KR100625082B1 - Fabrication of InxOOH,Sy Buffer Layer by Chemical Bath Deposition for CuIn,GaSe2 or CuIn,GaS,Se2 Thin Film Solar Cells and Solar Cells manufactured by thereof - Google Patents
Fabrication of InxOOH,Sy Buffer Layer by Chemical Bath Deposition for CuIn,GaSe2 or CuIn,GaS,Se2 Thin Film Solar Cells and Solar Cells manufactured by thereof Download PDFInfo
- Publication number
- KR100625082B1 KR100625082B1 KR1020040085236A KR20040085236A KR100625082B1 KR 100625082 B1 KR100625082 B1 KR 100625082B1 KR 1020040085236 A KR1020040085236 A KR 1020040085236A KR 20040085236 A KR20040085236 A KR 20040085236A KR 100625082 B1 KR100625082 B1 KR 100625082B1
- Authority
- KR
- South Korea
- Prior art keywords
- indium
- thin film
- solution
- oxyhydrooxide
- solar cell
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 88
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 238000000224 chemical solution deposition Methods 0.000 title description 2
- 229910052738 indium Inorganic materials 0.000 claims abstract description 69
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 57
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000000243 solution Substances 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 40
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 12
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 claims abstract description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 7
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 150000001875 compounds Chemical class 0.000 claims abstract description 5
- 230000031700 light absorption Effects 0.000 claims abstract description 5
- 239000004065 semiconductor Substances 0.000 claims abstract description 5
- 239000007864 aqueous solution Substances 0.000 claims abstract description 4
- 230000035484 reaction time Effects 0.000 claims abstract description 3
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 6
- 239000011593 sulfur Substances 0.000 abstract description 6
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 abstract 1
- 238000000151 deposition Methods 0.000 description 16
- 239000000758 substrate Substances 0.000 description 15
- 230000008021 deposition Effects 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000004544 sputter deposition Methods 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 239000011733 molybdenum Substances 0.000 description 7
- 238000001771 vacuum deposition Methods 0.000 description 7
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 6
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- GKCNVZWZCYIBPR-UHFFFAOYSA-N sulfanylideneindium Chemical group [In]=S GKCNVZWZCYIBPR-UHFFFAOYSA-N 0.000 description 6
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229910003437 indium oxide Inorganic materials 0.000 description 5
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000005361 soda-lime glass Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 238000007738 vacuum evaporation Methods 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- 238000000277 atomic layer chemical vapour deposition Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- IGUXCTSQIGAGSV-UHFFFAOYSA-K indium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[In+3] IGUXCTSQIGAGSV-UHFFFAOYSA-K 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910021617 Indium monochloride Inorganic materials 0.000 description 1
- MGTYKZBWBMDCNO-UHFFFAOYSA-N [In].O=S Chemical compound [In].O=S MGTYKZBWBMDCNO-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000002471 indium Chemical class 0.000 description 1
- SKWCWFYBFZIXHE-UHFFFAOYSA-K indium acetylacetonate Chemical compound CC(=O)C=C(C)O[In](OC(C)=CC(C)=O)OC(C)=CC(C)=O SKWCWFYBFZIXHE-UHFFFAOYSA-K 0.000 description 1
- 150000002472 indium compounds Chemical group 0.000 description 1
- 229910001449 indium ion Inorganic materials 0.000 description 1
- APHGZSBLRQFRCA-UHFFFAOYSA-M indium(1+);chloride Chemical compound [In]Cl APHGZSBLRQFRCA-UHFFFAOYSA-M 0.000 description 1
- SIXIBASSFIFHDK-UHFFFAOYSA-N indium(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[In+3].[In+3] SIXIBASSFIFHDK-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
- H01L31/0749—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
본 발명은 용액 성장법을 이용한 Cu(In,Ga)Se2(이하 "CIGS") 또는 Cu(In,Ga)(S,Se)2(이하 "CIGSS" ) 박막 태양전지용 인듐 옥시하이드로옥사이드 설파이드 버퍼층 제조방법 및 이로부터 제조되는 태양전지에 관한것으로, 그 목적은 저가 공정인 용액성장법으로 새로운 버퍼층 물질인 인듐 옥시하이드로옥사이드 설파이드 박막을 수십 나노미터 두께로 제조하는 방법 및 그 태양전지를 제공하는데 있다. 본 발명의 구성은 CIGS 또는 CIGSS 화합물반도체를 광흡수층으로 하는 박막 태양전지에 적용되는 버퍼층의 제조방법에 있어서, 인듐 옥시하이드로옥사이드 설파이드 박막을 추후 열처리 필요없이 용액성장법으로 버퍼층을 제조하되, 이때 용액성장법은 인듐의 소스로 인듐클로라이드를, 황의 소스로 치오아세타마이드를 사용하고 여기에 아세트산을 첨가한 수용액을 출발 용액으로 하되, 용액의 수소이온농도(pH)는 2.2~3, 온도는 60~80℃, 용액 내에서의 반응시간은 5 ~30분 사이로 하여 제조하는 방법 및 그 태양전지를 특징으로 한다.Indium oxyhydrooxide sulfide buffer layer for Cu (In, Ga) Se 2 (hereinafter “CIGS”) or Cu (In, Ga) (S, Se) 2 (hereinafter “CIGSS”) thin film solar cell using solution growth method The present invention relates to a manufacturing method and a solar cell manufactured therefrom, and an object thereof is to provide a method for manufacturing a new buffer layer material, an indium oxyhydrooxide sulfide thin film, having a thickness of several tens of nanometers by a solution growth method which is a low cost process, and a solar cell thereof. . The configuration of the present invention is a method of manufacturing a buffer layer applied to a thin film solar cell using a CIGS or CIGSS compound semiconductor as the light absorption layer, the indium oxyhydrooxide sulfide thin film to prepare a buffer layer by a solution growth method without the need for further heat treatment, wherein the solution The growth method uses an indium chloride as the source of indium and thioacetamide as the source of sulfur and an aqueous solution of acetic acid added thereto as a starting solution.The pH of the solution is 2.2 to 3 and the temperature is 60. The reaction time in a solution of -80 ° C and the solution is between 5 and 30 minutes, and a method for producing the solar cell.
용액성장법, 태양전지, 버퍼층, 인듐 옥시하이드로옥사이드 설파이드, Cu(In,Ga)(S,Se)₂Solution growth method, solar cell, buffer layer, indium oxyhydrooxide sulfide, Cu (Inn), S, Se
Description
도 1은 본 발명 용액 성장법을 이용하여 코닝 유리에 증착한 인듐 옥시하이드로옥사이드 설파이드 박막의 엑스선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS)을 이용한 스펙트럼이고,1 is a spectrum using X-ray photoelectron spectroscopy (XPS) of an indium oxyhydrooxide sulfide thin film deposited on Corning glass using the solution growth method of the present invention,
도 2는 본 발명에 의해 기판 위에 증착된 도 1의 인듐 옥시하이드로옥사이드 설파이드 박막의 엑스선 회절(X-ray Diffraction; XRD) 패턴이고,FIG. 2 is an X-ray diffraction (XRD) pattern of the indium oxyhydrooxide sulfide thin film of FIG. 1 deposited on a substrate by the present invention.
도 3은 본 발명에 의해 증착된 인듐 옥시하이드로옥사이드 설파이드 박막을 500℃에서 4 시간 동안 열처리를 해서 얻은 인듐 옥사이드 설파이드In(O,S) 박막의 엑스선 회절(X-ray Diffraction; XRD) 패턴이고,3 is an X-ray diffraction (X-ray Diffraction; XRD) pattern of the indium oxide sulfide In (O, S) thin film obtained by heat-treating the indium oxyhydrooxide sulfide thin film deposited by the present invention for 4 hours at 500 ℃,
도 4는 코닝 유리기판 위에 증착된 도 1의 인듐 옥시하이드로옥사이드 설파이드 박막의 단면과 표면의 주사 현미경 사진이고,4 is a scanning micrograph of the cross section and surface of the indium oxyhydrooxide sulfide thin film of FIG. 1 deposited on a Corning glass substrate;
도 5는 CIGS 박막 위에 증착된 인듐 옥시하이드로옥사이드 설파이드 박막의 표면 주사 현미경 사진이고,5 is a surface scanning micrograph of an indium oxyhydrooxide sulfide thin film deposited on a CIGS thin film,
도 6은 코닝 유리기판 위에 증착된 도 1의 인듐 옥시하이드로옥사이드 설파이드와 기존의 카드뮴 설파이드 박막의 광투과 비교도이고,FIG. 6 is a light transmission comparison diagram of the indium oxyhydrooxide sulfide and the conventional cadmium sulfide thin film of FIG. 1 deposited on a Corning glass substrate. FIG.
도 7은 도 1의 인듐 옥시하이드로옥사이드 설파이드 박막을 사용하여 CIGS 박막 태양전지를 제조공정이고,7 is a process for manufacturing a CIGS thin film solar cell using the indium oxyhydrooxide sulfide thin film of FIG.
도 8은 본 발명에서 개발된 인듐 옥시하이드로옥사이드 설파이드 박막을 버퍼 층으로 적용한 CIGS 태양전지의 광상태의 전류밀도-전압 곡선이다.8 is a current density-voltage curve of an optical state of a CIGS solar cell using the indium oxyhydrooxide sulfide thin film developed in the present invention as a buffer layer.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
(1) : 소다라임 유리(1): soda lime glass
(2) : 스퍼터링 방법으로 증착된 몰리브데늄(2): molybdenum deposited by sputtering method
(3) : 진공 증발법으로 증착된 Cu(In,Ga)Se2 박막 혹은 스퍼터링으로 증착된 Cu(In,Ga)(S,Se) 박막(3): Cu (In, Ga) Se 2 thin film deposited by vacuum evaporation method or Cu (In, Ga) (S, Se) thin film deposited by sputtering
(4) : 용액성장법으로 증착한 인듐 옥시하이드로옥사이드 설파이드 박막(4) Indium oxyhydrooxide sulfide thin film deposited by solution growth method
(5) : 스퍼터링 혹은 금속 유기물 화학기상증착법으로 증착된 산화 아연(5) Zinc oxide deposited by sputtering or metal organic chemical vapor deposition
(6) : 진공증발법을 이용한 알루미늄 전면 전극(6): aluminum front electrode using vacuum evaporation
본 발명은 용액 성장법을 이용한 Cu(In,Ga)Se2 또는 Cu(In,Ga)(S,Se)2 박막 태양전지용 인듐 옥시하이드로옥사이드 설파이드 버퍼층 제조방법 및 이로부터 제조되는 태양전지에 관한 것으로, 자세하게는 Cu(In,Ga)Se2(이하 'CIGS'라 칭함) 또는 Cu(In,Ga)(S,Se)2(이하 'CIGSS'라 칭함) 화합물반도체를 광흡수층으로 하는 박막 태양전지에 적용되는 버퍼층의 제조방법에 관한 것으로, 현재까지 CIGS(또는 'CIGSS') 태양전지에는 카드뮴 설파이드 박막이 버퍼층으로 주로 사용되어 왔으나, 친환경적인 관점에서 독성을 지닌 카드뮴 설파이드 대신 인듐 옥시하이드로옥사이드 설파이드Inx(OOH,S)y 박막을 용액 성장법(Chemical bath deposition)을 이용하여 제조하는 방법 및 그러한 박박층을 가지는 태양전지에 관한 것이다.The present invention relates to a method for preparing an indium oxyhydrooxide sulfide buffer layer for Cu (In, Ga) Se 2 or Cu (In, Ga) (S, Se) 2 thin film solar cell using a solution growth method and a solar cell prepared therefrom. In detail, a thin film solar cell using Cu (In, Ga) Se 2 (hereinafter referred to as “CIGS”) or Cu (In, Ga) (S, Se) 2 (hereinafter referred to as “CIGSS”) compound semiconductor as a light absorption layer The present invention relates to a method for manufacturing a buffer layer applied to a CGS (or 'CIGSS') solar cell. Until now, a cadmium sulfide thin film has been mainly used as a buffer layer. The present invention relates to a method for producing a x (OOH, S) y thin film using chemical bath deposition, and a solar cell having such a thin layer.
CIGS 박막 태양전지의 버퍼층으로 사용되는 기존의 카드뮴 대신 인듐 계열에 대한 선행기술은 아래와 같다.Prior art for the indium series instead of the conventional cadmium used as the buffer layer of the CIGS thin film solar cell is as follows.
그 첫 번째는 진공증발법에 의한 인듐 옥시설파이드(In2S3-xOx) 제조기술(프랑스 특허, 출원번호 9810603, 출원일 1998.08.21, 공고 번호 2782574, 공고일 2002.02.25)로, x 값은 0.15에서 0.35 사이로, 0.25에서 가장 우수한 태양전지 성 능을 낸다고 보고하고 있다. The first is the technology of manufacturing indium oxysulfide (In 2 S 3-x O x ) by vacuum evaporation method (French patent, application number 9810603, application date 1998.08.21, notification number 2782574, notification date 2002.02.25), x value Reported the best solar cell performance at 0.25, ranging from 0.15 to 0.35.
하지만 상기 기술은 고가의 진공장비를 필요로 하는 진공 증발법에 의한 것이고, 증착한 후 342℃ 산소 분위기에서 25-30 분 정도 후속 열처리가 필요하기 때문에, 제조원가 측면에서 불리하다는 단점이 있다.However, the technique is a vacuum evaporation method that requires expensive vacuum equipment, and after the deposition requires a heat treatment for about 25-30 minutes in an 342 ℃ oxygen atmosphere, there is a disadvantage in terms of manufacturing cost.
또한 다른 인듐계열 버퍼층으로는 원자층화학기상증착법(Atomic Layer Chemical Vapour Deposition)에 의한 인듐 설파이드 제조기술(Spiering, Thin Solid Films, 2003, Vol. 431-432, 359쪽)이다. 원자층화학기상증착법의 선구물질(Precursor)로 인듐 아세틸아세토네이트(Indium Acetylacetonate)와 황화수소(H2S)가 이용되었는데, 변환효율 15%에 근접하는 우수한 태양전지 성능을 보고하였다.Another indium buffer layer is an indium sulfide manufacturing technique (Spiering, Thin Solid Films, 2003, Vol. 431-432, 359) by Atomic Layer Chemical Vapor Deposition. Indium acetylacetonate and hydrogen sulfide (H 2 S) were used as precursors for atomic layer chemical vapor deposition, and reported excellent solar cell performances approaching 15% conversion efficiency.
하지만 상기 원자층화학기상증착법은 물질을 원자 수준으로 제어할 수 있어 성능이 매우 뛰어난 막질을 얻을 수 있으나 동일한 두께의 박막을 얻는데 소요되는 시간이 길고, 또한 장비 자체가 고가로 이 역시 저가 CIGS 박막 태양전지 기술로는 적합하지 않다는 단점이 있다.However, the atomic layer chemical vapor deposition method can control the material at the atomic level to obtain a very good film quality, but it takes a long time to obtain a thin film of the same thickness, and the equipment itself is expensive, which is also a low cost CIGS thin film solar The disadvantage is that it is not suitable for battery technology.
또한 저가 공정인 용액성장법으로는 인듐과 황의 소스로 인듐(III) 클로라이드와 치오아세타마이드를 이용한 하이드로옥사이드 설파이드 Inx(OH,S)y 제조기술(Hariskos, Solar Energy Materials and Solar Cells, 1996, Vol. 41/42, 345 참고)이 있다. 이 버퍼 층 박막을 CIGS 태양전지에 적용한 결과 15 %이상의 태양전지 변환효율을 보고하였다.In addition, the solution growth method, which is a low-cost process, is a technique for preparing hydroxide sulfide In x (OH, S) y using indium (III) chloride and thiacetamide as a source of indium and sulfur (Hariskos, Solar Energy Materials and Solar Cells, 1996 , Vol. 41/42, 345). The result of applying this buffer layer thin film to CIGS solar cell reported more than 15% of solar cell conversion efficiency.
하지만 상기 인듐 하이드로옥사이드 설파이드 박막을 버퍼층으로 적용하였을 경우, 일반적으로 초기 빛에 노출되면 효율이 떨어지는 라이트 소킹 효과가 발생하므로 이를 줄이기 위한 후속 열처리가 추가로 필요하게 된다는 단점이 있다. However, when the indium hydroxide sulfide thin film is applied as a buffer layer, there is a disadvantage in that a subsequent heat treatment to reduce the efficiency is required since the light soaking effect is generally lowered when exposed to initial light.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 저가 공정인 용액성장법으로 새로운 버퍼층 물질인 인듐 옥시하이드로옥사이드 설파이드 박막을 수십 나노미터 두께로 제조하는 방법을 제공하는데 있다.An object of the present invention for solving the above problems is to provide a method for manufacturing a new buffer layer material indium oxyhydrooxide sulfide thin film to a thickness of several tens of nanometers by a solution growth method which is a low-cost process.
또한 상기 방법을 이용하여 CIGS(또는 'CIGSS') 박막 태양전지에 적용하여 단파장 영역에서의 광투과도를 높이고, 태양전지의 직렬 저항을 낮추고, 또한 이 버퍼층과 여타 박막간의 계면성질을 향상시켜 값싸고 효율 높은 태양전지를 제공하는데 있다.
In addition, this method can be applied to CIGS (or 'CIGSS') thin film solar cells to increase the light transmittance in the short wavelength region, to reduce the series resistance of the solar cells, and to improve the interfacial properties between the buffer layer and other thin films. It is to provide an efficient solar cell.
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 CIGS(또는 'CIGSS') 화합물반도체를 광흡수층으로 하는 박막 태양전지에서 기존의 카드뮴 설파이드 대신 버퍼층으로 사용될 수 있는 새로운 물질인 인듐 옥시하이드로옥사이드 설파이드 박막을 용액성장법으로 제조한다. The present invention to achieve the object as described above and to solve the conventional drawbacks can be used as a buffer layer instead of the conventional cadmium sulfide in a thin film solar cell using a CIGS (or 'CIGSS') compound semiconductor as the light absorption layer A new material, indium oxyhydrooxide sulfide thin film is prepared by the solution growth method.
용액성장법에서는 인듐의 소스로 인듐클로라이드(InCl3)를, 황의 소스로 치오아세타마이드(CH3CSNH2)를 사용하여 수용액을 만든 뒤 반응용기에 넣고, 반응용기 내의 온도, 용액의 수소이온농도(pH) 및 용액 내 유지 시간을 조절하여 인듐 옥시하이드로옥사이드 설파이드 박막을 성장시킨다. In the solution growth method, an aqueous solution is prepared by using indium chloride (InCl 3 ) as a source of indium and thiacetamide (CH 3 CSNH 2 ) as a source of sulfur, and then put into an reaction vessel. The temperature in the reaction vessel and the hydrogen ion of the solution The indium oxyhydrooxide sulfide thin film is grown by adjusting the concentration (pH) and the retention time in solution.
CIGS(또는 'CIGSS') 박막 태양전지를 제조하기 위해서는 일반적으로 인듐 옥시하이드로옥사이드 설파이드 박막을 몰리브데늄(Mo)/CIGS(또는 'CIGSS') 구조를 가지는 기판위에 성장시키고, 그 위에 스퍼터링 방법으로 투명전도막으로 사용될 산화아연(ZnO)을 증착하고, 전면 전극으로 알루미늄 박막을 진공증발법으로 순차적으로 쌓는다. In order to manufacture a CIGS (or 'CIGSS') thin film solar cell, an indium oxyhydrooxide sulfide thin film is generally grown on a substrate having a molybdenum (Mo) / CIGS (or 'CIGSS') structure and sputtered thereon. Zinc oxide (ZnO) to be used as a transparent conductive film is deposited, and an aluminum thin film is sequentially stacked by a vacuum evaporation method as a front electrode.
용액성장법에서 사용할 용액은 인듐 클로라이드와 치오아세타마이드를 반응용기 내에서 아세트산을 첨가하여 만드는데, 이때 적정 수소이온농도(pH)를 2.2 - 3.0으로 조절한다.The solution to be used in the solution growth method is made of indium chloride and thiacetamide by adding acetic acid in the reaction vessel, where the proper pH is adjusted to 2.2-3.0.
반응용기는 항온조를 사용하여 중탕 방법으로 반응용기 내의 용액의 온도를 13분 동안 68℃까지 올리고, 이 후 기판을 용액 내에서 5~30 분까지 유지하면서 박막을 성장(증착)시킨다.The reaction vessel uses a thermostatic bath to raise the temperature of the solution in the reaction vessel to 68 ° C. for 13 minutes and then grows (deposits) the thin film while maintaining the substrate in the solution for 5-30 minutes.
이 때 용액의 수소이온농도(pH)가 2.2 보다 낮게 되면, 인듐 옥시하이드로옥사이드와 인듐 설파이드의 생성이 늦어지고 증착되는 입자들의 크기도 커지기 때문에 박막은 매우 거친 표면을 나타낸다. 그 반대로 수소이온농도(pH)가 3.0 보다 높을 시에는 반응 속도가 너무 빨라져서 박막 제조의 재현성이 떨어진다. At this time, when the pH of the solution is lower than 2.2, the thin film shows a very rough surface because the formation of indium oxyhydrooxide and indium sulfide is delayed and the size of the deposited particles is also increased. On the contrary, when the hydrogen ion concentration (pH) is higher than 3.0, the reaction rate is so fast that the reproducibility of thin film production is poor.
용액의 온도 역시 반응 속도를 조절하는 매우 중요한 요소이다. 증착 시간에 따라서도 표면 특성이 매우 달라진다. 증착시간이 필요이상으로 길어지면(30분 보다 클 경우) 두께가 두꺼워질 뿐만 아니라 다공성의 망 구조가 되는데, 이는 태양전지의 재결합 전류밀도를 증가시키므로 바람직하지 못하다. 또한 5분 이하가 되면 광흡수층인 GIGS(또는 'GIGSS')층을 인듐 옥시하이드로옥사이드 설파이드 박막으로 완전히 덮을 수 없기 때문에, 태양전지 제조 후 재결합 전류 밀도의 증가로 광전압 특성에 악영향을 미치게 된다. 따라서 수십 나노미터의 얇으면서도 균일한 두께의 깨끗한 인듐 옥시하이드로옥사이드 설파이드 박막을 얻기 위해서는 증착 시간의 제어가 필수적이다.The temperature of the solution is also a very important factor in controlling the reaction rate. The surface properties are also very dependent on the deposition time. If the deposition time is longer than necessary (greater than 30 minutes), the thickness becomes thick as well as the porous network structure, which is undesirable because it increases the recombination current density of the solar cell. In addition, since the GIGS (or 'GIGSS') layer, which is less than 5 minutes, cannot be completely covered with an indium oxyhydrooxide sulfide thin film, the photovoltaic characteristics are adversely affected by the increase in recombination current density after solar cell manufacturing. Therefore, control of deposition time is essential for obtaining a thin, uniform thickness of clean indium oxyhydrooxide sulfide thin film of several tens of nanometers.
이하 본 발명의 실시예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다.Hereinafter, the configuration and the operation of the embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 용액 성장법을 이용하여 인듐 이온의 소스인 인듐(III) 클로라이드(InCl3)와 황의 소스인 치오아세타마이드(CH3CSNH2)를 이용하여 수용액을 만든 뒤 온도를 68℃로 올려 코닝 유리에 증착한 인듐 옥시하이드로옥사이드 설파이드 박막의 엑스선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS)을 이용한 스펙 트럼들이다. 이 분석을 통하여 인듐 옥시하이드로옥사이드 설파이드 박막의 화학적 구성을 알 수 있으며, 박막내에 인듐 하이드로 옥사이드In(OH)3가 존재하지 않음을 알 수 있다.FIG. 1 shows an aqueous solution using indium (III) chloride (InCl 3 ), which is a source of indium ions, and thiacetamide (CH 3 CSNH 2 ), which is a source of sulfur, using a solution growth method. Spectra using X-ray photoelectron spectroscopy (XPS) of indium oxyhydrooxide sulfide thin films deposited on Corning glass. This analysis shows the chemical composition of the indium oxyhydrooxide sulfide thin film, and it can be seen that there is no indium hydrooxide In (OH) 3 in the thin film.
보다 자세하게 설명하면 상기 방법으로 20분간 증착한 박막을 엑스선 광전자 분광법으로 화학적 결합 구조를 관찰한 것으로, 증착된 박막에는 인듐, 산소, 황의 피크가 관찰되었다. 인듐의 In 3d5/2(가), 산소의 O 1s(다), 황의 S 2p(라) 피크들은 각각 445.2 eV, 531.7 eV 및 161.8 eV에 위치하며, 이는 박막 내에 인듐 옥사이드(In2O3), 인듐 하이드로 옥사이드In(OH)3, 혹은 인듐 설파이드(In2 S3)가 존재 가능성을 의미한다. 그러나 인듐의 오제 피크인 In MNN(나)에서 In2S3의 존재는 확인되나 인듐 옥사이드와 인듐 하이드로옥사이드의 존재는 확인되지 않았다. 박막은 인듐 설파이드 외에 산소와 결합하고 있는 인듐 화합물로 구성되어 있음을 확인하였다. In more detail, the chemically bonded structure of the thin film deposited by the above method for 20 minutes was observed by X-ray photoelectron spectroscopy, and peaks of indium, oxygen, and sulfur were observed in the deposited thin film. In 3d 5/2 (a) of indium, O 1s (a) of oxygen, and S 2p (d) of sulfur are located at 445.2 eV, 531.7 eV, and 161.8 eV, respectively, which represent indium oxide (In 2 O 3) in the thin film. ), Indium hydrooxide In (OH) 3 , or indium sulfide (In 2 S 3 ) is possible. However, the presence of In 2 S 3 was confirmed in In MNN (B), which is the Auger peak of indium, but the presence of indium oxide and indium hydroxide was not confirmed. It was confirmed that the thin film was composed of an indium compound bonded to oxygen in addition to indium sulfide.
도 2는 기판 위에 증착된 도 1의 인듐 옥시하이드로옥사이드 설파이드 박막의 엑스선 회절(X-ray Diffraction; XRD) 패턴이다. 박막은 인듐 옥시하이드로옥사이드와 인듐 설파이드로 이루어짐을 알 수 있다. 도면중 (가)는 코닝 유리기판, (나)는 CIGS 기판이다.FIG. 2 is an X-ray diffraction (XRD) pattern of the indium oxyhydrooxide sulfide thin film of FIG. 1 deposited on a substrate. FIG. It can be seen that the thin film consists of indium oxyhydrooxide and indium sulfide. In the figure, (a) is a Corning glass substrate, and (b) is a CIGS substrate.
도 3은 증착된 인듐 옥시하이드로옥사이드 설파이드 박막을 500℃에서 4 시 간 동안 열처리를 해서 얻은 인듐 옥사이드 설파이드In(O,S) 박막이다. 3 is an indium oxide sulfide In (O, S) thin film obtained by heat-treating the deposited indium oxyhydrooxide sulfide thin film at 500 ° C. for 4 hours.
도 4는 코닝 유리기판 위에 증착된 도 1의 인듐 옥시하이드로옥사이드 설파이드 박막의 단면과 표면의 주사 현미경 사진이다. 증착시간에 따른 두께와 표면 구조의 변화를 보여준다. 도면 중 (가)(나)는 15 분 증착한 것이고, (다)(라)는 20분 증착한 것이고, (마)(바)는 30분 증착한 것이다.4 is a scanning micrograph of the cross section and surface of the indium oxyhydrooxide sulfide thin film of FIG. 1 deposited on a Corning glass substrate. The thickness and surface structure change with deposition time is shown. In the figure, (a) and (b) are deposited for 15 minutes, (c) and (d) are deposited for 20 minutes, and (e) and (b) are deposited for 30 minutes.
이러한 증착 시간에 따른 인듐 옥시하이드로옥사이드 설파이드 박막의 표면 구조를 나타 낸 것으로 증착시간 20 분 이하일 경우 박막은 10~20 nm 크기의 입자들로 이루어진 구조를 보여주고, 증착시간이 30 분 이상일 경우 박막은 스펀지 형태의 망목 구조를 나타낸다. It shows the surface structure of the indium oxyhydrooxide sulfide thin film according to the deposition time. When the deposition time is 20 minutes or less, the thin film shows the structure of particles having a size of 10-20 nm, and when the deposition time is 30 minutes or more, the thin film is Sponge-shaped mesh structure is shown.
도 5는 CIGS 박막 위에 증착된 인듐 옥시하이드로옥사이드 설파이드 박막의 표면 주사 현미경 사진이다. 증착 시간에 따른 표면 구조의 변화를 보여준다. 도면중 (가)는 20 분 증착한 것이고, (나)는 25분 증착한 것이다.5 is a surface scanning micrograph of an indium oxyhydrooxide sulfide thin film deposited on a CIGS thin film. The change in surface structure with time of deposition is shown. In the figure, (a) is deposited for 20 minutes, and (b) is deposited for 25 minutes.
도 6은 코닝 유리기판 위에 증착된 도 1의 인듐 옥시하이드로옥사이드 설파이드와 기존의 카드뮴 설파이드 박막의 광투과도를 비교하였다. 단파장 영역에서 인듐 옥시하이드로옥사이드 설파이드 박막이 카드뮴 설파이드 박막보다 더 두꺼움에도 불구하고, 특히 단파장 영역에서 우수한 광투과도를 보여준다. FIG. 6 compares the light transmittance of the indium oxyhydrooxide sulfide of FIG. 1 deposited on a Corning glass substrate with a conventional cadmium sulfide thin film. Although the indium oxyhydrooxide sulfide thin film in the short wavelength region is thicker than the cadmium sulfide thin film, it exhibits excellent light transmittance especially in the short wavelength region.
도 7은 도 1의 인듐 옥시하이드로옥사이드 설파이드 박막을 사용하여 CIGS 박막 태양전지를 제조하는 과정을 보여주는데 단계별로 설명하자면, FIG. 7 illustrates a process of manufacturing a CIGS thin film solar cell using the indium oxyhydrooxide sulfide thin film of FIG. 1.
(가). 소다라임 유리에 스퍼터링 방법을 이용하여 몰리브데늄(Mo) 증착단계와; (나). 진공 증발법 혹은 스퍼터링 방법을 이용하여 CIGS 혹은 CIGSS 증착단계와; (다). 용액 성장법을 이용하여 인듐 옥시하이드로옥사이드 설파이드 증착단계와; (라). 스퍼터링 혹은 금속 유기물 화학기상증착법을 이용하여 산화아연 증착단계와; (마). 진공증발법을 이용한 알루미늄 전면 전극 제작 및 전극 와이어링 단계로 이루어진다.(end). Depositing molybdenum (Mo) on soda-lime glass using a sputtering method; (I). CIGS or CIGSS deposition using vacuum evaporation or sputtering; (All). Indium oxyhydrooxide sulfide deposition using a solution growth method; (la). Zinc oxide deposition using sputtering or metal organic chemical vapor deposition; (hemp). Aluminum front electrode manufacturing and electrode wiring step using vacuum evaporation method.
미설명 부호 1은 소다라임 유리, 2는 스퍼터링 방법으로 증착된 몰리브데늄, 3은 진공 증발법으로 증착된 GIGS 박막 혹은 스퍼터링으로 증착된 GIGSS 박막, 4는 용액성장법으로 증착한 인듐 옥시하이드로옥사이드 설파이드 박막, 5는 스퍼터링 혹은 금속 유기물 화학기상증착법으로 증착된 산화 아연, 6은 진공증발법을 이용한 알루미늄 전면 전극이다.
도 8은 본 발명에서 개발된 인듐 옥시하이드로옥사이드 설파이드 박막을 버퍼 층으로 적용한 CIGS 태양전지의 광상태의 전류밀도-전압 곡선이다. CIGS 태양전지의 경우 효율 10.0 %, 단락 전류 32.1 mA/cm2, 개방 전압 560 mV, 및 충실도 55 %를 얻을 수 있었으며, CIGSS 태양전지의 경우 효율 12.55 %, 단락 전류 33.17 mA/cm2, 개방 전압 574 mV, 및 충실도 65.89 %를 얻을 수 있었다. 8 is a current density-voltage curve of an optical state of a CIGS solar cell using the indium oxyhydrooxide sulfide thin film developed in the present invention as a buffer layer. For CIGS solar cells, efficiency 10.0%, short circuit current 32.1 mA / cm 2 , open voltage 560 mV, and fidelity 55% were obtained. For CIGSS solar cells, efficiency 12.55%, short circuit current 33.17 mA / cm2, open voltage 574. mV, and fidelity 65.89%.
이하 본 발명의 바랍직한 실시예이다.The following is a preferred embodiment of the present invention.
<실시예 1><Example 1>
반응용기에 0.03 M의 인듐 클로라이드와 0.1 M의 치오아세타마이드 용액을 혼합하고, 여기에 아세트산을 첨가하여 용액의 수소이온농도(pH)를 약 2.0에 맞추었다. 이 반응용기를 항온조에 넣은 후 중탕 방법을 이용하여 용액의 온도를 올렸다. 기판으로 사용될 유리나 몰리브데늄/CIGS 기판은 용액 온도가 24 ℃에 도달하였을 때 투입하였으며, 13분 동안 온도를 올려 68 ℃에 도달시킨 후 15, 20 및 30분 동안 유지하여 박막을 증착하였다. 15 분 동안 증착했을 경우 32.2 nm 두께의 인듐 옥시하이드로옥사이드 설파이드 박막을 얻었다. 증착시간이 20분의 경우 태양전지의 버퍼층으로 바람직한 두께인 43nm를 얻을 수 있었다. 증착시간이 증가함에 따라 두께는 증가하는데, 30분 증착했을 경우 146nm 두께의 박막을 얻을 수 있었다. 0.03 M of indium chloride and 0.1 M of thiacetamide solution were mixed in the reaction vessel, and acetic acid was added thereto to adjust the hydrogen ion concentration (pH) of the solution to about 2.0. The reaction vessel was placed in a thermostat and the temperature of the solution was raised using a bath. Glass or molybdenum / CIGS substrate to be used as a substrate was added when the solution temperature reached 24 ℃, the temperature was raised for 13 minutes to reach 68 ℃ and then maintained for 15, 20 and 30 minutes to deposit a thin film. When deposited for 15 minutes, an indium oxyhydrooxide sulfide thin film having a thickness of 32.2 nm was obtained. When the deposition time was 20 minutes, 43 nm, which is a preferable thickness, was obtained as the buffer layer of the solar cell. As the deposition time increases, the thickness increases, and when the film is deposited for 30 minutes, a thin film having a thickness of 146 nm can be obtained.
<실시예 2><Example 2>
실시예 1과 동일한 방법으로 증착 과정을 반복하여 두꺼운 막을 얻었다. 도 2는 엑스선 회절 분석 결과로 박막에는 인듐 옥시하이드로옥사이드와 인듐 설파이드가 같이 존재하고 있음을 나태나고 있다. The deposition process was repeated in the same manner as in Example 1 to obtain a thick film. 2 shows that indium oxyhydrooxide and indium sulfide coexist in the thin film as a result of X-ray diffraction analysis.
<실시예 3><Example 3>
도 3은 코닝 유리 기판위에 실시예 1과 동일한 방법으로 인듐 옥시하이드로 옥사이드 설파이드 박막을 증착한 후 500℃ 질소 분위기에서 4시간 동안 열처리를 실시한 후의 엑스선회절 분석결과이다. 실시예 2에서 알려진 인듐 설파이드 외에 인듐 옥사이드(In2O3 JCPDS 65-3170)가 형성되어 있다. 이는 인듐 옥시하이드로옥사이드 상이 탈수되어 나타난 상으로, 열처리 전 박막 내 인듐 옥시하이드로옥사이드가 존재함을 알려주는 또 하나의 증거이다. FIG. 3 is an X-ray diffraction analysis result after depositing an indium oxyhydrooxide sulfide thin film on a Corning glass substrate in the same manner as Example 1 and performing heat treatment for 4 hours at 500 ° C. in a nitrogen atmosphere. Indium oxide (In 2 O 3 JCPDS 65-3170) is formed in addition to the indium sulfide known in Example 2. This is a phase in which the indium oxyhydrooxide phase is dehydrated, which is another evidence of the presence of indium oxyhydrooxide in the thin film before heat treatment.
<실시예 4><Example 4>
도 8은 실시예 1과 동일한 방법으로 도 7의 제조과정에 따라 두께 40nm로 인듐 옥시하이드로옥사이드 설파이드 박막을 몰리브데늄/CIGS 기판위에 성장시키고, 이후 투명전극과 전면전극을 적층하여 태양전지를 제조하고 그 전류-전압 곡선을 측정한 것이다. FIG. 8 is a method of manufacturing a solar cell by growing an indium oxyhydrooxide sulfide thin film having a thickness of 40 nm on a molybdenum / CIGS substrate in the same manner as in Example 1, and then stacking a transparent electrode and a front electrode. The current-voltage curve is measured.
CIGS 광흡수층 박막은 몰리브데늄이 코팅된 소다라임 유리 기판위에 동시진공 증발법으로 제조하였다. The CIGS light absorbing layer thin film was prepared by co-vacuum evaporation on a molybdenum-coated soda-lime glass substrate.
투명전극으로 i 타입과 n 타입의 산화아연 박막을 스퍼터링 방법으로 제조하였고, 전면 전극용으로 알루미늄 박막을 전자빔 진공 증발법으로 제조하여 태양전지를 완성하였다. The i-type and n-type zinc oxide thin films were prepared by the sputtering method as the transparent electrode, and the aluminum thin film was prepared by the electron beam vacuum evaporation method for the front electrode to complete the solar cell.
AM 1.5의 빛 분포 및 강도에서 측정 결과, 10%의 태양전지 변환 효율을 얻었다. As a result of measuring light distribution and intensity of AM 1.5, a solar cell conversion efficiency of 10% was obtained.
동일한 방법으로 CIGS 대신 CIGSS를 광흡수층으로 사용하여 12.55 %의 변환 효율을 얻었다.In the same way, conversion efficiency of 12.55% was obtained using CIGSS as light absorption layer instead of CIGS.
본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다. The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.
상기와 같은 본 발명은 CIGS(또는 'CIGSS') 화합물반도체를 광흡수층으로 하는 박막 태양전지에서 카드뮴 독성 문제를 야기할 수 있는 기존의 카드뮴 설파이드 대신 새로운 버퍼층으로 사용될 수 있는 인듐 옥시하이드로옥사이드 설파이드 박막을 용액성장법으로 제조할 수 있어서, 이 물질을 버퍼층으로 사용하면 단파장 영역의 광투과도를 향상시킬 수 있고, 태양전지의 직렬 저항을 낮추고, 또한 이 버퍼 층과 여타 박막간의 계면 성질을 향상시켜 값싸고 효율 높은 태양전지를 제조할 수 있다는 장점이 있다. As described above, the present invention provides an indium oxyhydrooxide sulfide thin film which can be used as a new buffer layer instead of the existing cadmium sulfide which may cause cadmium toxicity problem in a thin film solar cell using a CIGS (or 'CIGSS') compound semiconductor as a light absorbing layer. It can be manufactured by the solution growth method, and the use of this material as a buffer layer can improve the light transmittance in the short wavelength region, lower the series resistance of the solar cell, and improve the interfacial properties between the buffer layer and other thin films, which is inexpensive. An advantage is that an efficient solar cell can be manufactured.
또한 본 발명은 대량 저가 대량생산이 가능한 공정인 용액성장법으로 제조한 인듐 옥시하이드로옥사이드 설파이드 박막은 추후 고온 열처리가 불필요하다는 장점이 있다.In addition, the present invention has the advantage that the indium oxyhydrooxide sulfide thin film manufactured by the solution growth method, which is a process capable of mass production at low cost, does not need high temperature heat treatment later.
또한 본 발명은 용액의 조성, 수소이온농도(pH), 반응시간의 조절로 두께를 나노미터 수준으로 제어할 수 있고, 또한 균일도가 매우 높은 박막의 성장이 가능하다는 장점을 가진 유용한 발명으로 산업상 그 이용이 크게 기대되는 발명인 것이다. In addition, the present invention is a useful invention that has the advantage of controlling the composition of the solution, hydrogen ion concentration (pH), the reaction time to the thickness of the nanometer level, and the growth of very high uniformity thin film is possible industrially It is an invention that the use is expected greatly.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040085236A KR100625082B1 (en) | 2004-10-25 | 2004-10-25 | Fabrication of InxOOH,Sy Buffer Layer by Chemical Bath Deposition for CuIn,GaSe2 or CuIn,GaS,Se2 Thin Film Solar Cells and Solar Cells manufactured by thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040085236A KR100625082B1 (en) | 2004-10-25 | 2004-10-25 | Fabrication of InxOOH,Sy Buffer Layer by Chemical Bath Deposition for CuIn,GaSe2 or CuIn,GaS,Se2 Thin Film Solar Cells and Solar Cells manufactured by thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060036190A KR20060036190A (en) | 2006-04-28 |
KR100625082B1 true KR100625082B1 (en) | 2006-09-20 |
Family
ID=37144454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040085236A KR100625082B1 (en) | 2004-10-25 | 2004-10-25 | Fabrication of InxOOH,Sy Buffer Layer by Chemical Bath Deposition for CuIn,GaSe2 or CuIn,GaS,Se2 Thin Film Solar Cells and Solar Cells manufactured by thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100625082B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160046092A (en) | 2014-10-20 | 2016-04-28 | 영남대학교 산학협력단 | Solar cell and method of fabricating the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100894216B1 (en) * | 2007-06-12 | 2009-04-22 | 경북대학교 산학협력단 | CulnS2 Absorber Layer of Thin Film Solar Cell and Manufacture Method Thereof |
KR101032890B1 (en) * | 2009-02-04 | 2011-05-06 | 한국에너지기술연구원 | Manufacturing Method of Buffer-layer for CIS-based Thin film Solar Cell |
DE102011004652A1 (en) | 2010-02-26 | 2011-09-01 | Electronics And Telecommunications Research Institute | A method for producing a light-absorbing thin film layer and a method using the same for producing a thin-film solar cell |
CN103078013B (en) * | 2013-01-29 | 2015-05-20 | 上海交通大学 | Method for preparing bismuth vanadate/bismuth ferrite heterojunction film solar cells |
KR101484156B1 (en) * | 2013-05-09 | 2015-01-28 | 한국과학기술원 | Process of preparing tin-doped indium sulfide thin film |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990078222A (en) * | 1998-03-24 | 1999-10-25 | 모리시타 요이찌 | Semiconductor thin film, method of manufacturing the same, and solar cell using the same |
JP2000114561A (en) | 1998-10-09 | 2000-04-21 | Agency Of Ind Science & Technol | Manufacture of solar cell thin film |
-
2004
- 2004-10-25 KR KR1020040085236A patent/KR100625082B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990078222A (en) * | 1998-03-24 | 1999-10-25 | 모리시타 요이찌 | Semiconductor thin film, method of manufacturing the same, and solar cell using the same |
JP2000114561A (en) | 1998-10-09 | 2000-04-21 | Agency Of Ind Science & Technol | Manufacture of solar cell thin film |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160046092A (en) | 2014-10-20 | 2016-04-28 | 영남대학교 산학협력단 | Solar cell and method of fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
KR20060036190A (en) | 2006-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0956600B1 (en) | PREPARATION OF Cu x In y Ga z Se n (x=0-2, y=0-2, z=0-2, n=0-3) PRECURSOR FILMS BY ELECTRODEPOSITION FOR FABRICATING HIGH EFFICIENCY SOLAR CELLS | |
KR101004452B1 (en) | Group i-?-? quaternary or higher alloy semiconductor films | |
US8012546B2 (en) | Method and apparatus for producing semiconductor films and related devices | |
KR100810730B1 (en) | Manufacturing method of the optical absorber layer for solar cells | |
JP5956397B2 (en) | Copper / indium / gallium / selenium (CIGS) or copper / zinc / tin / sulfur (CZTS) thin film solar cell and method of manufacturing the same | |
KR20150142094A (en) | Solar cell comprising multiple buffer layer formed by atomic layer deposition and method of fabricating the same | |
JP2010530474A (en) | Method for producing I-III-VI2 compound thin film by a single metalorganic chemical vapor deposition process | |
KR100495924B1 (en) | Method of manufacturing absorber layers for solar cell | |
KR101542343B1 (en) | Thin film solar cell and method of fabricating the same | |
KR102070852B1 (en) | CZTS solar cell and method of preparing thereof | |
KR100625082B1 (en) | Fabrication of InxOOH,Sy Buffer Layer by Chemical Bath Deposition for CuIn,GaSe2 or CuIn,GaS,Se2 Thin Film Solar Cells and Solar Cells manufactured by thereof | |
KR20180034274A (en) | CZTS-based thin film solar cell comprising silver and method the same | |
EP2702615B1 (en) | Method of preparing a solar cell | |
Zhang et al. | Fabrication of Zn (O, S) thin films by ozone assisted photochemical deposition and its potential applications as buffer layers in kesterite-based thin film solar cells | |
KR101484156B1 (en) | Process of preparing tin-doped indium sulfide thin film | |
US8119513B1 (en) | Method for making cadmium sulfide layer | |
KR102057234B1 (en) | Preparation of CIGS thin film solar cell and CIGS thin film solar cell using the same | |
KR101835580B1 (en) | Prepration method of CZTS or CZTSe thin film solar cell using co-evaporation and solar cell prepared by the same | |
KR102554332B1 (en) | Method of control for ZnS(e) phase in CZTS solar cell and manufacturing method of thin film solar cell light absorber | |
KR102517540B1 (en) | Manufacturing method of thin film solar cell light absorber | |
Gundogan et al. | The Effect of Ar Gas Flow Rate on Structure and Optical Properties of Magnetron Sputtered Sb 2 Se 3 Thin Films for Solar Cells | |
KR102212042B1 (en) | Solar cell comprising buffer layer formed by atomic layer deposition and method of fabricating the same | |
CN108831934A (en) | A kind of CIGS solar battery and preparation method thereof with no Cd buffer layer | |
KR102573517B1 (en) | Manufacturing method of thin film solar cell light absorber | |
KR101978110B1 (en) | Manufacturing method of compound light absorbing layer and manufacturing method of solar cellcomprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120912 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20130911 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150305 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20150910 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20160912 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20171020 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20180702 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20190903 Year of fee payment: 14 |