KR100611498B1 - Cu added High manganese austenitic stainless steel - Google Patents

Cu added High manganese austenitic stainless steel Download PDF

Info

Publication number
KR100611498B1
KR100611498B1 KR1020040114608A KR20040114608A KR100611498B1 KR 100611498 B1 KR100611498 B1 KR 100611498B1 KR 1020040114608 A KR1020040114608 A KR 1020040114608A KR 20040114608 A KR20040114608 A KR 20040114608A KR 100611498 B1 KR100611498 B1 KR 100611498B1
Authority
KR
South Korea
Prior art keywords
less
stainless steel
austenitic stainless
high manganese
hot workability
Prior art date
Application number
KR1020040114608A
Other languages
Korean (ko)
Other versions
KR20060075727A (en
Inventor
이종석
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020040114608A priority Critical patent/KR100611498B1/en
Publication of KR20060075727A publication Critical patent/KR20060075727A/en
Application granted granted Critical
Publication of KR100611498B1 publication Critical patent/KR100611498B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Abstract

본 발명은 오스테나이트계 스테인리스강에 관한 것으로서, 중량%로 C: 0.15%이하, Si: 1.0% 이하, Mn: 7~10%, S:0.01% 이하, Ni: 4.0% 이하, Cr: 14.0~20.0%, N: 0.30% 이하, Cu: 3.0% 이하, B: 0.005% 이하, Ca: 0.005% 이하를 함유하고 기타 Fe 및 불가피한 원소로 이루어지며, 상기 범위에서 52.9933 + 1.37513 X B + 0.298097 X Ca + 1.51623 X Cu - 0.0187413 X B X B - 4.98177 X Cu X Cu 의 수식으로 계산된 단면적감소율이 900℃에서 60% 이상이 되도록 조성함으로써 우수한 열간 가공성을 갖도록 하는 것을 특징으로 한다.TECHNICAL FIELD The present invention relates to austenitic stainless steels, wherein, in weight%, C: 0.15% or less, Si: 1.0% or less, Mn: 7-10%, S: 0.01% or less, Ni: 4.0% or less, Cr: 14.0 ~ Consists of 20.0%, N: 0.30% or less, Cu: 3.0% or less, B: 0.005% or less, Ca: 0.005% or less and other Fe and inevitable elements, in the range of 52.9933 + 1.37513 XB + 0.298097 X Ca + 1.51623 X Cu-0.0187413 XBXB-4.98177 It is characterized by having a good hot workability by the composition so that the cross-sectional area reduction rate calculated by the formula of X Cu X Cu is 60% or more at 900 ℃.

스테인리스, 고망간, 열간 가공성 Stainless steel, high manganese, hot workability

Description

구리 첨가 고망간 오스테나이트계 스테인리스강{Cu added High manganese austenitic stainless steel} Copper added high manganese austenitic stainless steel             

도 1은 900℃에서의 단면적 감소율의 실측값과 예측값의 비교 그래프도.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing a comparison between actual values and predicted values of a cross-sectional area reduction rate at 900 ° C.

본 발명은 자동차 강판용, 건축 장식용, 주방용 등에 범용으로 사용되는 스테인리스강에 관한 것이고, 더 상세하게는 오스테나이트 상을 안정화시키고 냉간 가공성을 향상시키기 위하여 Cu를 첨가할 경우에도 우수한 열간 가공성을 확보하는 고망간 오스테나이트계 스테인리스강에 관한 것이다.The present invention relates to a stainless steel that is used in general for automotive steel plates, architectural decoration, kitchenware, etc. More specifically, even when Cu is added to stabilize the austenite phase and improve cold workability, high hot workability is ensured. A manganese austenitic stainless steel.

가장 널리 사용되는 오스테나이트계 스테인리스강으로는 가공성과 내식성이 우수한 304강이 대표적이다. 그러나 304강은 8% 이상의 Ni을 함유하고 있기 때문에 가격이 비싸다는 단점이 있다. 이러한 단점을 해소하기 위하여 고가의 Ni을 저가의 합금원소로 대체하려는 시도가 이루어져 Ni의 일부를 Mn이나 N로 대체한 강종, 예를 들어 201강, 202강 및 204강 등으로 규격화 되어 있다. 이러한 강종은 Ni을 Mn이나 N로 대체함으로서 비자성이면서 고강도를 얻기 쉬운 장점이 있으나, Mn은 Ni에 비교하여 성형성과 내식성을 저하시키고 또한 N에 의한 성형성이 저하되어 304강에 비교하여 사용 용도에 한정되는 문제점이 있다. Cu를 첨가하여 Mn 및 N 함량이 높은 오스테나이트계 스테인리스강의 성형성을 개선하는데 Cu의 첨가는 열간 가공성을 저하해서 열간 압연 조업 시 결함을 발생시키는 등의 문제점이 있다.The most widely used austenitic stainless steel is 304 steel, which has excellent workability and corrosion resistance. However, the 304 steel is expensive because it contains more than 8% Ni. In order to solve this disadvantage, an attempt has been made to replace expensive Ni with an inexpensive alloy element, and has been standardized to steel grades, such as 201 steel, 202 steel, and 204 steel, in which a part of Ni is replaced with Mn or N. These steels have the advantage of being nonmagnetic and easy to obtain high strength by replacing Ni with Mn or N. However, Mn has a deterioration in formability and corrosion resistance compared to Ni, and also deteriorates formability by N. There is a problem limited to. The addition of Cu improves the formability of the austenitic stainless steel having a high Mn and N content, but the addition of Cu lowers the hot workability and causes defects in hot rolling operations.

본 발명은 상기된 바와 같은 종래의 문제점을 해결하기 위하여 제안된 것으로 열간 및 냉간가공성이 우수한 Cu첨가 고망간 오스테나이트계 스테인리스강을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a Cu-added high manganese austenitic stainless steel having excellent hot and cold workability as proposed to solve the conventional problems as described above.

따라서 본 발명의 목적을 달성하기 위하여 중량%로 C: 0.15%이하, Si: 1.0% 이하, Mn: 7~10%, S:0.01% 이하, Ni: 4.0% 이하, Cr: 14.0~20.0%, N: 0.30% 이하, Cu: 3.0% 이하, B: 0.005% 이하, Ca: 0.005% 이하를 함유하고 기타 Fe 및 불가피한 원소로 이루어지며, 상기 범위에서 52.9933 + 1.37513 X B + 0.298097 X Ca + 1.51623 X Cu - 0.0187413 X B X B - 4.98177 X Cu X Cu 의 수식으로 계산된 단면적감소율이 900℃에서 60% 이상이 되도록 조성되는 것을 특징으로 하는 구리 첨가 고망간 오스테나이트계 스테인리스강을 제공하는 것을 특징으로 한다.Therefore, in order to achieve the object of the present invention by weight% C: 0.15% or less, Si: 1.0% or less, Mn: 7-10%, S: 0.01% or less, Ni: 4.0% or less, Cr: 14.0-20.0%, N: 0.30% or less, Cu: 3.0% or less, B: 0.005% or less, Ca: 0.005% or less and consist of other Fe and unavoidable elements, in the range of 52.9933 + 1.37513 XB + 0.298097 X Ca + 1.51623 X Cu -0.0187413 XBXB-4.98177 X Cu X It is characterized by providing a copper-added high manganese austenitic stainless steel, characterized in that the cross-sectional area reduction rate is calculated to be 60% or more at 900 ℃.

삭제delete

이하 본 발명은 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명자는 Cu첨가 고망간 오스테나이트계 스테인리스강의 합금 성분이 열간 가공성에 미치는 영향을 연구하면서, 열간 가공성의 대표지수라 할 수 있는 900℃에서의 단면적 감소율과 Cu, B 및 Ca의 상관 관계식을 도출하여, 성형성을 향상시키지만 열간 가공성을 저하하는 Cu 함량에 따라 열간 가공성을 향상시키는 B 및 Ca의 첨가량을 적정히 조정함으로서 열간가공성과 성형성을 개선할 수 있음을 밝혀 내었다. The present inventors studied the effect of the alloying component of Cu-added high manganese austenitic stainless steel on hot workability, and derived a correlation between the reduction of the cross-sectional area at 900 ° C. and Cu, B, and Ca, which is a representative index of hot workability. Therefore, it was found that the hot workability and the moldability can be improved by appropriately adjusting the addition amounts of B and Ca which improve the hot workability according to the Cu content which improves the formability but lowers the hot workability.

이하 본 발명의 특징을 작용과 함께 설명한다. 우선 본 발명에서 필수성분을 한정한 이유를 설명한다. Hereinafter, the features of the present invention will be described together with the functions. First, the reason for limiting the essential components in the present invention will be described.

C : 오스테나이트상 형성 원소이며 과다 첨가시 Cr과 반응하여 크롬탄화물을 생성 시키어 내식성을 저하시킴과 동시에 성형성과 연신율을 저하시키므로 200계 스테인리스강의 규격 범위인 0.15% 이하로 유지하는 것이 바람직하다. C: It is an austenite phase forming element. When excessively added, it reacts with Cr to form chromium carbide, which lowers corrosion resistance, and reduces moldability and elongation. Therefore, it is preferable to maintain it at 0.15% or less of the standard range of 200 stainless steel.

Si : 페라이트상의 생성을 조장하면서 열간 가공성을 저해하는 원소이므로, 가능한 한 소량으로 제한하는 것이 바람직하며 본 발명에서는 200계 스테인리스강의 규격 범위인 1% 이하로 제한한다.Si: Since it is an element that inhibits hot workability while promoting the formation of a ferrite phase, it is preferable to limit it to a small amount as much as possible, and in the present invention, it is limited to 1% or less, which is a standard range of 200-based stainless steel.

Mn : 오스테나이트상 안정화 원소로서 Ni를 대체하는 원소로서 오스테나이트상을 안정화 시키기 위해서 7% 이상이 첨가하며 10% 이상 과다하게 첨가되는 경우 내식성과 냉간가공성이 저하된다.Mn: An austenite-phase stabilizing element that replaces Ni as an element to replace the austenite phase to add 7% or more, when added in excess of 10% deterioration of corrosion resistance and cold workability.

S : 주원소 합금 내에 불가피하게 함유되는 원소로서 결정입계에 편석되어 열간압연시 가공크랙을 일으키는 이기 때문에 가능한 낮은 함량인 0.01% 이하로 제한한다.S: It is an element that is inevitably contained in the main element alloy, and segregates at the grain boundaries and causes processing cracks during hot rolling.

Ni : 망간과 마찬가지로 오스테나이트상을 안정화 한다. 그러나 니켈은 합금원소 중 매우 고가일 뿐 아니라 과다하게 첨가될 때 액상 중 질소의 고용도를 낮추어 기공을 발생시키므로 그 함량은 4% 이하로 제한한다.Ni: Stabilizes the austenite phase as well as manganese. However, nickel is very expensive among the alloying elements, and when added too much, it lowers the solubility of nitrogen in the liquid phase to generate pores, so the content is limited to 4% or less.

Cr : 부동태 피막형성을 촉진하며 동시에 질소의 고용도를 높이는 원소로서 전반적인 내식성을 확보하기 위하여 14% 이상의 첨가가 필요하다. 그러나 크롬이 과다한 경우는 응고 후 과다한 페라이트 상이 잔존하게 되어 열간가공성을 저하시킨다. 따라서 Cr의 첨가량은 14~18%로 제한한다.Cr: It is an element that promotes the formation of passivation film and at the same time increases the solubility of nitrogen. It is required to add more than 14% to secure the overall corrosion resistance. However, in the case of excessive chromium, excessive ferrite phase remains after solidification, thereby degrading hot workability. Therefore, the amount of Cr added is limited to 14-18%.

N : 오스테나이트상을 안정화 시켜 Ni을 대체하는 원소이다. 강도와 내공식성을 향상 시키는 이점은 있으나 첨가량이 0.3%를 넘으면 주조시 페라이트 상을 통과하는 경우 질소에 의한 기공이 발생될 수 있으므로 질소의 첨가량은 0.30% 이하로 제한한다. N: Element that replaces Ni by stabilizing austenite phase. There is an advantage in improving strength and pitting resistance, but if the amount exceeds 0.3%, the amount of nitrogen is limited to 0.30% or less because pores by nitrogen may be generated when passing through the ferrite phase during casting.

Cu : Ni 대체원소로서 오스테나이트 상을 안정화 시키고 Ni과 같이 강을 연질화 시키는 원소이나 과다 첨가시 내식성과 열간가공성이 저하되므로 3.0% 이하로 제한한다.Cu: Ni is an alternative element to stabilize the austenite phase and to soften steels such as Ni, or corrosion resistance and hot workability when excessive addition is limited to 3.0% or less.

B : 열간가공성을 향상시키는 강력한 미량 첨가원소이나, 과량 첨가되면 효과가 포화되거나 또는 편석에 의해 오히려 열간가공성을 저하시키므로 그 함량은 0.005% 이하로 한다.B: It is a powerful trace additive element that improves hot workability, but when it is added excessively, the effect is saturated or the segregation decreases hot workability. Therefore, the content is made 0.005% or less.

Ca : 열간가공성을 향상시키는 미량원소이나, 과량 첨가되면 개재물이 다량 생기어 연주시 노즐막힘 또는 개재물에 의한 표면결함이 발생하므로 0.005% 이하로 제한한다. Ca: A trace element that improves hot workability, but when it is added in an excessive amount, inclusions are generated in a large amount, so that the nozzle may be clogged or surface defects caused by inclusions are limited to 0.005% or less.

이하 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described.

하기 표1에는 Cr-Mn-N-Cu 오스테나이트계 스테인리스강을 제조하기 위해 사용되는 합금성분들을 나타내고 있다. 하기 표 1의 강종들은 Cu, B 및 Ca의 영향을 통계적으로 분석하기 위하여 반응표면 분석법의 중심복합설계을 사용하여 성분을 설계하였다. 하기 표 1에 나타난 성분을 갖는 스테인리스 용강을 잉고트(ingot)로 주조하고, 통상의 열연 공정으로 압연 후 지름 10mm의 열%) 그리고 미량성분 B, Ca을 주조하고 통상의 열간 압연을 통해 지름 10mm의 고온 인장 시편을 제작하여 1250℃에서 5분 유지 후 900℃로 냉각하여 5초 유지 후 초당 30의 인장률 속도(strain rate) 인장 파단 후 단면적 감소율(이하 RA : Reduction of Area)을 측정하여 표 2에 표기하였다. 측정 결과를 반응 표면 분석법으로 분석하여 구한 RA의 예측식 (RA = 52.9933 + 1.37513 X B + 0.298097 X Ca + 1.51623 X Cu - 0.0187413 X B X B - 4.98177 X Cu X Cu) 으로부터 계산한 RA의 예측치를 표 2에 함께 정리하였다. 예측식은 통계적으로 유의하며 설명력이 보정 R2 값 91.1%로 우수한 설명력을 나타냈다.Table 1 below shows the alloying components used to prepare Cr-Mn-N-Cu austenitic stainless steel. The steels of Table 1 were designed using the central complex design of response surface analysis to statistically analyze the effects of Cu, B and Ca. The molten stainless steel having the components shown in Table 1 below were cast into ingots, 10% of the diameter after the rolling in a conventional hot rolling process), and the minor components B and Ca were cast and the diameters of 10 mm were obtained through the usual hot rolling. After making high temperature tensile test specimen at 5 minutes at 1250 ℃ and cooling to 900 ℃ for 5 seconds, after 30 seconds, the rate of cross-sectional reduction after tensile failure (RA: Reduction of Area) was measured. It is shown in. The predicted value of RA calculated from the response surface analysis method (RA = 52.9933 + 1.37513 XB + 0.298097 X Ca + 1.51623 X Cu-0.0187413 XBXB-4.98177 X Cu X Cu) is calculated in Table 2 together. In summary. The predictive formula was statistically significant and the explanatory power was excellent with the corrected R 2 value of 91.1%.

발명재와 비교재의 합금성분표 (wt. %)Table of Alloying Components of Inventive Materials and Comparative Materials (wt.%) 강종Steel grade CC SiSi MnMn SS CrCr NiNi NN BB CaCa CuCu 비교재1Comparative Material 1 0.0500.050 0.510.51 9.019.01 0.00270.0027 15.0115.01 1.001.00 0.210.21 0.00270.0027 0.00210.0021 3.113.11 비교재2Comparative Material 2 0.0500.050 0.520.52 9.079.07 0.00240.0024 14.9914.99 1.001.00 0.210.21 0.00120.0012 0.00090.0009 2.542.54 비교재3Comparative Material 3 0.0510.051 0.530.53 9.069.06 0.00300.0030 14.9714.97 1.001.00 0.210.21 0.00110.0011 0.00280.0028 2.522.52 비교재4Comparative Material 4 0.0500.050 0.520.52 8.988.98 0.00200.0020 14.9714.97 1.001.00 0.200.20 0.00000.0000 0.00160.0016 1.611.61 비교재5Comparative Material 5 0.5100.510 0.520.52 9.049.04 0.00250.0025 14.9914.99 1.001.00 0.200.20 0.00430.0043 0.00080.0008 2.522.52 비교재6Comparative Material 6 0.0510.051 0.520.52 9.079.07 0.00310.0031 15.0115.01 0.990.99 0.210.21 0.00420.0042 0.00300.0030 2.502.50 발명재1Invention 1 0.0500.050 0.520.52 8.958.95 0.00220.0022 14.9914.99 0.990.99 0.200.20 0.00260.0026 0.00000.0000 1.571.57 발명재2Invention 2 0.0510.051 0.530.53 9.069.06 0.00270.0027 15.0315.03 0.990.99 0.210.21 0.00100.0010 0.00090.0009 0.630.63 발명재3Invention 3 0.0500.050 0.530.53 9.029.02 0.00150.0015 15.0015.00 1.001.00 0.210.21 0.00250.0025 0.00180.0018 1.591.59 발명재4Invention 4 0.0510.051 0.520.52 9.059.05 0.00180.0018 15.0015.00 1.001.00 0.200.20 0.00260.0026 0.00170.0017 1.591.59 발명재5Invention 5 0.0500.050 0.520.52 9.009.00 0.00160.0016 14.9914.99 0.990.99 0.220.22 0.00250.0025 0.00180.0018 1.581.58 발명재6Invention 6 0.0500.050 0.550.55 9.019.01 0.00300.0030 15.0415.04 1.001.00 0.200.20 0.00100.0010 0.00210.0021 0.650.65 발명재7Invention 7 0.0500.050 0.510.51 9.059.05 0.00140.0014 15.0015.00 0.990.99 0.200.20 0.00460.0046 0.00180.0018 1.571.57 발명재8Invention Material 8 0.0500.050 0.520.52 9.029.02 0.00260.0026 14.8714.87 0.990.99 0.200.20 0.00260.0026 0.00310.0031 1.601.60 발명재9Invention 9 0.0490.049 0.520.52 8.968.96 0.00210.0021 15.0515.05 0.980.98 0.200.20 0.00400.0040 0.00060.0006 0.660.66 발명재10Invention 10 0.0500.050 0.510.51 8.958.95 0.00320.0032 15.0015.00 0.980.98 0.200.20 0.00260.0026 0.00120.0012 0.000.00 발명재11Invention 11 0.0500.050 0.540.54 8.958.95 0.00270.0027 15.0115.01 1.001.00 0.210.21 0.00420.0042 0.00250.0025 0.650.65

표 2에서는 실측 RA와 계산에 의해 예측한 RA를 비교하여 도 1에 정리하였다.In Table 2, the measured RA and the RA predicted by the calculation are compared and summarized in FIG. 1.

발명재와 비교재의 단면적 감소율, 실측치와 계산치 비교Cross-sectional area reduction rate of invention and comparative material, measured value and calculated value 강종Steel grade RA (실측)RA (actually measured) RA (계산)RA (calculation) 비교재1Comparative Material 1 29.929.9 35.135.1 비교재2Comparative Material 2 40.640.6 38.738.7 비교재3Comparative Material 3 45.145.1 44.144.1 비교재4Comparative Material 4 40.740.7 47.447.4 비교재5Comparative Material 5 54.554.5 49.749.7 비교재6Comparative Material 6 62.562.5 57.057.0 발명재1Invention 1 65.365.3 65.065.0 발명재2Invention 2 70.070.0 67.167.1 발명재3Invention 3 67.367.3 69.869.8 발명재4Invention 4 67.267.2 69.969.9 발명재5Invention 5 71.371.3 69.969.9 발명재6Invention 6 79.979.9 70.670.6 발명재7Invention 7 68.368.3 71.771.7 발명재8Invention Material 8 72.972.9 74.074.0 발명재9Invention 9 78.778.7 78.978.9 발명재10Invention 10 77.077.0 80.280.2 발명재11Invention 11 82.482.4 84.584.5

상술한 바와 같이, 본 발명에 의하면, 열간 압연 시에 발생하는 표면 균열에 의한 열연 표면 품질의 저하를 막기 위해서 900℃에서 통상 확보되어야하는 60 이상의 RA를 확보하기 위한 미량 합금 성분의 첨가 범위를 Cu의 함량 범위에 따라 용이하게 도출할 수 있어 냉간 가공성과 열간 가공성을 동시에 확보할 수 있는 스테인리스강의 합금 설계에 사용이 가능하다.        As described above, according to the present invention, in order to prevent the degradation of the hot rolled surface quality due to the surface cracks generated during hot rolling, the addition range of the trace alloy component for securing the RA of 60 or more, which must be normally secured at 900 ° C, is defined as Cu. It can be easily derived according to the content range of, so it can be used for alloy design of stainless steel that can secure cold workability and hot workability at the same time.

Claims (2)

중량%로 C: 0.15%이하, Si: 1.0% 이하, Mn: 7~10%, S:0.01% 이하, Ni: 4.0% 이하, Cr: 14.0~20.0%, N: 0.30% 이하, Cu: 3.0% 이하, B: 0.005% 이하, Ca: 0.005% 이하를 함유하고 기타 Fe 및 불가피한 원소로 이루어지며, 상기 범위에서 52.9933 + 1.37513 X B + 0.298097 X Ca + 1.51623 X Cu - 0.0187413 X B X B - 4.98177 X Cu X Cu 의 수식으로 계산된 단면적감소율이 900℃에서 60% 이상이 되도록 조성되는 것을 특징으로 하는 구리 첨가 고망간 오스테나이트계 스테인리스강.By weight% C: 0.15% or less, Si: 1.0% or less, Mn: 7-10%, S: 0.01% or less, Ni: 4.0% or less, Cr: 14.0-20.0%, N: 0.30% or less, Cu: 3.0 % Or less, B: 0.005% or less, Ca: 0.005% or less and composed of other Fe and inevitable elements, in the above range 52.9933 + 1.37513 XB + 0.298097 X Ca + 1.51623 X Cu-0.0187413 XBXB-4.98177 X Cu X Cu Copper-added high manganese austenitic stainless steel, characterized in that the cross-sectional area reduction ratio is calculated to be 60% or more at 900 ℃. 삭제delete
KR1020040114608A 2004-12-29 2004-12-29 Cu added High manganese austenitic stainless steel KR100611498B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040114608A KR100611498B1 (en) 2004-12-29 2004-12-29 Cu added High manganese austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040114608A KR100611498B1 (en) 2004-12-29 2004-12-29 Cu added High manganese austenitic stainless steel

Publications (2)

Publication Number Publication Date
KR20060075727A KR20060075727A (en) 2006-07-04
KR100611498B1 true KR100611498B1 (en) 2006-08-09

Family

ID=37168230

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040114608A KR100611498B1 (en) 2004-12-29 2004-12-29 Cu added High manganese austenitic stainless steel

Country Status (1)

Country Link
KR (1) KR100611498B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101010967B1 (en) * 2008-12-10 2011-01-26 동부제철 주식회사 Manufacturing method of high spherical metallic tin ball using for electrolitic plating

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100857697B1 (en) * 2006-12-28 2008-09-08 주식회사 포스코 ethod of manufacturing an austenitic stainless steel added low Ni for improving hot workability
KR100894679B1 (en) * 2007-06-19 2009-04-24 한양대학교 산학협력단 Fe-base austenitic alloy with high-wearresistance
US8535606B2 (en) * 2008-07-11 2013-09-17 Baker Hughes Incorporated Pitting corrosion resistant non-magnetic stainless steel
CN102936702A (en) * 2012-11-23 2013-02-20 四川金广技术开发有限公司 Nickel-saving stainless steel panel and manufacturing method thereof
KR20220089195A (en) 2020-12-21 2022-06-28 주식회사 포스코 High manganese steel for disk brake

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441651A (en) * 1990-06-05 1992-02-12 Daido Steel Co Ltd Corrosion resisting austenitic stainless steel excellent in machinability
JPH07188863A (en) * 1993-12-27 1995-07-25 Daido Steel Co Ltd Corrosion-resistant, high-strength austenitic stainless steel
JPH10110215A (en) 1996-10-08 1998-04-28 Sumitomo Metal Ind Ltd Production of austenitic free cutting stainless steel
JPH10330889A (en) * 1997-06-03 1998-12-15 Nisshin Steel Co Ltd Cold rolled heat treated austenitic stainless steel sheet with high strength, minimal in weak of blanking die

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441651A (en) * 1990-06-05 1992-02-12 Daido Steel Co Ltd Corrosion resisting austenitic stainless steel excellent in machinability
JPH07188863A (en) * 1993-12-27 1995-07-25 Daido Steel Co Ltd Corrosion-resistant, high-strength austenitic stainless steel
JPH10110215A (en) 1996-10-08 1998-04-28 Sumitomo Metal Ind Ltd Production of austenitic free cutting stainless steel
JPH10330889A (en) * 1997-06-03 1998-12-15 Nisshin Steel Co Ltd Cold rolled heat treated austenitic stainless steel sheet with high strength, minimal in weak of blanking die

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101010967B1 (en) * 2008-12-10 2011-01-26 동부제철 주식회사 Manufacturing method of high spherical metallic tin ball using for electrolitic plating

Also Published As

Publication number Publication date
KR20060075727A (en) 2006-07-04

Similar Documents

Publication Publication Date Title
US8043446B2 (en) High manganese duplex stainless steel having superior hot workabilities and method manufacturing thereof
US4153454A (en) Steel materials having an excellent hydrogen induced cracking resistance
US9523402B2 (en) Stainless steel brake disc and method for production thereof
JP5335502B2 (en) Martensitic stainless steel with excellent corrosion resistance
KR20080053200A (en) Martensitic stainless steel with excellent corrosion resistance
JP5121282B2 (en) Steel for high-speed cold working and its manufacturing method, and high-speed cold-worked component and its manufacturing method
KR20200033901A (en) High Mn steel and its manufacturing method
KR101496000B1 (en) Method for manufacturing hot rolled steel sheet of lean duplex stainless steels
JPS60215719A (en) Manufacture of electric welded steel pipe for front fork of bicycle
EP3722448A1 (en) High-mn steel and method for manufacturing same
KR100641577B1 (en) Austenitic Stainless steel with High Mn and N
KR101903181B1 (en) Duplex stainless steel with improved corrosion resistance and formability and method of manufacturing the same
KR100611498B1 (en) Cu added High manganese austenitic stainless steel
KR101289154B1 (en) Hot rolled steel sheet having excellent corrosion resistance and impcat toughness and manufacturing method thereof
KR20100069875A (en) Austenitic stainless steel having excellent hot workability with high manganese
EP3502296B1 (en) Steel plate
KR20190072307A (en) High-nitrogen stainless steel having excellent surface quality and mathod for manufacturing thereof
JP5157598B2 (en) Ni-containing steel slab and method for continuously casting Ni-containing steel
KR20060075725A (en) Low nickel austenite stainless steel
KR20180074322A (en) Austenite stainless steel excellent in corrosion resistance and hot workability
KR100720279B1 (en) Cu added high manganese and high nitrogen austenitic stainless steel having good hot workability
JPH0742550B2 (en) Stainless steel with excellent strength and ductility
KR20150076888A (en) Extremely thick steel sheet and method of manufacturing the same
KR102463015B1 (en) High-strength austenitic stainless steel with excellent hot workability
KR20140002256A (en) Micro-alloyed steel and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120627

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130729

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140728

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150721

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160713

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170804

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190806

Year of fee payment: 14