된 블래이드의 표면처리방법에서 붕화처리온도와 시간에 따라 블래이드 표면에 형성된 붕화물경화층의 두께 변화를 도시한 그래프,3 is a graph showing the thickness change of the boride hardened layer formed on the surface of the blade with the boration treatment temperature and time in the surface treatment method of the blade to which the present invention is applied,

도 4는 본 발명이 적용된 블래이드의 표면처리방법에 따른 붕화물경화층의 깊이에 따른 단면의 경도 분포를 도시한 그래프,Figure 4 is a graph showing the hardness distribution of the cross section according to the depth of the boride hardened layer according to the surface treatment method of the blade to which the present invention is applied,

도 5는 본 발명이 적용된 블래이드의 표면처리방법에 따른 붕화물경화층의 깊이에 따른 단면의 경도분포를 도시한 그래프(확산 경화열처리전),Figure 5 is a graph showing the hardness distribution of the cross-section according to the depth of the boride hardened layer according to the surface treatment method of the blade to which the present invention is applied (before diffusion heat treatment),

도 6은 본 발명이 적용된 블래이드의 표면처리방법에 따른 붕화물경화층의 깊이에 따른 단면의 경도분포를 도시한 그래프(확산 경화열처리후).Figure 6 is a graph showing the hardness distribution of the cross-section according to the depth of the boride hardened layer according to the surface treatment method of the blade to which the present invention is applied (after diffusion hardening heat treatment).

*도면의 주요 부분에 사용된 부호의 설명** Description of the symbols used in the main parts of the drawings *

A, A1; 붕화물경화층A, A1; Boride hardened layer

B; 블래이드B; Blade

본 발명은 블래이드의 표면처리방법 및 그 블래이드에 관한 것으로 더욱 상세하게는 블래이드 표면에 붕소(원소기호;B)를 확산 침투시켜 FeB, Fe2B등의 붕화물경화층을 형성시키는 표면처리방법에 있어서; 상기 표면처리시 Si의 함량이 높을 경우 생성되는 α-페라이트층을 제거하여 재질에 무관한 표면처리가 가능하도록 한 블래이드이 표면처리방법의 개선안에 관한 것이다. The present invention relates to a surface treatment method of the blade and to the blade in more detail in the surface treatment method of forming a boride hardened layer such as FeB, Fe2B by diffusion penetration of boron (element symbol; B) on the surface of the blade; The blade is to improve the surface treatment method to remove the α-ferrite layer generated when the Si content is high during the surface treatment to enable the surface treatment irrespective of the material.

일반적으로 종이나 목재, 금속(鋼)등의 절단에는 다양한 형태와 구조의 블래이드(blade)가 적용되고, 이러한 블래이드는 내마모성 향상에 따른 수명연장을 위해 그 표면으로 침탄, 질화, 질화티타늄등 여러 가지 표면처리를 실시해 왔다.In general, blades of various shapes and structures are applied to cutting paper, wood, metal, etc., and these blades are carburized, nitrided, titanium nitride, etc. Surface treatment has been performed.

그 가운데 침탄처리와 질화처리는 표면경도가 약 HV1200정도가 되며 표면처리된 경화층의 두께조절문제, 확산침투처리 후 제품의 날을 가공하는 과정에서 날이 부서지는 문제, 그리고 침탄 및 질화처리를 위해서 사용될 수 있는 블래이드의 재질이 한정되는 문제점을 안고 있었다.Among them, carburizing and nitriding have surface hardness of about HV1200, and the problem of thickness control of the hardened layer of the surface treatment, breakage of the blade in the process of processing the blade after diffusion penetration, and carburizing and nitriding treatment There was a problem that the material of the blade that can be used in order to be limited.

그리고 질화티타늄코팅의 경우에는 표면경도가 약 HV2500정도로 높지만 가격적인 측면에서 처리비용이 고가인 점과 날을 완전히 가공한 후 표면처리를 실시해야 하므로 날이 무디어지는 문제점이 있었다.In the case of titanium nitride coating, the surface hardness of HV2500 is high, but in terms of price, since the processing cost is high and the blade must be completely processed, the surface has to be dulled.

상기 블래이드 제작에 이용되는 재질 가운데 공구강 종류로는(STD 11종, STD 61종, SKH 2종, SKH 9종등)의 재료가 많이 사용되고 있다.Among the materials used for manufacturing the blade, a material of a tool steel type (11 STD, 61 STD, 2 SKH, 9 SKH, etc.) is used.

이러한 공구강 가운데 Si의 함량이 다소 높은 (약 0.5%)공구강을 붕소(boron;B)를 이용한 붕화처리(boronizing) 할 때에는 다른 강에서는 볼 수 없는 특이한 현상이 나타나는 것으로 알려져 있다.It is known that when boronizing boron (boron; B) with a slightly higher Si content (about 0.5%) among these tool steels, an unusual phenomenon is not seen in other steels.

즉, 붕화처리과정에서 공구강 표면의 오스테나이트상으로부터 붕화물경화층이 형성될 때, 붕화물경화층과 피사체상간의 합금 원소의 재분배에 기인하여 Si성분이 붕화물경화층에 고용되지 않고, 붕화물경화층 아래의 피사체 부근에 집적되어 일정량을 초과하게되면 α-페라이트층이 형성된다.That is, when the boride hardened layer is formed from the austenite phase on the surface of the tool steel during the boring process, the Si component is not dissolved in the boride hardened layer due to the redistribution of alloying elements between the boride hardened layer and the object phase. If it accumulates near the subject under the cargo hardening layer and exceeds a certain amount, the α-ferrite layer is formed.

이 층을 α-페라이트층이라 명명하는 이유는, Si가 페라이트 안정화 원소로서 이 층이 페라이트 조직을 형성하고 있기 때문이다. 이러한 α-페라이트층은 붕화물경화층 뿐만 아니라, 피사체에 비해서도 낮은 경도값을 갖는다.This layer is called α-ferrite layer because Si is a ferrite stabilizing element and the layer forms a ferrite structure. The α-ferrite layer has a low hardness value not only for the boride hardened layer but also for the subject.

따라서 어떠한 하중이 붕화처리를 실시한 재료의 표면에 가해졌을 때, α-페라이트층이 표면의 붕화물경화층을 제대로 지지하지 못하고, 오히려 붕화물경화층이 α-페라이트층으로 파고드는 결과를 초래할 수 있다.Therefore, when a load is applied to the surface of the borated material, the α-ferrite layer may not properly support the boride cured layer on the surface, but rather the boride hardened layer may penetrate into the α-ferrite layer. have.

이러한 현상을 "eggshell effect"현상이라고 부른다This phenomenon is called the "eggshell effect" phenomenon.

그러므로 공구강에 대한 붕화처리시 이러한 현상으로 인해 Si 함량이 0.5%이상인 공구강에 대한 붕화처리 적용이 힘들었다.Therefore, it was difficult to apply the boride treatment to the tool steel with Si content of more than 0.5% due to this phenomenon in the boring treatment for the tool steel.

이에 본 발명에서는 상기한 문제점을 해결하기 위해 창출된 것으로, 블래이드표면에 붕소를 확산침투시킴으로서, 붕화물경화층을 형성시켜 내마모성과 내식성을 향상시킬 뿐만 아니라 표면경도를 증가시켜 블래이드의 수명 연장을 도모할 수 있도록 하며, 나아가 붕소의 확산침투를 통해 Si함량이 0.5%이상인 공구강에도 붕 화물경화층 형성시 α-페라이트층을 제거하여 공구강의 종류에 무관하게 붕화물경화층 형성이 가능하도록 함을 그 목적으로 한다.Accordingly, the present invention was created to solve the above problems, by diffusing and penetrating boron on the surface of the blade, to form a boride hardened layer to improve the wear resistance and corrosion resistance, as well as to increase the surface hardness to extend the life of the blade Furthermore, boride hardened layer can be formed irrespective of the type of tool steel by removing the α-ferrite layer even when the boron hardened layer is formed even in the tool steel having a Si content of 0.5% or more through diffusion penetration of boron. The purpose.

이하 첨부되는 도면과 관련하여 본 발명의 구성 및 작용에 대하여 설명하면 다음과 같다.Hereinafter, the configuration and operation of the present invention will be described with reference to the accompanying drawings.

도 2는 본 발명이 적용된 블래이드의 표면처리방법을 통해 생성된 붕화물경화층을 도시한 상세도, 도 3은 본 발명이 적용된 블래이드의 표면처리방법에서 붕화처리온도와 시간에 따라 블래이드 표면에 형성된 붕화물경화층의 두께 변화를 도시한 그래프, 도 4는 본 발명이 적용된 블래이드의 표면처리방법에 따른 붕화물경화층의 깊이에 따른 단면의 경도 분포를 도시한 그래프, 도 5는 본 발명이 적용된 블래이드의 표면처리방법에 따른 붕화물경화층의 깊이에 따른 단면의 경도분포를 도시한 그래프(확산 경화열처리전), 도 6은 본 발명이 적용된 블래이드의 표면처리방법에 따른 붕화물경화층의 깊이에 따른 단면의 경도분포를 도시한 그래프(확산 경화열처리후)로서 함께 설명한다.Figure 2 is a detailed view showing a boride hardened layer produced by the surface treatment method of the blade to which the present invention is applied, Figure 3 is formed on the blade surface according to the boride treatment temperature and time in the surface treatment method of the blade to which the present invention is applied 4 is a graph showing the change in thickness of the boride hardened layer, Figure 4 is a graph showing the hardness distribution of the cross-section according to the depth of the boride hardened layer according to the surface treatment method of the blade to which the present invention is applied, Figure 5 is applied to the present invention Graph showing the hardness distribution of the cross-section according to the depth of the boride hardened layer according to the surface treatment method of the blade (before diffusion heat treatment), Figure 6 is a depth of the boride hardened layer according to the surface treatment method of the blade to which the present invention is applied The hardness distribution of the cross section according to the present invention will be described together as a graph (after diffusion hardening heat treatment).

상기 목적을 달성하기 위한 본 발명인 블래이드의 표면처리방법은,Surface treatment method of the blade of the present invention for achieving the above object,

먼저, 본 발명을 실시하기 위해 블래이드의 재료로 많이 사용되는 Si함량이 0.91%인 STD 61종과 SKH9종을 사용하여 블래이드를 제조한다.First, a blade is manufactured by using 61 STDs and SKH9 species having a Si content of 0.91%, which are frequently used as materials of the blades for carrying out the present invention.

상기 STD61종, SKH9종을 사용하여 제조된 블래이드 표면에 부착된 유기물, 무기물등을 제거하는 사전처리공정;A pretreatment step of removing organic matter, inorganic matter, etc. adhered to the blade surface manufactured using the STD61 species and the SKH9 species;

B4C와 KBF4등의 혼합된 붕화물 제재분말을 넣은 밀폐용기에 블래이드를 장입(裝入)한 다음 밀폐용기의 덮개를 덮어 준비하는 투입공정;A charging step of placing a blade in a sealed container in which a mixed boride material powder such as B4C and KBF4 is added, and then covering the sealed container to prepare a lid;

상기 블래이드를 붕화물 제재 분말속에 장입한 후 불활성(不活性)분위기에서 내열성 밀폐용기를 900℃-950℃까지 5℃/min로 가열하여 30-180분동안 유지한 후 노냉처리하는 가열공정;A step of charging the blade into a boride material powder and then heating the heat-resistant airtight container at 5 ° C./min to 900 ° C.-950 ° C. in an inert atmosphere for 30 to 180 minutes, followed by a furnace cooling process;

상기 붕화처리된 블래이드를 다시 990℃-1100℃의 온도에서 120분 동안 유지한 후 급냉하여 담금질효과 및 α-페라이트층에 집적된 Si가 피사체로 확산되도록 하는 확산공정;A diffusion process of maintaining the borated blade again at a temperature of 990 ° C.-1100 ° C. for 120 minutes and quenching to diffuse the quenching effect and Si accumulated in the α-ferrite layer to a subject;

상기 확산공정을 통해 생성된 블래이드를 뜨임처리하는 뜨임공정;A tempering process of tempering the blade generated through the diffusion process;

위 공정을 통해 블래이드를 연마하여 가공하는 후처리공정으로 이루어진다.Through the above process is made of a post-treatment process of grinding and processing the blade.

상기 붕소를 확산 침투시켜 붕화물경화층을 형성하는 붕화처리(boriding)방법으로는 팩보라이딩법(pack boriding method), 페이스 보라이딩, 무전해염욕보라이딩, 전해염욕보라이딩, 가스보라이딩, 플라즈마보라이딩등의 다양한 기술이 알려져 있다.The boriding method of diffusing the boron to form a boride hardened layer may include a pack boriding method, a face boring method, an electroless salt bath boring, an electrolytic salt bath boring, a gas boring, and a plasma beam Various techniques such as riding are known.

이 가운데 가장 널리 사용되는 방법이며 본 발명에 적용된 팩보라이딩법으로 별도의 전용 설비 없이 비교적 단순한 기술에 의해 작업이 가능하며, 다양한 형상의 제품에 대해서도 적용이 가능하다. 그리고 블래이드 표면에 이물질등이 부착되지 않기 때문에 비교적 깨끗한 표면을 얻을 수 있는 이점이 있다.Among them, the most widely used method is the pack-boarding method applied to the present invention, and it is possible to work by a relatively simple technology without a separate dedicated equipment, and can be applied to products of various shapes. And since foreign matters are not attached to the blade surface, there is an advantage that a relatively clean surface can be obtained.

상기 팩보라이딩방법에서는 B4C, Ferroboron(Fe-B), 비정질보론등이 보론 공급원으로 사용되나, Ferroboron(Fe-B), 비정질보론등은 상대적으로 가격이 높아 B4C를 많이 사용하는 것으로 알려져 있다.In the pack-riding method, B4C, Ferroboron (Fe-B), amorphous boron, etc. are used as boron sources, but Ferroboron (Fe-B), amorphous boron, etc. are known to use B4C a lot because of their relatively high price.

더불어 본 발명이 적용된 붕화처리에는 붕화처리 반응이 너무 활발하지 않도록 제어하는 억제제들이 포함되며, 그 가운데 B4C를 보론 공급원으로 하고, Al2O3/SiC등을 희석제로 그리고 KBF4를 시편표면에서 붕소를 방출시켜 붕화물을 형성시키는 역할을 하도록 제재된 것이 상용 제재물로 활용되고 있다.In addition, the boration treatment to which the present invention is applied includes inhibitors for controlling the boration reaction not to be very active, among which B4C is used as a boron source, Al2O3 / SiC is used as a diluent, and KBF4 is boron released from the specimen surface. The sanctions used to form cargoes are used as commercial sanctions.

고온의 붕화처리 과정에서 KBF4는 증발되어 시편 표면에서 붕소를 방출시키면서 분해되는데, 이 때 K와 F원자들이 다시 B4C와 반응하여 KBF4를 생성시킴으로서 지속적으로 반응이 제어된다.During the high temperature boration process, KBF4 is evaporated to decompose while releasing boron from the surface of the specimen. At this time, the reaction is continuously controlled by the reaction of K and F atoms with B4C to produce KBF4.

따라서 팩보라이딩법에 사용되는 제재물은 일회용으로 사용되지 않으며, 새로운 제재물과 혼합하여 수 차례에 걸쳐 재사용이 가능하다.Therefore, the sanctions used in the pack-boarding method are not used for single use and can be reused several times by mixing with the new sanctions.

이하 구체적인 실시예를 통하여 본 발명을 살펴본다.Looking at the present invention through the following specific examples.

<실시예 1><Example 1>

SKH9종(블래이드의 붕화물경화층에 대한 실시예)SKH9 type (Example for the boride hardened layer of a blade)

가열온도Heating temperature 가열시간Heating time 경화층두께Cured layer thickness 담금질후냉각법Quenching and Quenching 뜨임후냉각법Tempering after cooling 경도Hardness 950℃950 ℃ 300분300 minutes 약 50㎛About 50㎛ 공냉(1150℃)Air cooling (1150 ℃) 공냉(530℃)Air cooling (530 ℃) HRC 59-62HRC 59-62 950℃950 ℃ 180분180 minutes 약 37㎛About 37㎛ 공냉(1150℃)Air cooling (1150 ℃) 공냉(530℃)Air cooling (530 ℃) HRC 59-62HRC 59-62

이 경우 냉각시 크랙이 발생하고 도 2 (a)에서 보는 바와 같이 블래이드(B) 끝단부분의 경화층(A)이 두꺼워서 부러지는 문제가 발생하였다.In this case, cracks occur during cooling, and as shown in FIG. 2 (a), the hardened layer A at the end portion of the blade B is thick and broken.

그리고 1150℃에서의 경화 열처리를 통해서는 붕화물경화층의 일부 용융현상이 발생하여 블래이드 표면조도의 저하를 초래하였다. 이는 순수 Fe-B의 공정반응 온도가 1149℃이기 때문에 고상의 붕화물경화층이 액상으로 일부 용융되기 때문이다.In addition, partial heat treatment of the boride hardened layer occurred through hardening heat treatment at 1150 ° C., resulting in a decrease in blade surface roughness. This is because the solid boride hardened layer is partially melted in the liquid phase because the process reaction temperature of pure Fe-B is 1149 ° C.

이와 같이 붕화물경화층의 두께 및 붕화처리 후 경화열처리시 열처리온도에 제한이 있음을 확인하였다.Thus, it was confirmed that there is a limitation in the heat treatment temperature during the curing heat treatment after the thickness of the boride hardened layer and the boride treatment.

<실시예 1-1><Example 1-1>

SKH9종(블래이드의 붕화물경화층에 대한 실시예)SKH9 type (Example for the boride hardened layer of a blade)

가열온도Heating temperature 가열시간Heating time 경화층두께Cured layer thickness 담금질후냉각법Quenching and Quenching 뜨임후냉각법Tempering after cooling 경도Hardness 950℃950 ℃ 60분60 minutes 약 25㎛About 25㎛ 공냉(1050℃)Air cooling (1050 ℃) 공냉(530℃)Air cooling (530 ℃) HRC 58-60HRC 58-60 950℃950 ℃ 30분30 minutes 약 16㎛About 16㎛ 공냉(1050℃)Air cooling (1050 ℃) 공냉(530℃)Air cooling (530 ℃) HRC 58-60HRC 58-60

이 경우 도 2 (b)에서와 같이 블래이드(B)의 표면을 따라 경화층(A1)이 균일하게 분포하여 블래이드 끝단부분이 부러지는 문제를 해결하였고, 따라서 블래이드의 표면에 형성시킬 붕화물경화층의 바람직한 두께는 약 5-25㎛임을 알 수 있다.In this case, as shown in FIG. 2 (b), the hardened layer A1 is uniformly distributed along the surface of the blade B, thereby solving the problem of breaking the end of the blade, thus forming a boride hardened layer to be formed on the surface of the blade. It can be seen that the preferred thickness of is about 5-25 μm.

또한 붕화물경화층의 표면조도 문제도 담금질 온도를 1050℃로 설정함으로서 고상의 붕화물경화층이 용융되는 문제를 해결하여 표면조도 저하등의 문제점을 해결하였다.In addition, the problem of surface roughness of the boride hardened layer also set the quenching temperature to 1050 ℃ to solve the problem of melting the solid boride hardened layer to solve the problems such as surface roughness degradation.

<실시예 2><Example 2>

SKH9종(블래이드의 붕화물경화층에 대한 실시예)SKH9 type (Example for the boride hardened layer of a blade)

SKH9종에 대한 붕화처리 온도와 시간에 따라 형성된 붕화물경화층의 두께변화를 도 3에 나타내고 있다. 이를 살펴보면 붕화처리 온도를 900-950℃로 설정하여 40-60분(50-60sn: n=1/2)동안 가열하면 약 20㎛정도의 원하는 경화층두께를 얻을 수 있다.The thickness change of the boride hardened layer formed according to the boride treatment temperature and time for SKH9 species is shown in FIG. 3. Looking at this, if the boration treatment temperature is set to 900-950 ℃ and heated for 40-60 minutes (50-60s n : n = 1/2) to obtain a desired thickness of the cured layer of about 20㎛.

도 4에 상기 실시예 2에 따른 붕하물경화층의 표면경도를 그래프로 나타내고 있으며, 붕화물경화층의 표면경도 값이 Hv1500이상임을 알 수 있다.4 shows the surface hardness of the boride hardened layer according to Example 2 as a graph, and it can be seen that the surface hardness of the boride hardened layer is Hv1500 or more.

<실시예 3><Example 3>

STD61종(α-페라이트층에 관한 실시예)STD61 species (Example regarding the α-ferrite layer)

가열온도Heating temperature 가열시간Heating time 경화층두께Cured layer thickness α-페라이트층 두께α-ferrite layer thickness 담금질후 냉각법Cooling after quenching 뜨임후 냉각법Cooling after tempering 경도Hardness 900℃900 ℃ 180분180 minutes 약 50㎛About 50㎛ 약 21㎛About 21㎛ 공냉 (1020℃)Air cooling (1020 ℃) 공냉 (530℃)Air cooling (530 ℃) HRC 50-52HRC 50-52

900℃에서 180분간 붕화처리를 실시한 시편의 붕화물경화층의 두께는 약 50㎛이다. 이 때 형성되는 α-페라이트층의 두께는 약 21㎛정도가 형성된다.The thickness of the boride hardened layer of the specimen subjected to boration treatment at 900 ° C. for 180 minutes is about 50 μm. At this time, the thickness of the α-ferrite layer formed is about 21 μm.

도 5에서 붕화물경화층 아래에서 경도값(Hv410)이 피사체의 경도값(Hv530)보다 떨어짐을 확인할 수 있다.In FIG. 5, the hardness value Hv410 is lower than the hardness value Hv530 of the subject under the boride hardened layer.

붕화물경화층 아래의 α-페라이트층을 제거하기 위해서는 확산경화 열처리를 실시하였으며, 온도 및 유지시간을 달리하면서 실험하였다.In order to remove the α-ferrite layer under the boride hardened layer, diffusion hardening heat treatment was performed, and the experiment was performed at different temperatures and holding times.

먼저, 온도를 약 980℃에서 60분, 120분을 유지하였을 때는 α-페라이트층의 변화가 관찰되지 않았다.First, no change in the α-ferrite layer was observed when the temperature was maintained at about 980 ° C. for 60 minutes and 120 minutes.

그리하여 온도를 약 1020℃로 높이고, 확산경화 열처리시간은 동일하게 유지하였을 경우 60분을 유지하였을 때에는 변화가 관찰되지 않았으나,Therefore, if the temperature was raised to about 1020 ℃ and the diffusion hardening heat treatment time was maintained the same, no change was observed when 60 minutes were maintained.

120분을 유지하였을 때에는 α-페라이트층이 마르텐사이트 조직으로 변태하여 경도가 Hv530으로 높아짐을 확인할 수 있다.When it is maintained for 120 minutes, it can be seen that the α-ferrite layer is transformed into martensite structure and the hardness is increased to Hv530.

이와 같은 현상은 α-페라이트층에 집적된 Si가 피사체층으로 확산되어 이 부분의 농도가 약 3.2%에서 약 2.15%로 낮아지지 때문에, α-페라이트층이 오스테나이트로 상변태가 일어나고, 냉각과정에서 마르텐사이트로 변화한다.This phenomenon occurs because Si accumulated in the α-ferrite layer diffuses into the object layer, and the concentration of this portion decreases from about 3.2% to about 2.15%. Thus, the α-ferrite layer undergoes phase transformation into austenite, and Change to martensite.

이에 따른 경도 변화를 도 6을 통하여 확인할 수 있다.This change in hardness can be confirmed through FIG. 6.

본 발명에 의한 블래이드의 성능을 확인하기 위해 종래 블래이드의 실험 결과치를 표 1에서와 같이 나타내었다.In order to confirm the performance of the blade according to the present invention, the experimental results of the conventional blades are shown in Table 1.

<표 1>TABLE 1

블래이드의 기계적 성질 비교Comparison of Mechanical Properties of Blades

기존의 블레이드Conventional blade 표면경화 블래이드Surface Hardening Blades 경 도Hardness 심부경도(로크웰)Deep Hardness (Rockwell) HRC 62HRC 62 HRC 62HRC 62 표면경도(마이크로비커스)Surface Hardness (Microviscus) HRC 62HRC 62 HRC 68이상(Hv1532)HRC 68 or higher (Hv1532) 마찰계수(500-3600S)Friction Coefficient (500-3600S) 4.634.63 1.381.38 마모량(=weight loss) Cycles(a:10800, b:21600)= Weight loss Cycles (a: 10800, b: 21600) a : 1.9mg b : 2.4mga: 1.9mg b: 2.4mg a : 0.5mg b : 0.8mga: 0.5mg b: 0.8mg 내식성(침지액=3.5%HCl,120시간후Corrosion resistance (immersion solution = 3.5% HCl, after 120 hours 4.98%감량4.98% reduction 0.25%감량0.25% reduction

상기 <표 1>의 실험결과에서 보는 바와 같이 본 발명에 의한 블래이드는 표면경도 및 마찰계수가 낮고, 마모량이 적은 것으로 내마모성이 우수하며, 내식성 역시 향상된 것을 알 수 있다.As shown in the experimental results of Table 1, the blade according to the present invention has a low surface hardness and a low coefficient of friction, abrasion resistance, excellent wear resistance, and corrosion resistance.

이상과 같은 본 발명인 블래이드의 표면처리방법 및 이를 통해 생성된 블래이드는 표면에 붕화물경화층을 형성시킴으로서 기존의 블래이드에 비하여 내마모성, 절삭성, 내식성등을 향상시킬 수 있을 뿐만 아니라, 표면경도를 높여 블래이드의 수명을 연장시키는 효과를 가진다.The surface treatment method of the blade of the present invention as described above and the resulting blade is not only to improve the wear resistance, machinability, corrosion resistance, etc., compared to the existing blade by forming a boride hardened layer on the surface, the surface hardness to increase the blade Has the effect of prolonging its lifespan.

또한 Si함량이 0.5%이상인 공구강에도 표면 경화처리시 발생하는 α-페라이트층을 제거하여 공구강의 종류에 무관하게 표면경화처리가 가능하도록 한 유용한 발명이다.In addition, it is a useful invention to remove the α-ferrite layer generated during the surface hardening treatment even in tool steels with a Si content of 0.5% or more to enable surface hardening treatment regardless of the type of tool steel.

Claims (3)

블래이드의 표면처리방법에 있어서;In the surface treatment method of the blade; 상기 블래이드의 표면처리방법은,The surface treatment method of the blade, STD61종, SKH9종을 사용하여 제조된 블래이드 표면에 부착된 유기물, 무기물등을 제거하는 사전처리공정;A pretreatment step of removing organic matter, inorganic matter, etc. adhered to the blade surface manufactured using STD61 species and SKH9 species; B4C와 KBF4등의 혼합된 붕화물 제재분말을 넣은 밀폐용기에 블래이드를 장입(裝入)한 다음 밀폐용기의 덮개를 덮어 준비하는 투입공정;A charging step of placing a blade in a sealed container in which a mixed boride material powder such as B4C and KBF4 is added, and then covering the sealed container to prepare a lid; 상기 블래이드를 붕화물 제재 분말속에 장입한 후 불활성(不活性)분위기에서 내열성 밀폐용기를 900℃-950℃까지 5℃/min로 가열하여 30-180분동안 유지한 후 노냉처리하는 가열공정;A step of charging the blade into a boride material powder and then heating the heat-resistant airtight container at 5 ° C./min to 900 ° C.-950 ° C. in an inert atmosphere for 30 to 180 minutes, followed by a furnace cooling process; 상기 붕화처리된 블래이드를 다시 990℃-1100℃의 온도에서 120분 동안 유지한 후 급냉하여 담금질효과 및 α-페라이트층에 집적된 Si가 피사체로 확산되도록 하는 확산공정;A diffusion process of maintaining the borated blade again at a temperature of 990 ° C.-1100 ° C. for 120 minutes and quenching to diffuse the quenching effect and Si accumulated in the α-ferrite layer to a subject; 상기 확산공정을 통해 생성된 블래이드를 뜨임처리하는 뜨임공정;A tempering process of tempering the blade generated through the diffusion process; 위 공정을 통해 블래이드를 연마하여 가공하는 후처리공정으로 이루어지는 것을 특징으로 하는 블래이드의 표면처리방법.The surface treatment method of the blade, characterized in that consisting of a post-treatment step of polishing and processing the blade through the above process. 삭제delete 삭제delete
KR1020050074549A 2005-08-13 2005-08-13 Treat method of surface for blade and blade KR100641064B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050074549A KR100641064B1 (en) 2005-08-13 2005-08-13 Treat method of surface for blade and blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050074549A KR100641064B1 (en) 2005-08-13 2005-08-13 Treat method of surface for blade and blade

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR20-2005-0023523U Division KR200403624Y1 (en) 2005-08-16 2005-08-16 The blade

Publications (1)

Publication Number Publication Date
KR100641064B1 true KR100641064B1 (en) 2006-11-02

Family

ID=37649817

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050074549A KR100641064B1 (en) 2005-08-13 2005-08-13 Treat method of surface for blade and blade

Country Status (1)

Country Link
KR (1) KR100641064B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111660208A (en) * 2020-06-03 2020-09-15 山东理工大学 Composite surface treatment method for prolonging service life of metal processing tool
CN114086110A (en) * 2022-01-07 2022-02-25 矿冶科技集团有限公司 Method for solidifying and permeating alloy workpiece dynamically sealed in atmospheric atmosphere and alloy workpiece

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111660208A (en) * 2020-06-03 2020-09-15 山东理工大学 Composite surface treatment method for prolonging service life of metal processing tool
CN114086110A (en) * 2022-01-07 2022-02-25 矿冶科技集团有限公司 Method for solidifying and permeating alloy workpiece dynamically sealed in atmospheric atmosphere and alloy workpiece
CN114086110B (en) * 2022-01-07 2022-04-08 矿冶科技集团有限公司 Method for solidifying and permeating alloy workpiece dynamically sealed in atmospheric atmosphere and alloy workpiece

Similar Documents

Publication Publication Date Title
US9068260B2 (en) Knife for wood processing and methods for plating and surface treating a knife for wood processing
US9260775B2 (en) Low alloy steel carburization and surface microalloying process
US7438769B2 (en) Process for diffusing titanium and nitride into a material having a coating thereon
EP1712658B1 (en) Method for surface treatment of metal material
CN100494498C (en) Method for surface treatment of metal material
Galiotto et al. Characterization of different surface layers produced by solid boron-nitro-carburizing thermochemical treatment on AISI 1020
KR100641064B1 (en) Treat method of surface for blade and blade
KR20160029102A (en) Wear-resistant, at least partially uncoated steel part
JP4771718B2 (en) Metal nitriding method
Rayane et al. Effect of diffusion annealing on borides layers produced on XC38 steel
JPWO2011115255A1 (en) Spring steel and steel surface treatment method
GB2261227A (en) Surface treatment of metals at low pressure
KR200403624Y1 (en) The blade
JP2009041063A (en) Method for gas-nitriding die for warm/hot forming, and die for warm/hot forming obtained thereby
RU2590433C1 (en) Method for increasing wear resistance of articles from hard alloys
JP2010222648A (en) Production method of carbon steel material and carbon steel material
JP5798463B2 (en) Carburizing method and carburizing apparatus
JP3745972B2 (en) Steel material manufacturing method
Ratayski et al. Influence of elevated temperature and reduced pressure on the degradation of iron nitride compound layer formed by plasma nitriding in AISI D2 tool steels
US5100483A (en) Method of case hardening ferrometallic parts
JP4494995B2 (en) Metal surface treatment method
Becherer Introduction to heat treating of tool steels
JP3745971B2 (en) Steel material
RU2631551C1 (en) Method for hard alloy products durability increase
JP7015181B2 (en) Sliding member

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121018

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131016

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141022

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee