KR100625957B1 - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
KR100625957B1
KR100625957B1 KR1019990038697A KR19990038697A KR100625957B1 KR 100625957 B1 KR100625957 B1 KR 100625957B1 KR 1019990038697 A KR1019990038697 A KR 1019990038697A KR 19990038697 A KR19990038697 A KR 19990038697A KR 100625957 B1 KR100625957 B1 KR 100625957B1
Authority
KR
South Korea
Prior art keywords
lithium ion
lithium
ion battery
oxygen
electrolyte
Prior art date
Application number
KR1019990038697A
Other languages
Korean (ko)
Other versions
KR20010027112A (en
Inventor
김기호
송의환
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1019990038697A priority Critical patent/KR100625957B1/en
Publication of KR20010027112A publication Critical patent/KR20010027112A/en
Application granted granted Critical
Publication of KR100625957B1 publication Critical patent/KR100625957B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 안전성이 개선된 리튬 이온 전지에 관한 것으로서, 본 발명에 따르면, 전극이나 전해액에 소정량의 산소흡장제를 더 포함시켜 충전반응시 발생할 수 있는 산소를 흡장함으로써 산소 발생으로 인한 발화 가능성을 제거하여 전지의 안전성을 개선할 수 있다. The present invention relates to a lithium ion battery having improved safety, and according to the present invention, a predetermined amount of oxygen absorbent is further included in an electrode or an electrolyte to occlude oxygen that may occur during a charging reaction, thereby reducing the possibility of ignition due to oxygen generation. Removal can improve battery safety.

Description

리튬이온전지 {Lithium ion battery}Lithium ion battery

본 발명은 리튬이온전지에 관한 것으로서, 보다 상세하게는 안전성이 개선된 리튬이온전지에 관한 것이다. The present invention relates to a lithium ion battery, and more particularly to a lithium ion battery with improved safety.

최근들어 컴퓨터, 휴대용 카셋트, 라디오, 휴대용 전화기 등의 전원으로서 충전용 2차전지의 사용이 확대되면서 장수명 및 대용량이면서 크기는 작은 충전용 2차전지에 대한 필요성이 증가하고 있다. Recently, as the use of rechargeable secondary batteries as power sources for computers, portable cassettes, radios, portable telephones, and the like, there is an increasing need for rechargeable secondary batteries having a long lifespan and a large capacity.

종래에는 충전용 2차전지로서 납축전지나 니켈/카드뮴 전지가 주로 사용되었으나 이들의 용량 개선에는 한계가 있어 이를 대체할 만한 전지로서 대두된 것이 리튬 2차전지이다.Conventionally, lead-acid batteries or nickel / cadmium batteries are mainly used as rechargeable secondary batteries. However, lithium secondary batteries have emerged as replacement batteries because of limited capacity improvement.

리튬 2차전지의 역사는 약 30여년이 넘지만 본격적으로 실용화되기 시작한 것은 불과 얼마되지 않았는데, 그 이유는 적절한 활물질이 개발되지 않았고 만족할만한 전지의 소형화, 대용량화 및 장수명화가 얻어지지 않는등 극복해야 할 여러 가지 문제점이 여전히 남아있었기 때문이다. 또한, 리튬 2차전지중 리튬 이온 전지의 경우에는 충전시 전해액이 발화할 가능성이 있는등 전지의 안전성에도 문제가 있다. The history of lithium secondary batteries is more than 30 years, but only a few have begun to be put into practical use. The reason for this is that they have not been developed, and the satisfactory battery size, capacity, and long life cannot be obtained. Many problems still remain. In addition, in the case of a lithium ion battery among lithium secondary batteries, there is a problem in the safety of the battery, for example, the electrolyte may ignite during charging.

리튬 이온 전지는 통상 리튬복합산화물을 활물질로 하는 캐소드, 리튬금속, 리튬합금 또는 탄소재 물질을 활물질로 하는 애노드, 및 비수계 유기용매와 리튬염을 포함하는 전해액으로 되어 있다. A lithium ion battery usually consists of a cathode comprising a lithium composite oxide as an active material, an anode containing a lithium metal, a lithium alloy or a carbonaceous material as an active material, and an electrolyte solution containing a non-aqueous organic solvent and a lithium salt.

캐소드 활물질로는 리튬코발트산화물, 리튬니켈산화물, 리튬망간산화물과 같은 리튬복합산화물이나 이들에 금속 원소를 첨가한 것들이 통상 사용된다. 리튬복합산화물은 충전시 리튬이온이 음극으로 이동하면서 금속산화물을 형성하고 전자를 방출하는 반응기작을 나타낸다. 리튬복합산화물중 리튬코발트 산화물의 예를 들어 충전시 캐소드 활물질의 반응기작을 하기에 나타내었다.As the cathode active material, lithium composite oxides such as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, or those in which metal elements are added thereto are usually used. Lithium complex oxide represents a reaction mechanism in which lithium ions move to the cathode during charging to form metal oxides and release electrons. For example of lithium cobalt oxide in lithium composite oxide, the reaction of the cathode active material upon charging is shown below.

LiCoO2 → CoO2 + Li+ + e- LiCoO 2 → CoO 2 + Li + + e -

그런데 과충전이 발생하거나 충방전이 반복됨에 따라서 음극으로 이동하는 리튬이온의 양이 과다해지면 온도나 습도 등의 주변 환경이 약간만 변해도 코발트산화물이 금속 코발트와 산소로 분해되고 이때 발생되는 산소가스가 전해액과 반응하여 전해액을 발화시키는등 전지의 안전성을 크게 저해하는 문제점이 있다.However, if the amount of lithium ions moving to the cathode becomes excessive as overcharging occurs or charging / discharging is repeated, cobalt oxide is decomposed into metal cobalt and oxygen even if the ambient environment such as temperature or humidity changes only a little. There is a problem in that the safety of the battery is greatly impaired, such as reacting to ignite the electrolyte solution.

이러한 문제점을 극복하기 위한 방법이 몇가지 제안되었다. Several methods have been proposed to overcome this problem.

그 대표적인 방법들은 캐소드 활물질로 사용되는 리튬복합산화물의 조성이나 구조를 변경시켜 산소의 결합력을 높여주거나 산소로 분해되는 정도를 감소시키는 방법들이다. The representative methods are methods of increasing the binding force of oxygen or reducing the degree of decomposition into oxygen by changing the composition or structure of the lithium composite oxide used as the cathode active material.

그러나, 이들 방법은 대개 활물질의 용량 감소를 수반하기 때문에 실용상 한계가 있다. However, these methods are practically limited because they usually involve a reduction in the capacity of the active material.

또 다른 방법은 세퍼레이터를 변경하여 일정온도에 이르렀을 때 전지를 셧-다운(shut-down)시키는 방법이다. 그러나, 이 방법 역시 안정성을 개선한다는 측면에서는 그다지 효과적이지 않다. Another method is to change the separator to shut down the battery when it reaches a certain temperature. However, this method is also not very effective in terms of improving stability.

본 발명은 이러한 문제점을 개선하기 위한 것이다. The present invention is directed to improving this problem.

본 발명이 이루고자 하는 기술적 과제는 안전성이 개선된 리튬이온전지를 제공하기 위한 것이다. The technical problem to be achieved by the present invention is to provide a lithium ion battery with improved safety.

본 발명의 기술적 과제는 캐소드 전극, 애노드 전극 및 전해액으로 된 리튬 이온 전지에 있어서, 상기 전해액이 비수계 유기용매, 리튬염 및 산소흡장제를 포함하는 것을 특징으로 하는 리튬 이온 전지에 의하여 이루어질 수 있다. Technical problem of the present invention is a lithium ion battery comprising a cathode electrode, an anode electrode and an electrolyte, the electrolyte may be made by a lithium ion battery characterized in that it comprises a non-aqueous organic solvent, a lithium salt and an oxygen sorbent. .

또한, 본 발명의 기술적 과제는 캐소드 전극, 애노드 전극 및 전해액으로 된 리튬 이온 전지에 있어서, 상기 캐소드 전극 또는 애노드 전극이 전극 활물질, 도전제, 결합제 및 산소흡장제를 포함하는 것을 특징으로 하는 리튬 이온 전지에 의하여 이루어질 수 있다. In addition, a technical problem of the present invention is a lithium ion battery comprising a cathode electrode, an anode electrode and an electrolyte, wherein the cathode electrode or the anode electrode comprises an electrode active material, a conductive agent, a binder and an oxygen absorber It can be made by a battery.

이때, 비수계 유기용매로는 프로필렌 카보네이트(propylene carbonate: PC), 에틸렌 카보네이트(ethylene carbonate: EC), 에틸메틸 카보네이트, 메틸 아세테이트, γ-부티로락톤(γ-butyrolactone), 1,3-디옥소란(1,3-dioxolane), 디메톡시에탄(dimethoxyethane), 디메틸카보네이트(dimethylcarbonate), 디에틸카보네이트(diethylcarbonate), 테트라하이드로퓨란(tetrahydrofuran: THF), 디메틸설폭사이드(dimethylsulfoxide) 및 폴리에틸렌글리콜 디메틸에테르(polyethyleneglycol dimethylether)중에서 선택된 적어도 1종의 용매를 사용하는 것이 바람직하다. In this case, as the non-aqueous organic solvent, propylene carbonate (PC), ethylene carbonate (EC), ethylmethyl carbonate, methyl acetate, γ-butyrolactone, 1,3-dioxo Lan (1,3-dioxolane), dimethoxyethane, dimethylcarbonate, diethylcarbonate, tetrahydrofuran (THF), dimethylsulfoxide and polyethylene glycol dimethyl ether ( Preference is given to using at least one solvent selected from polyethyleneglycol dimethylether).

그리고 리튬염으로는 유기용매중에서 해리되어 리튬 이온을 내는 리튬 화합물이라면 특별히 제한되지는 않으며, 그 구체적인 예로서 과염소산 리튬(lithium perchlorate, LiClO4), 사불화붕산 리튬(lithium tetrafluoroborate, LiBF4), 육불화인산 리튬(lithium hexafluorophosphate, LiPF6), 삼불화메탄술폰산 리튬(lithium trifluoromethansulfonate, LiCF3SO3), 리튬비스트리플루오로메탄술포닐아미드 (lithium bistrifluoromethansulfonylamide, LiN(CF3SO2)2) 등이 있으며, 그 함량은 통상적인 수준이다. The lithium salt is not particularly limited as long as it is a lithium compound that is dissociated in an organic solvent to give lithium ions, and specific examples thereof include lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), and Lithium hexafluorophosphate (LiPF 6 ), lithium trifluoromethansulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethansulfonylamide (LiN (CF 3 SO 2 ) 2 ), and the like And the content is at normal levels.

또한, 상기 활물질, 도전제, 결합제 역시 본 발명의 분야에서 통상 사용되는 것이면 특별하게 제한되지 않는다. In addition, the active material, the conductive agent, the binder is not particularly limited as long as it is commonly used in the field of the present invention.

또한, 상기 산소흡장제로는 디프로필아민, 페놀, 피로카테콜 및 피로갈롤로 이루어진 군으로부터 선택된 적어도 하나이며, 그 함량은 전해액의 총중량에 대하여 0.1∼5중량%이거나, 전극 활물질의 총중량에 대하여 0.1∼2중량%인 것이 바람직하다. In addition, the oxygen absorbent is at least one selected from the group consisting of dipropylamine, phenol, pyrocatechol and pyrogallol, the content of which is 0.1 to 5% by weight relative to the total weight of the electrolyte, or 0.1 to the total weight of the electrode active material It is preferable that it is-2 weight%.

본 발명에 따른 산소흡장제는 캐소드 전극, 애노드 전극 또는 전해액 중에 포함되어 있으면서 충전시 캐소드 극판으로부터 발생할 수 있는 산소를 흡장하는 역할을 한다. Oxygen scavenger according to the present invention is contained in the cathode electrode, the anode electrode or the electrolyte and serves to occlude oxygen that may be generated from the cathode electrode plate during charging.

삭제delete

삭제delete

즉, 본 발명에서 산소흡장제로서 사용되는 화합물을 아민, 히드록시기 등과 같이 분자내에 라디칼 반응을 일으킬 수 있는 라디칼을 포함하고 있어 이들 라디칼이 산소원자를 흡착하여 제거한다. That is, the compound used as the oxygen absorbing agent in the present invention contains radicals capable of causing a radical reaction in the molecule such as amines, hydroxyl groups and the like, and these radicals adsorb and remove oxygen atoms.

이들 산소흡장제는 전해액의 주성분인 비수계 유기용매나 전극 활물질과의 친화성이 우수하며 전지의 고유 특성을 저해하지 않는 범위내에서 첨가되어야 하는데, 전술한 첨가량 범위보다 작으면 산소흡장제 첨가 효과가 미미한 반면, 상기 범위를 초과하는 경우에는 전지의 용량 및 수명특성을 저하시키므로 바람직하지 않다. These oxygen absorbers should be added within the range of excellent affinity with the non-aqueous organic solvent or electrode active material, which is the main component of the electrolyte, and do not impair the intrinsic properties of the battery. On the other hand, if it exceeds the above range, it is not preferable because it lowers the capacity and life characteristics of the battery.

본 발명에 따른 리튬 이온 전지는 본 발명의 분야에서 통상 사용되는 방법에 따라 제조될 수 있다. The lithium ion battery according to the present invention may be manufactured according to a method commonly used in the field of the present invention.

이하, 실시예 및 비교예를 들어 본 발명을 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

실시예 1Example 1

리튬복합산화물, 도전제 (Super-P 카본) 및 결합제 (KW 1300, Kureha사 제품)를 94:3:3의 중량비로 혼합한 다음, 여기에 N-메틸피롤리돈을 가하고 충분히 혼합하여 캐소드 슬러리 조성물을 형성하였다.A lithium composite oxide, a conductive agent (Super-P carbon) and a binder (KW 1300, manufactured by Kureha) were mixed in a weight ratio of 94: 3: 3, and then N-methylpyrrolidone was added thereto and sufficiently mixed to form a cathode slurry. The composition was formed.

상기 캐소드 슬러리 조성물을 140㎛ 두께의 알루미늄 강망에 도포한 다음, 건조시켜 캐소드 극판을 완성하였다.The cathode slurry composition was applied to a 140 μm thick aluminum steel mesh and then dried to complete the cathode electrode plate.

이와는 별도로, 그래파이트와 결합제 ((KW 1300, Kureha사 제품)를 92:8의 중량비로 혼합한 다음, 여기에 N-메틸피롤리돈을 가하고 충분히 혼합하여 애노드 슬러리 조성물을 형성하였다.Separately, graphite and a binder ((KW 1300, manufactured by Kureha) were mixed at a weight ratio of 92: 8, and then N-methylpyrrolidone was added thereto and sufficiently mixed to form an anode slurry composition.

상기 애노드 슬러리 조성물을 120㎛ 두께의 구리 강망에 도포한 다음, 건조시켜 애노드 극판을 완성하였다.The anode slurry composition was applied to a 120 μm thick copper steel mesh and then dried to complete the anode plate.

이어서, 상기 제조된 캐소드 극판과 애노드 극판 사이에 세퍼레이터 필름을 개재한 다음, 열압착시켜 전극 조립체를 완성하였다. Subsequently, a separator film was interposed between the prepared cathode electrode plate and the anode electrode plate, followed by thermocompression bonding to complete the electrode assembly.

마지막으로, 에틸렌 카보네이트, 디메틸카보네이트 및 디에틸카보네이트를 4:4:1의 중량비로 혼합한 혼합유기용매 1000㎖에 151.9g의 LiPF6 및 6g의 피로갈롤을 혼합하여 전해액을 제조한 다음, 상기 제조된 전극 조립체를 함침시켜 리튬 이온 전지 5개를 제조하였다. Finally, 151.9 g of LiPF 6 and 6 g of pyrogallol were mixed with 1000 ml of a mixed organic solvent in which ethylene carbonate, dimethyl carbonate and diethyl carbonate were mixed at a weight ratio of 4: 4: 1, to prepare an electrolyte solution. Five lithium ion batteries were prepared by impregnating the prepared electrode assembly.

제조된 리튬 이온 전지 5개를 각각 0.5C 및 4.2V로 충전하였다. Five lithium ion batteries were charged at 0.5C and 4.2V, respectively.

충전된 전지들을 밀폐된 챔버내에 넣고 못을 전지에 관통시키는 전지 관통 실험을 실시하였다. Cell penetration experiments were performed in which charged cells were placed in a closed chamber and nails penetrated the cells.

그 결과를 하기 표 1에 나타내었다. The results are shown in Table 1 below.

실시예 2Example 2

리튬복합산화물, 도전제 (Super-P 카본), 결합제 (KW 1300, Kuraha사 제품) 및 디프로필아민 (Aldrich사 제품)을 93:3:3:1의 중량비로 혼합한 다음, 여기에 N- 메틸피롤리돈을 가하고 충분히 혼합하여 캐소드 슬러리 조성물을 형성하였다.A lithium composite oxide, a conductive agent (Super-P carbon), a binder (KW 1300, manufactured by Kuraha) and dipropylamine (manufactured by Aldrich) were mixed in a weight ratio of 93: 3: 3: 1, and then N- Methylpyrrolidone was added and mixed well to form a cathode slurry composition.

상기 캐소드 슬러리 조성물을 140㎛ 두께의 알루미늄 강망에 도포한 다음, 건조시켜 캐소드 극판을 완성하였다.The cathode slurry composition was applied to a 140 μm thick aluminum steel mesh and then dried to complete the cathode electrode plate.

애노드 극판은 상기 실시예 1에서와 동일한 방법으로 제조하였다. The anode plate was prepared in the same manner as in Example 1.

이어서, 상기 제조된 캐소드 극판과 애노드 극판 사이에 세퍼레이터 필름을 개재한 다음, 열압착시켜 전극 조립체를 완성하였다. Subsequently, a separator film was interposed between the prepared cathode electrode plate and the anode electrode plate, followed by thermocompression bonding to complete the electrode assembly.

마지막으로, 에틸렌 카보네이트, 디메틸카보네이트 및 디에틸카보네이트가 4:4:1로 혼합된 혼합유기용매 1000㎖에 151.9g의 LiPF6를 혼합하여 전해액을 제조한 다음, 상기 제조된 전극 조립체를 함침시켜 리튬 이온 전지 5개를 제조하였다. Finally, 151.9 g of LiPF 6 was mixed with 1000 ml of a mixed organic solvent in which ethylene carbonate, dimethyl carbonate, and diethyl carbonate were mixed at 4: 4: 1 to prepare an electrolyte solution, and then the electrode assembly was impregnated with lithium. Five ion cells were prepared.

제조된 리튬 이온 전지 5개를 각각 0.5C 및 4.2V로 충전하였다. Five lithium ion batteries were charged at 0.5C and 4.2V, respectively.

충전된 전지들을 밀폐된 챔버내에 넣고 못을 전지에 관통시키는 전지 관통 실험을 실시하였다. Cell penetration experiments were performed in which charged cells were placed in a closed chamber and nails penetrated the cells.

그 결과를 하기 표 1에 나타내었다. The results are shown in Table 1 below.

비교예Comparative example

전해액 제조시 산소흡장제를 첨가하지 않는 것을 제외하고는 실시예 1에서와 동일한 방법으로 리튬 이온 전지 5개를 제조하였다.Five lithium ion batteries were manufactured in the same manner as in Example 1, except that no oxygen absorbent was added in the preparation of the electrolyte.

제조된 리튬 이온 전지 5개를 각각 0.5C 및 4.2V로 충전하였다. Five lithium ion batteries were charged at 0.5C and 4.2V, respectively.

충전된 전지들을 밀폐된 챔버내에 넣고 못을 전지에 관통시키는 전지 관통 실험을 실시하였다. Cell penetration experiments were performed in which charged cells were placed in a closed chamber and nails penetrated the cells.

그 결과를 하기 표 1에 나타내었다. The results are shown in Table 1 below.

전지번호Battery number 관통후 최종도달온도 (℃)Final reaching temperature after penetration (℃) 실시예 1Example 1 1One 200200 22 180180 33 195195 44 220220 55 205205 실시예 12Example 12 1One 250250 22 230230 33 225225 44 240240 55 245245 비교예1Comparative Example 1 1One 열폭주Thermal runaway 22 열폭주Thermal runaway 33 열폭주Thermal runaway 44 열폭주Thermal runaway 55 열폭주Thermal runaway

상기 표 1의 결과로부터 알 수 있듯이, 본 발명에 따른 산소흡장제가 첨가된 전지 (실시예 1 및 2)에서는 못이 관통한 후에도 열적 폭발과 같은 현상은 나타나지 않았다. 그러나, 산소흡장제를 첨가하지 않고 제조한 전지 (비교예 1의 경우)에서는 열적 폭발로 발전하여 온도 측정이 불가능하였다. As can be seen from the results of Table 1, in the batteries (Examples 1 and 2) to which the oxygen absorbent according to the present invention was added, a phenomenon such as thermal explosion did not occur even after the nail penetrated. However, in a battery prepared without adding an oxygen sorbent (Comparative Example 1), the temperature was not developed due to thermal explosion.

본 발명에 따르면, 전지의 극판 제조시나 전해액 제조시 소정량의 산소흡장제를 첨가하여 충전반응시 발생할 수 있는 산소를 흡장함으로써 산소 발생으로 인한 발화의 가능성이 없는 리튬 이온 전지를 제공할 수 있다. 즉, 본 발명에 따른 리튬 이온 전지는 충방전이 반복되거나 온도나 습도 등의 주변 환경이 급격하게 변화하는 열악한 조건하에서도 전해액의 발화와 같은 안전성 문제가 발생하는 일 없이 안전하게 사용가능하다. According to the present invention, a lithium ion battery having no possibility of ignition due to oxygen generation can be provided by occluding oxygen that may occur during charging reaction by adding a predetermined amount of oxygen absorbent during the production of the electrode plate of the battery or during the preparation of the electrolyte solution. That is, the lithium ion battery according to the present invention can be used safely without causing safety problems such as ignition of an electrolyte even under poor conditions in which charging and discharging are repeated or a sudden change in the surrounding environment such as temperature or humidity occurs.                     

Claims (6)

캐소드 전극, 애노드 전극 및 전해액으로 된 리튬 이온 전지에 있어서, In a lithium ion battery comprising a cathode electrode, an anode electrode and an electrolyte solution, 상기 전해액이 유기전해액 및 디프로필아민, 페놀, 피로카테콜 및 피로갈롤로 이루어진 군으로부터 선택된 적어도 하나의 산소흡장제를 포함하는 것을 특징으로 하는 리튬 이온 전지. And the electrolyte comprises at least one oxygen absorber selected from the group consisting of an organic electrolyte and dipropylamine, phenol, pyrocatechol and pyrogallol. 삭제delete 제1항에 있어서, 상기 산소흡장제의 함량이 전해액의 총중량에 대하여 0.1∼5중량%인 것을 특징으로 하는 리튬 이온 전지. The lithium ion battery according to claim 1, wherein the content of the oxygen absorbent is 0.1 to 5% by weight based on the total weight of the electrolyte. 캐소드 전극, 애노드 전극 및 전해액으로 된 리튬 이온 전지에 있어서,In a lithium ion battery comprising a cathode electrode, an anode electrode and an electrolyte solution, 상기 캐소드 전극 또는 애노드 전극이 전극 활물질, 도전제, 결합제 및 디프로필아민, 페놀, 피로카테콜 및 피로갈롤로 이루어진 군으로부터 선택된 적어도 하나의 산소흡장제를 포함하는 것을 특징으로 하는 리튬 이온 전지.And the cathode electrode or the anode electrode comprises at least one oxygen absorber selected from the group consisting of an electrode active material, a conductive agent, a binder and dipropylamine, phenol, pyrocatechol and pyrogallol. 삭제delete 제4항에 있어서, 상기 산소흡장제의 함량이 전극 활물질의 총중량에 대하여 0.1∼2중량%인 것을 특징으로 하는 리튬 이온 전지. The lithium ion battery according to claim 4, wherein the content of the oxygen absorbent is 0.1 to 2% by weight based on the total weight of the electrode active material.
KR1019990038697A 1999-09-10 1999-09-10 Lithium ion battery KR100625957B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990038697A KR100625957B1 (en) 1999-09-10 1999-09-10 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990038697A KR100625957B1 (en) 1999-09-10 1999-09-10 Lithium ion battery

Publications (2)

Publication Number Publication Date
KR20010027112A KR20010027112A (en) 2001-04-06
KR100625957B1 true KR100625957B1 (en) 2006-09-20

Family

ID=19611005

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990038697A KR100625957B1 (en) 1999-09-10 1999-09-10 Lithium ion battery

Country Status (1)

Country Link
KR (1) KR100625957B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9059476B2 (en) 2010-11-16 2015-06-16 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916708A (en) * 1996-05-13 1999-06-29 Hoechst Aktiengesellschaft Fluorine-containing solvents for lithium batteries having increased safety

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916708A (en) * 1996-05-13 1999-06-29 Hoechst Aktiengesellschaft Fluorine-containing solvents for lithium batteries having increased safety

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9059476B2 (en) 2010-11-16 2015-06-16 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery including the same

Also Published As

Publication number Publication date
KR20010027112A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
US7824809B2 (en) Electrolyte for non-aqueous cell and non-aqueous secondary cell
EP1661200B1 (en) Electrolyte solvent for improving safety of battery and lithium secondary battery comprising the same
US7678504B2 (en) Lithium secondary battery and a method for preparing the same
US7201994B2 (en) Non-aqueous electrolyte secondary battery
US9088036B2 (en) Rechargeable lithium battery
US8968920B2 (en) Organic electrolyte solution including silane compound and lithium battery employing the same
KR100428977B1 (en) Polymer electrolyte composition for improving overcharge safety and lithium battery using the same
US7306880B2 (en) Electrolyte for a lithium ion battery and a lithium ion battery comprising the same
EP1657775B1 (en) Electrolyte for lithium battery and lithium battery comprising same
KR20200114267A (en) Lithium secondary battery
KR100303543B1 (en) A non-flammable electrolyte and a lithium secondary battery made thereof
EP1653548B1 (en) Electrolyte for lithium battery and lithium battery comprising same
KR100625957B1 (en) Lithium ion battery
KR20080087338A (en) A lithium secondary battery developing capacity degradation
KR102259744B1 (en) Nonaqueous electrolyte and lithium secondary battery comprising the same
KR100357415B1 (en) Electrolyte for lithium ion polymer battery
KR100922740B1 (en) Separator and eloctrode comprising cationic polymer and lithium battery employing the same
KR102633568B1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising the same and lithium secondary battery
KR100331249B1 (en) Lithium ion polymer battery
KR20020000208A (en) Lithium secondary battery
KR100331248B1 (en) Lithium polymer battery
KR100458603B1 (en) Non-aqueous electrolyte comprising new additive and lithium ion secondary battery comprising thereof
KR20170008475A (en) Electrolyte solution and lithium secondary battery comprising the same
KR100424258B1 (en) Non aqueous electrolyte for improving overcharge safety and lithium battery using the same
KR20220004305A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120823

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130827

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140822

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150820

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee