KR100602196B1 - Method for producing non-inflammable pre-expanded polystyrene beads that keeps its shape when it burnt - Google Patents

Method for producing non-inflammable pre-expanded polystyrene beads that keeps its shape when it burnt Download PDF

Info

Publication number
KR100602196B1
KR100602196B1 KR1020040108342A KR20040108342A KR100602196B1 KR 100602196 B1 KR100602196 B1 KR 100602196B1 KR 1020040108342 A KR1020040108342 A KR 1020040108342A KR 20040108342 A KR20040108342 A KR 20040108342A KR 100602196 B1 KR100602196 B1 KR 100602196B1
Authority
KR
South Korea
Prior art keywords
weight
parts
polystyrene foam
resin
flame
Prior art date
Application number
KR1020040108342A
Other languages
Korean (ko)
Other versions
KR20060069680A (en
Inventor
이병운
이석원
한우권
이필우
이완규
김승수
김정호
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Priority to KR1020040108342A priority Critical patent/KR100602196B1/en
Publication of KR20060069680A publication Critical patent/KR20060069680A/en
Application granted granted Critical
Publication of KR100602196B1 publication Critical patent/KR100602196B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0004Use of compounding ingredients, the chemical constitution of which is unknown, broadly defined, or irrelevant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2461/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Abstract

본 발명은 불연성을 갖는 난연 폴리스티렌 발포체 수지입자의 제조방법에 관한 것으로, 더욱 상세하게는 종래의 현탁 중합 기술에 의해 얻어진 발포 폴리스티렌 수지 입자를 일정 비중까지 발포시킨 폴리스티렌 발포입자에, 상기 발포입자 100 중량부에 대해서 수산화 금속 화합물 10 - 80 중량부, 열경화성 액상 페놀 수지 10 - 300 중량부 및 상기 페놀수지 100 중량부에 대해서 경화 촉매 0.02 - 30 중량부를 코팅 및 경화시켜, 연소시 다공성 Char(탄화코어)에 의한 방화층이 형성되는 불연성 난연 폴리스티렌 발포체 수지입자의 제조방법에 관한 것이다.The present invention relates to a method for producing non-flammable flame retardant polystyrene foam resin particles, and more specifically, to the polystyrene foam particles obtained by foaming expanded polystyrene resin particles obtained by a conventional suspension polymerization technique to a certain specific gravity, the weight of the foam particles 100 10 to 80 parts by weight of the metal hydroxide compound, 10 to 300 parts by weight of the thermosetting liquid phenolic resin and 0.02 to 30 parts by weight of the curing catalyst with respect to 100 parts by weight of the phenol resin, and the porous Char (carbonized core) during combustion. It relates to a method for producing a nonflammable flame retardant polystyrene foam resin particle in which a fire prevention layer is formed.

Description

불연성을 갖는 난연 폴리스티렌 발포체 수지입자 제조 방법{METHOD FOR PRODUCING NON-INFLAMMABLE PRE-EXPANDED POLYSTYRENE BEADS THAT KEEPS ITS SHAPE WHEN IT BURNT}Method for producing flame retardant polystyrene foam resin particles having incombustibility {METHOD FOR PRODUCING NON-INFLAMMABLE PRE-EXPANDED POLYSTYRENE BEADS THAT KEEPS ITS SHAPE WHEN IT BURNT}

본 발명은 불연성 난연 폴리스티렌 발포체 수지입자의 제조방법에 관한 것으로서, 더욱 상세하게는 폴리스티렌 발포입자에 수산화 금속 화합물, 열경화성 액상 페놀 수지, 및 경화촉매를 코팅, 경화 시킴으로써 제조되는 난연 폴리스티렌 발포체 수지입자의 제조방법에 관한 것이다.The present invention relates to a method for producing non-combustible flame retardant polystyrene foam resin particles, and more particularly, to manufacturing a flame-retardant polystyrene foam resin particle prepared by coating and curing a metal hydroxide compound, a thermosetting liquid phenol resin, and a curing catalyst on a polystyrene foam particle. It is about a method.

폴리스티렌 발포체의 내열성 및 난연성을 향상시키기 위한 방안으로서, 폴리스티렌 발포체 입자를 내열성 또는 난연성 물질로 코팅 처리하여, 내열성 및 난연성을 가지는 폴리스티렌 발포체 수지입자를 제조하는 방법들이 개발되어 왔다. As a method for improving the heat resistance and flame retardancy of polystyrene foam, a method of manufacturing polystyrene foam resin particles having heat resistance and flame retardancy by coating polystyrene foam particles with a heat resistant or flame retardant material has been developed.

일본특허 JP2001-164031A호에서는 내열, 난연성를 가지는 다공성 성형체를 제조하기 위해서, 다공성을 갖는 발포수지에 붕소계 무기화합물과 열경화성수지의 혼합물을 피복시키는 방법을 개시하고 있다. 이러한 방법은 다공성 발포수지에 내화성 및 소염성, 형태 보존성을 제공한다는 측면에서는 일정한 효과를 제공할 수 있을 것으로 기대되나, 충분한 불연성을 얻기 위해서는 붕산과 같은 붕산계 무기 화합물의 사용량이 과다하게 되어, 코팅된 발포 입자의 건조과정, 성형과정에서 사용된 무기 화합물들이 쉽게 이탈되는 문제를 야기하였다. 이러한 무기물의 이탈은 인체에 유해한 성분으로 작업성의 저하를 야기하며, 또한 난연 효과의 저하를 야기하게 된다. 또한 성형과정에서의 무기물 이탈에 의한 난연성 저하를 방지하기 위해서, 추가로 다량의 무기물을 더 첨가할 경우, 제품의 융착성이 더욱 낮아지는 문제가 발생하게 된다. Japanese Patent JP2001-164031A discloses a method of coating a mixture of a boron-based inorganic compound and a thermosetting resin in a porous foamed resin in order to produce a porous molded body having heat resistance and flame resistance. This method is expected to provide a certain effect in terms of providing fire-resistant, anti-inflammatory and form-preservation to the porous foam resin, but in order to obtain sufficient incombustibility, the amount of boric acid-based inorganic compounds such as boric acid is excessively used, coating Drying of the expanded foam particles, the inorganic compounds used in the molding process caused a problem that is easily released. The separation of these minerals is a harmful component to the human body causes a decrease in workability, and also causes a decrease in flame retardant effect. In addition, in order to prevent flame retardancy deterioration due to the separation of the inorganic material during the molding process, when a large amount of additional inorganic material is added, the problem that the fusion of the product is further lowered.

그러므로 이러한 문제점이 없이, 동일한 난연 효과를 발휘할 수 있는 새로운 난연 폴리스티렌 발포체 수지 입자의 제조방법에 대한 요구가 계속되어 왔다.Therefore, without such a problem, there has been a continuing need for a method for producing new flame retardant polystyrene foam resin particles capable of exhibiting the same flame retardant effect.

본 발명의 목적은 불연성을 보유함과 동시에 단열재로서 중요 물성인 성형체의 융착성, 강도, 작업성 등이 향상된 신규한 난연 폴리스티렌 발포입자의 제조방법을 제공하는 것이다. It is an object of the present invention to provide a novel flame retardant polystyrene foamed particle having improved non-flammability and improved fusion, strength, workability, etc. of a molded article, which are important properties as a heat insulating material.

본 발명의 다른 목적은 폴리스티렌 발포체 입자에 수산화 금속화합물, 열경화성 액상 페놀수지, 및 경화촉매를 코팅, 경화시킴으로써 제조되는 신규한 난연 폴리스티렌 발포입자의 제조방법을 제공하는 것이다. Another object of the present invention is to provide a novel flame retardant polystyrene foam particles prepared by coating and curing a metal hydroxide compound, a thermosetting liquid phenol resin, and a curing catalyst on the polystyrene foam particles.

본 발명의 다른 목적은 폴리스티렌 발포체 입자에 수산화 금속화합물, 열경화성 액상 페놀 수지, 및 경화촉매를 코팅, 경화시킴으로서 제조되는 신규한 난연 폴리스티렌 발포입자의 제조단계를 포함하는 신규한 판넬의 제조방법을 제공하는 것이다. Another object of the present invention is to provide a method for producing a novel panel comprising the production of a novel flame-retardant polystyrene foam particles prepared by coating and curing a metal hydroxide compound, a thermosetting liquid phenol resin, and a curing catalyst on the polystyrene foam particles. will be.

본 발명의 다른 목적은 폴리스티렌 발포체 입자에 수산화 금속화합물, 열경 화성 액상 페놀수지, 및 경화촉매를 코팅, 경화시킴으로서 제조되는 신규한 난연 폴리스티렌 발포입자를 제공하는 것이다. Another object of the present invention is to provide a novel flame retardant polystyrene foam particles prepared by coating and curing a metal hydroxide compound, a thermosetting liquid phenol resin, and a curing catalyst on the polystyrene foam particles.

본 발명의 다른 목적은 폴리스티렌 발포체 입자에 수산화 금속화합물, 열경화성 액상 페놀 수지, 및 경화촉매를 코팅, 경화시킴으로서 제조되는 신규한 난연 폴리스티렌 발포입자를 이용하여 제조되는 판넬을 제공하는 것이다.Another object of the present invention is to provide a panel prepared using the novel flame retardant polystyrene foam particles prepared by coating and curing a polyhydroxy foam particle with a metal hydroxide compound, a thermosetting liquid phenol resin, and a curing catalyst.

상기 목적을 이루기 위하여 본 발명은 폴리스티렌 발포입자 100 중량부에 대해, 수산화 금속 화합물 10 - 80중량부, 열경화성 액상 페놀 수지 10 - 300 중량부, 및 경화촉매를 상기 페놀수지 100 중량부에 대해서 0.02 - 30 중량부를 코팅, 가교 시키는 것을 특징으로 하는 난연 폴리스티렌 발포체 수지입자의 제조 방법으로 이루어진다In order to achieve the above object, the present invention relates to 100 parts by weight of polystyrene foam particles, 10 to 80 parts by weight of a metal hydroxide compound, 10 to 300 parts by weight of a thermosetting liquid phenolic resin, and 0.02-to a curing catalyst based on 100 parts by weight of the phenol resin. It consists of the manufacturing method of a flame-retardant polystyrene foam resin particle characterized by coating and crosslinking 30 weight part.

본 발명에 있어서, 상기 폴리스티렌 발포입자는 발포성 폴리스티렌 수지입자의 발포에 의해서 이루어진다. 발명의 실시에 있어서, 상기 발포성 폴리스티렌 수지입자는 공지된 다양한 방법, 일 예로 유화 중합법, 또는 현탁 중합법 등을 이용하여 제조될 수 있다. 현탁 중합법에 의해 제조된 구상의 발포성 폴리스티렌 입자를 이용하는 것이 바람직하다. 발명의 일 실시예에 있어서, 상기 발포성 폴리스티렌 수지입자는 중합 공정상에서 소량의 난연제가 첨가된 발포성 폴리스티렌 수지입자를 사용해도 좋고, 또한 난연제가 첨가 되지 않은 발포성 폴리스티렌 수지 입자를 사용해도 무방하다.In the present invention, the polystyrene foam particles are made by foaming of expandable polystyrene resin particles. In the practice of the invention, the expandable polystyrene resin particles may be prepared using a variety of known methods, for example, emulsion polymerization, or suspension polymerization. It is preferable to use spherical expandable polystyrene particles produced by the suspension polymerization method. In one embodiment of the present invention, the expandable polystyrene resin particles may be used in the polymerization process, the expanded polystyrene resin particles to which a small amount of flame retardant is added, or the expanded polystyrene resin particles to which the flame retardant is not added may be used.

본 발명에 있어서, 상기 폴리스티렌 발포입자를 얻기 위해서, 발포성 폴리스 티렌 입자를 발포하는 방법은 당업자에게 공지되어 있다. 발포된 폴리스티렌 발포입자의 비중은 사용되는 용도에 따라서 조절될 수 있으나, 0.03 - 0.01 으로 유지하는 것이 바람직하다.In the present invention, in order to obtain the polystyrene foam particles, a method for foaming the expandable polystyrene particles is known to those skilled in the art. The specific gravity of the expanded polystyrene foam particles may be adjusted depending on the intended use, but is preferably maintained at 0.03 to 0.01.

본 발명에 있어서, 상기 수산화 금속화합물은 제품의 연소시 결정수(H2O)를 형성하게 된다. 제품 연소시 생성된 결정수는 연소점의 열을 제거하게 되어, 연소현상을 억제할 수 있게 되며, 이는 상대적으로 적은 양으로 제품의 높은 불연성을 가능하게 하며, 결과적으로 제품의 융착성도 향상시키게 된다. 본 발명의 실시에 있어서, 상기 수산화 금속화합물은 폴리스티렌 발포입자 100 중량부에 대해서 10 - 80 중량부 사용하는 것이 좋다. 사용량이 10 중량부 미만이면 연소억제 효과가 떨어지며, 80 중량부 이상 사용하게 되면 성형체의 융착성이 저하된다. 발명의 바람직한 실시예에서, 상기 수산화 금속화합물은 수산화알미늄( Al(OH)₃), 수산화 마그네슘(Mg(OH)₂), 및 이들의 혼합물에서 선택된다.In the present invention, the metal hydroxide compound forms crystalline water (H 2 O) during combustion of the product. Crystal water generated during product combustion removes the heat of the combustion point, thereby suppressing the combustion phenomenon, which enables the high nonflammability of the product in a relatively small amount, and consequently improves the fusion of the product. . In the practice of the present invention, the metal hydroxide compound is preferably used 10 to 80 parts by weight based on 100 parts by weight of polystyrene foam particles. If the amount of use is less than 10 parts by weight, the combustion inhibitory effect is lowered. If the amount is used more than 80 parts by weight, the fusion of the molded product is lowered. In a preferred embodiment of the invention, the metal hydroxide compound is selected from aluminum hydroxide (Al (OH) ₃), magnesium hydroxide (Mg (OH) ₂), and mixtures thereof.

본 발명에 있어서, 상기 열경화성 액상 페놀 수지는 성형품의 융착 불량을 방지하기 위해서, 수용성 액상 페놀수지, 또는 유용성 액상 페놀수지를 사용하는 것이 바람직하다. 보다 바람직하게는 불휘발분이 25 - 85 중량% 인 액상 페놀 수지이다. 상기 액상 페놀 수지를 제조하는 방법은 당업자에게 공지되어 있으며, 상업적으로도 구입 가능하다. 본 발명의 실시에 있어서, 고체상, 일예로 파우더상 페놀수지는 액상의 페놀수지에 비해 경화촉매에 의한 경화가 상대적으로 어려운 단점이 있으며, 이는 추후 가공공정에서 제품이 끈적이게 되는 문제를 야기하게 된다. 또한 경화온도가 높은 경화성 수지, 일예로 요소수지, 또는 멜라민 수지 등이 발포립 자에 코팅 되었을 때 끈적한 점성으로 인해 발포립자간 서로 뭉치는 현상이 발생될 수 있으며, 이로 인해 성형체의 충진 불량 및 융착 불량이 일어날 수 있다. In the present invention, in order to prevent the poor fusion of the molded article, the thermosetting liquid phenol resin, it is preferable to use a water-soluble liquid phenol resin or oil-soluble liquid phenol resin. More preferably, it is a liquid phenol resin whose non-volatile content is 25-85 weight%. Methods of preparing the liquid phenolic resins are known to those skilled in the art and are also commercially available. In the practice of the present invention, there is a disadvantage that the solid phenol resin, for example, powder phenol resin is relatively hard to be hardened by a curing catalyst compared to the liquid phenol resin, which causes a problem that the product becomes sticky in a later processing process. . In addition, when a high curing temperature of the curable resin, for example, urea resin, or melamine resin is coated on the foam particles, the sticky viscosity may cause agglomeration between the foam particles, resulting in poor filling and fusion of the molded body Defects can occur.

본 발명의 바람직한 일 실시예에 있어서, 상기 불휘발분이 25 - 85%인 수용성액상 페놀수지, 또는 유용성 액상 페놀수지는 폴리스티렌 발포입자 100 중량부에 대해서, 10 - 300중량부 사용하는 것이 바람직하다. 만약 사용량이 10중량부 미만이면 피막코팅 효율이 떨어져 충분한 바인더 역할을 할 수 없으며 300중량부 이상 사용하게 되면 발포립간 뭉침 현상으로 이송 및 성형상에 문제가 발생할 수 있다. In one preferred embodiment of the present invention, the water-soluble liquid phenolic resin or oil-soluble liquid phenolic resin having a nonvolatile content of 25 to 85%, preferably 10 to 300 parts by weight based on 100 parts by weight of polystyrene foam particles. If the amount is less than 10 parts by weight of the coating coating efficiency is not enough to act as a binder, and when used more than 300 parts by weight agglomeration between foam particles may cause problems in transport and molding.

본 발명에 있어서, 상기 경화 촉매는 이론에 한정되는 것은 아니지만, 가공 중 페놀수지를 충분히 경화되어, 결합력을 높여줄 수 있도록, 페놀 수지 100 중량부에 대해서 0.02 에서 30 중량부를 사용하는 것이 바람직하다. 본 발명의 실시에 있어서, 상기 경화촉매는 염화암모늄, 메탄 설폰산, 페놀 설폰산, p-톨루엔 설폰산 ,인산 등에서 선택될 수 있다. 만약 사용량이 페놀수지 100 중량부에 대해서 0.02중량부 이하이면 경화되는 반응속도가 너무 느리게 진행되어 본 발명에서 얻을 수 있는 효과가 없으며, 30중량부 이상 사용하게 되면 경화의 반응 속도가 너무 빨리 진행되어 열경화성수지의 바인더 효율이 떨어진다. In the present invention, the curing catalyst is not limited to the theory, but it is preferable to use from 0.02 to 30 parts by weight based on 100 parts by weight of the phenol resin so that the phenol resin can be sufficiently cured during processing to increase the bonding strength. In the practice of the present invention, the curing catalyst may be selected from ammonium chloride, methane sulfonic acid, phenol sulfonic acid, p-toluene sulfonic acid, phosphoric acid and the like. If the amount is less than 0.02 parts by weight based on 100 parts by weight of phenolic resin, the reaction rate to be cured is too slow to obtain the effect of the present invention. The binder efficiency of thermosetting resin is inferior.

본 발명에 있어서, 상기 수산화 금속 화합물, 열경화성 액상 페놀수지, 및 경화촉매가 경화,코팅된 제품이 연소시 발생되는 라디칼을 포착함으로서, 난연 효과를 높일 수 있도록 하기 위해, 할로겐계 난연제를 사용할 수 있다. 발명의 일 실시예에서, 상기 할로겐 난연제로는 헥사브로모싸이크로도데칸(HBCD),테트라 브로모 싸이크로 옥탄(TBCO),테트라 브로모페닐아릴에테르(TPA) 등에서 선택될 수 있으며, 폴리스티렌 발포립자에 100 중량부에 대해서, 10 - 90중량부 사용한다. 만약 사용량이 10중량부 이하이면 충분한 난연 효과를 볼 수 없고, 90중량부 이상이면, 성형체의 융착성 및 내열성이 저하되는 문제가 있다.In the present invention, a halogen-based flame retardant may be used in order to enhance the flame retardant effect by trapping radicals generated when the metal hydroxide compound, the thermosetting liquid phenol resin, and the curing catalyst are cured and coated products are burned. . In one embodiment of the invention, the halogen flame retardant may be selected from hexabromocyclododecane (HBCD), tetra bromo cyclo octane (TBCO), tetra bromophenylaryl ether (TPA), and the like, polystyrene foam 10-90 weight part is used with respect to 100 weight part of granules. If the amount is 10 parts by weight or less, a sufficient flame retardant effect is not seen, and if it is 90 parts by weight or more, there is a problem that the fusion resistance and heat resistance of the molded body are lowered.

본 발명에 있어서, 상기 코팅은 통상의 코팅 방법을 이용하여 이루어질 수 있으며, 특별한 제한은 없다. 발명의 일 실시예에 있어서, 상기 코팅은, 현탁 중합법에 의해 생성된 발포성 폴리스티렌 수지를 비중 0.03 - 0.010까지 발포시킨 발포립자 100중량부에 수산화 알루미늄 Al(OH)₃또는 수산화 마그네슘(Mg(OH)₂, 또는 두 혼합물에서 선택된 수산화 금속 화합물질 10 - 80 중량부 및 열경화성 액상 페놀 수지 10 - 300중량부, 그리고 열경화성 액상 페놀 수지 100 중량부에 대해서 경화촉매를 0.02 - 30중량부, 그리고 난연 효과를 극대화 시킬 수 있는 할로겐계 난연제 10 - 90 중량부를 그 혼합하여 교반함으로서 이루어질 수 있다. In the present invention, the coating can be made using a conventional coating method, there is no particular limitation. In one embodiment of the present invention, the coating is made of aluminum hydroxide Al (OH) ₃ or magnesium hydroxide (Mg (OH) to 100 parts by weight of the foamed particles of the expanded polystyrene resin produced by the suspension polymerization method to a specific gravity of 0.03-0.010 ) 2, or 10 to 80 parts by weight of the metal hydroxide compound selected from the two mixtures, 10 to 300 parts by weight of the thermosetting liquid phenolic resin, and 0.02 to 30 parts by weight of the curing catalyst with respect to 100 parts by weight of the thermosetting liquid phenolic resin, and a flame retardant effect. Halogen-based flame retardant can be maximized by 10 to 90 parts by weight of the mixture can be made by stirring.

본 발명에 있어서, 피막 코팅된 발포립자는 촉매 사용량에 따라 건조 온도 및 시간을 조정하여 경화시켜 발포입자를 얻게 된다. 본 발명의 일 실시예에 있어서, 상기 경화과정은 경화 촉매가 투입된 발포립자를 낮게는 35℃ 부터 높게는 70℃ 의 온도로, 짧게는 5분에서부터 길게는 1시간 정도 건조시켜 얻어진다. In the present invention, the film-coated foam particles are cured by adjusting the drying temperature and time according to the amount of catalyst used to obtain foam particles. In one embodiment of the present invention, the curing process is obtained by drying the foamed granules to which the curing catalyst is added at a temperature of as low as 35 ℃ to 70 ℃, as short as 5 minutes to 1 hour.

본 발명에 의해서 얻어진 발포입자는 공지된 판넬 제조 방법등에 의해서 판넬 등의 성형체를 만든다. The expanded particles obtained by the present invention form a molded article such as a panel by a known panel production method or the like.

본 발명에 의해서 얻어지는 이러한 성형체는 발포립자의 표층에 균일하고, 단단하게 피막이 코팅되어 성형체의 연소시 피막된 표층으로부터 다공성 Char(탄화코어)에의한 방화층이 즉시 형성되어 불연성을 제공하게 된다. 뿐만 아니라 본 발 명에서 적용된 수산화 금속화합물의 연소억제기능과 촉매로 경화된 열경화성 액상 페놀 수지의 적정 바인더 기능, 또한 불연성가스를 발생시켜 산소를 차단하는 할로겐 난연제의 기능의 적절한 조합으로 인해 성형체가 화염에 전면으로 받더라도 다공성 Char(탄화코어)에 의한 방화층의 형성으로 즉시 소염되며, 열에 의한 더 이상의 형상붕괴도 일어나지 않게 된다. Such a molded article obtained by the present invention is uniformly and firmly coated on the surface layer of the foamed granules, thereby providing a non-flammability by forming a fired layer by porous Char (carbonized core) immediately from the coated surface layer upon combustion of the molded body. In addition, due to the proper combination of the combustion inhibiting function of the metal hydroxide compound applied in the present invention, the proper binder function of the thermosetting liquid phenol resin cured with the catalyst, and the function of the halogen flame retardant which blocks the oxygen by generating the incombustible gas, the molded body is flamed. Even if it is received on the front side, it is extinguished immediately by the formation of the fireproof layer by the porous char (carbonized core), and no further shape collapse is caused by heat.

이하 실시예를 들어 본 발명을 더욱 상세히 설명한다. 실시예 1 The present invention will be described in more detail with reference to the following Examples. Example 1

발포 폴리스티렌 수지입자를 가압식 배치(batch)발포기로 100배(비중=0.010)로 예비 발포하여 얻은 폴리스티렌 발포립자 300g을 교반기가 장착된 100L 배합기에 투입하여 서서히 교반한다. 여기에 수산화 알루미늄(Al(OH)₃)100g, 수용성페놀수지 300g(고형분 85%인 페놀수지)에 p-톨루엔 설폰산 5g을 취하여 미리 혼합하고,헥사브로모 싸이크로도데칸 30g을 별도의 용기에 잘 혼합시켜 투입시킨다.300 g of polystyrene foamed granules obtained by pre-expanding the expanded polystyrene resin particles at 100 times (specific gravity = 0.010) with a pressurized batch foaming machine are introduced into a 100L blender equipped with a stirrer and stirred slowly. 100 g of aluminum hydroxide (Al (OH) ₃) and 300 g of water-soluble phenolic resin (phenolic resin with 85% solids) are taken in advance, 5 g of p-toluene sulfonic acid is mixed, and 30 g of hexabromocyclododecane is mixed separately. Mix well into

배합기에서 30분 정도 200rpm으로 교반하게 되면 첨가된 혼합물들이 발포립자에 균일하게 피막 코팅된다. 이렇게 하여 얻어진 발포립자를 40℃ 건조기에 5 분정도 건조시키면 본 발명에서 목적으로 하는 불연성을갖는 난연 폴리스티렌 발포체 수지 입자를 얻을 수 있다. When the mixture is stirred at 200 rpm for about 30 minutes, the added mixture is uniformly coated on the foam particles. When the thus obtained foamed granules are dried in a 40 ° C. dryer for about 5 minutes, a flame retardant polystyrene foam resin particle having a nonflammability as the object of the present invention can be obtained.

코팅 피막된 난연 폴리스티렌 발포체 수지입자로 건축물의 보온단열재나 건축물의 패널 단열재로 성형 후 건축물의 내장재료 및 구조의 난연성 시험방법(KS F2271)에 따라 테스트 하였다. Coated flame-retardant polystyrene foam resin particles were molded into the building's thermal insulation material or the building's panel insulation material, and then tested according to the test method for flame retardancy of the interior materials and structures of the building (KS F2271).

그 결과 화염을 전면으로 받더라도 내장재료의 피막에 다공성 char(탄화코 어)에 의한 방화층의 형성으로 난연3급에 준하는 불연성을 나타내었다. As a result, even if the flame was applied to the front surface, the non-combustible class 3 was shown due to the formation of a fireproof layer made of porous char (carbonized core) on the film of the interior material.

실시예 2 Example 2

발포 폴리스티렌 수지입자를 가압식 배치(batch)발포기로 80배(비중=0.012)로 예비발포하여 얻은 폴리스티렌 발포립자 300g을 교반기가 장착된 100L 배합기에 투입하여 서서히 교반한다. 여기에 수산화 마그네늄(Mg(OH)₂)100g, 수용성페놀수지 200g(고형분 80%인 페놀수지)에 페놀 설폰산 10g을 취하여 미리 혼합하고, 헥사브로모 싸이크로도데칸 50g을 별도의 용기에 잘 혼합시켜 투입시킨다. 300 g of polystyrene foamed granules obtained by pre-expanding the expanded polystyrene resin particles at 80 times (specific gravity = 0.012) with a pressurized batch foaming machine are introduced into a 100L blender equipped with a stirrer and stirred slowly. 100 g of magnesium hydroxide (Mg (OH) ₂), 200 g of water-soluble phenolic resin (phenolic resin with 80% solids), and 10 g of phenol sulfonic acid are mixed in advance, and 50 g of hexabromocyclododecane is placed in a separate container. Mix well and add.

배합기에서 30분 정도 200rpm으로 교반하게되면 첨가된 혼합물들이 발포립자에 균일하게 피막코팅된다. 이렇게하여 얻어진 발포립자를 40℃ 건조기에 5분정도 건조시키면 본 발명에서 목적으로 하는 불연성을갖는 난연 폴리스티렌 발포체 수지 입자를 얻을 수 있다. After stirring at 200 rpm for about 30 minutes in the blender, the added mixture is uniformly coated on the foam particles. When the thus obtained foamed granules are dried in a 40 ° C. dryer for about 5 minutes, a flame retardant polystyrene foam resin particle having a nonflammability aimed at in the present invention can be obtained.

코팅 피막된 난연폴리스티렌발포체 수지입자로 건축물의 보온단열재 나 건축물의 패널 단열재로 성형 후 건축물의 내장재료 및 구조의 난연성 시험방법(KS F2271)에 따라 테스트 하였다. Coated flame-retardant polystyrene foam resin particles were molded into the thermal insulation material of the building or the panel insulation material of the building and tested according to the test method of flame retardancy of the interior materials and structure of the building (KS F2271).

그 결과 화염을 전면으로 받더라도 내장재료의 피막에 다공성 char(탄화코어)에 의한 방화층이 즉시 형성되어 난연3급에 준하는 불연성을 나타내었다.As a result, even if the flame was applied to the front, a fireproof layer formed by porous char (carbide core) was immediately formed on the coating of the interior material, and thus showed non-combustibility according to the flame retardant class 3.

실시예 3 Example 3

발포 폴리스티렌 수지입자를 가압식 배치(batch)발포기로 70배(비중=0.014)로 예비 발포하여 얻은 폴리스티렌 발포립자 300g을 교반기가 장착된 100L 배합기에 투입하여 서서히 교반한다. 여기에 수산화 마그네늄(Mg(OH)₂)150g, 수용성페놀 수지 300g(고형분 78%인페놀수지) 에 염화마그네슘 15g을 취하여 미리 혼합하고, 헥사브로모 싸이크로도데칸 100g을 별도의 용기에 잘 혼합시켜 투입시킨다. 300 g of polystyrene foam granules obtained by pre-expanding the expanded polystyrene resin particles at 70 times (specific gravity = 0.014) with a pressurized batch foaming machine are introduced into a 100L blender equipped with a stirrer and stirred slowly. 15 g of magnesium chloride is added to 150 g of magnesium hydroxide (Mg (OH) ₂) and 300 g of a water-soluble phenolic resin (phenol resin having 78% solids), and 100 g of hexabromo cyclododecane is well mixed in a separate container. Mix and add.

배합기에서 30분 정도 200rpm으로 교반하게 되면 첨가된 혼합물들이 발포립자에 균일하게 피막코팅 된다. 이렇게 하여 얻어진 발포립자를 40℃ 건조기에 5분 정도 건조시키면 본 발명에서 목적으로 하는 불연성을 갖는 난연 폴리스티렌 발포체 수지입자를 얻을 수 있다. When the mixture is stirred at 200 rpm for about 30 minutes in the blender, the added mixture is uniformly coated on the foam particles. When the thus obtained foamed granules are dried in a 40 ° C. dryer for about 5 minutes, a flame retardant polystyrene foam resin particle having a nonflammable target of the present invention can be obtained.

코팅 피막 된 난연 폴리스티렌 발포체 수지입자로 건축물의 보온단열재 나 건축물의 패널 단열재로 성형후 건축물의 내장재료 및 구조의 난연성 시험방법(KS F2271)에 따라 테스트 하였다. Coated flame-retardant polystyrene foam resin particles were molded into the thermal insulation of the building or the panel insulation of the building, and then tested according to the test method for flame retardancy of the interior materials and structures of the building (KS F2271).

그 결과 화염을 전면으로 받더라도 내장재료의 피막에 다공성 char(탄화코어)에 의한 방화층이 즉시 형성되어 난연3급에 준하는 불연성을 나타내었다. 실시예 4 As a result, even if the flame was applied to the front, a fireproof layer formed by porous char (carbide core) was immediately formed on the coating of the interior material, and thus showed non-combustibility according to the flame retardant class 3. Example 4

발포 폴리스티렌 수지입자를 가압식 배치(batch)발포기로 60배(비중=0.016)로 예비발포하여 얻은 폴리스티렌 발포립자 300g을 교반기가 장착된 100L 배합기에 투입하여 서서히 교반한다. 300 g of polystyrene foamed granules obtained by pre-expanding the expanded polystyrene resin particles at 60 times (specific gravity = 0.016) with a pressurized batch foaming machine are introduced into a 100L blender equipped with a stirrer and stirred slowly.

여기에 수산화 알루미늄(Al(OH)₃)50g,수산화 마그네슘(Mg(OH)₂40g, 유용성페놀수지 300g(고형분 75%), 메탄 설폰산 3g을 취하여미리 혼합하고,테트라브로모싸이크로옥탄 100g을 별도의 용기에 잘 혼합시켜 투입시킨다. 50 g of aluminum hydroxide (Al (OH) ₃), 40 g of magnesium hydroxide (Mg (OH) ₂), 300 g of oil-soluble phenol resin (75% solids), and 3 g of methane sulfonic acid were mixed in advance, and 100 g of tetrabromocyclooctane was mixed. Mix well in a separate container.

배합기에서 30분 정도 200rpm으로 교반하게되면 첨가된 혼합물들이 발포립자에 균일하게 피막 코팅된다. 이렇게하여 얻어진 발포립자를 60℃ 건조기에 5분정 도 건조시키면 본 발명에서 목적으로 하는 불연성을갖는 난연 폴리스티렌 발포체 수지입자를 얻을 수 있다. After 30 minutes of stirring at 200rpm in the blender, the added mixture is uniformly coated on the foam particles. When the thus-obtained foamed granules are dried for 5 minutes in a 60 ° C. dryer, flame-retardant polystyrene foam resin particles having a non-flammability as the object of the present invention can be obtained.

코팅 피막된 난연 폴리스티렌 발포체 수지입자로 건축물의 보온단열재 나 건축물의 패널 단열재로 성형 후 건축물의 내장재료 및 구조의 난연성 시험방법(KS F2271)에 따라 테스트 하였다. Coated flame-retardant polystyrene foam resin particles were molded into the thermal insulation of the building or the panel insulation of the building, and then tested according to the test method of flame retardancy of the interior materials and structures of the building (KS F2271).

그 결과 화염을 전면으로 받더라도 내장재료의 피막에 다공성 char(탄화코어)에 의한 방화층이 즉시 형성되어 난연3급에 준하는 불연성을 나타내었다. As a result, even if the flame was applied to the front, a fireproof layer formed by porous char (carbide core) was immediately formed on the coating of the interior material, and thus showed non-combustibility according to the flame retardant class 3.

실시예 5 Example 5

발포 폴리스티렌 수지입자를 가압식 배치(batch)발포기로 50배(비중=0.02)로 예비 발포하여 얻은 폴리스티렌 발포립자 300g을 교반기가 장착된 100L 배합기에 투입하여 서서히 교반한다. 300 g of polystyrene foamed granules obtained by pre-expanding the expanded polystyrene resin particles at 50 times (specific gravity = 0.02) with a pressurized batch foaming machine are introduced into a 100L blender equipped with a stirrer and stirred slowly.

여기에 수산화 알루미늄(Al(OH)₃)100g, 수산화 마그네슘(Mg(OH)₂40g, 유용성페놀수지 300g(고형분 75%), 메탄 설폰산 13g을 취하여 미리 혼합하고, 브로모페닐아릴에테르 100g을 별도의 용기에 잘 혼합시켜 투입시킨다. 100 g of aluminum hydroxide (Al (OH) ₃), 40 g of magnesium hydroxide (Mg (OH) ₂), 300 g of oil-soluble phenol resin (75% solids), and 13 g of methane sulfonic acid are mixed in advance, and 100 g of bromophenylaryl ether is separately mixed. Mix well into the container.

배합기에서 30분 정도 200rpm으로 교반하게 되면 첨가된 혼합물들이 발포립자에 균일하게 피막 코팅된다. 이렇게 하여 얻어진 발포립자를 60℃ 건조기에 5분 정도 건조시키면 본 발명에서 목적으로 하는 불연성을 갖는 난연 폴리스티렌 발포체 수지입자를 얻을 수 있다. When the mixture is stirred at 200 rpm for about 30 minutes, the added mixture is uniformly coated on the foam particles. When the thus obtained foamed granules are dried in a 60 ° C. dryer for about 5 minutes, a flame retardant polystyrene foam resin particle having a nonflammable target of the present invention can be obtained.

코팅 피막된 난연 폴리스티렌 발포체 수지입자로 건축물의 보온단열재 나 건축물의 패널단열재로 성형 후 건축물의 내장재료 및 구조의 난연성 시험방법(KS F2271)에 따라 테스트 하였다. Coated flame-retardant polystyrene foam resin particles were molded into the thermal insulation material of the building or the panel insulation material of the building, and then tested according to the test method for flame retardancy of the interior materials and the structure of the building (KS F2271).

그 결과 화염을 전면으로 받더라도 내장재료의 피막에 다공성 char(탄화코어)에 의한 방화층이 즉시 형성되어 난연3급에 준하는 불연성을 나타내었다. As a result, even if the flame was applied to the front, a fireproof layer formed by porous char (carbide core) was immediately formed on the coating of the interior material, and thus showed non-combustibility according to the flame retardant class 3.

실시예 6 Example 6

발포 폴리스티렌 수지입자를 가압식 배치(batch)발포기로 30배(비중=0.030)로 예비 발포하여 얻은 폴리스티렌 발포립자 300g 을 교반기가 장착된 100L 배합기에 투입하여 서서히 교반한다.  300 g of polystyrene foamed granules obtained by pre-expanding the expanded polystyrene resin particles at 30 times (specific gravity = 0.030) with a pressurized batch foaming machine are introduced into a 100L blender equipped with a stirrer and stirred slowly.

여기에 수산화 알루미늄(Al(OH)₃)30g, 수산화 마그네슘(Mg(OH)₂100g, 수용성페놀수지 300g(고형분 70%), 메탄 설폰산 13g을 취하여 미리 혼합하고, 브로모페닐아릴에테르 100g을 별도의 용기에 잘 혼합시켜 투입시킨다. 30 g of aluminum hydroxide (Al (OH) ₃), 100 g of magnesium hydroxide (Mg (OH) ₂), 300 g of water-soluble phenolic resin (70% solids), and 13 g of methane sulfonic acid are mixed in advance, and 100 g of bromophenylaryl ether is separately mixed. Mix well into the container.

배합기에서 30분 정도 200rpm으로 교반하게 되면 첨가된 혼합물들이 발포립자에 균일하게 피막 코팅 된다. 이렇게 하여 얻어진 발포립자를 60℃ 건조기에 5분정도 건조시키면 본 발명에서 목적으로 하는 불연성을 갖는 난연 폴리스티렌 발포체 수지 입자를 얻을 수 있다.  When the mixture is stirred at 200 rpm for about 30 minutes, the added mixture is uniformly coated on the foam particles. When the thus obtained foamed granules are dried in a 60 ° C. dryer for about 5 minutes, a flame retardant polystyrene foam resin particle having a nonflammable target of the present invention can be obtained.

코팅 피막 된 난연 폴리스티렌 발포체 수지입자로 건축물의 보온단열재나 건축물의 패널 단열재로 성형 후 건축물의 내장재료 및 구조의 난연성 시험방법(KS F2271)에 따라 테스트 하였다. Coated flame-retardant polystyrene foam resin particles were molded into the thermal insulation of the building or the panel insulation of the building, and then tested according to the test method for flame retardancy of the interior materials and structures of the building (KS F2271).

그 결과 화염을 전면으로 받더라도 내장재료의 피막에 다공성 char(탄화코어)에 의한 방화층이 즉시 형성되어 난연 3 급에 준하는 불연성을 나타내었다.As a result, even if the flame was applied to the front surface, a fireproof layer formed by porous char (carbide core) was immediately formed on the coating of the interior material, and thus showed a nonflammability similar to that of flame retardant class 3.

비교실시예 Comparative Example

발포 폴리스티렌 수지입자를 가압식 배치(batch)발포기로 80배(비중=0.012)로 예비 발포하여 얻은 폴리스티렌 발포립자 300g을 교반기가 장착된 100L 배합기에 투입하여 서서히 교반한다. 여기에 붕소계 무기물 300g, 페놀수지 400g 를 취하여 미리 혼합하고 용기에 잘 혼합시켜 투입시키고, 헥사브로모 싸이크로도데칸 30g을 별도의 용기에 잘 혼합시켜 투입시킨다. 300 g of polystyrene foam granules obtained by pre-expanding the expanded polystyrene resin particles at 80 times (specific gravity = 0.012) with a pressurized batch foaming machine are introduced into a 100L blender equipped with a stirrer and stirred slowly. Here, 300 g of boron-based inorganic material and 400 g of phenol resin are taken, mixed in advance, mixed well in a container, and mixed with 30 g of hexabromo cyclododecane in a separate container.

배합기에서 30분 정도 200rpm으로 교반하게 되면 첨가된 혼합물들이 발포립자에 균일하게 피막 코팅된다. 이렇게 하여 얻어진 발포립자를 50℃ 건조기에 50 분 정도 건조시켜 난연 폴리스티렌 발포체 수지 입자를 얻을 수 있다. 이렇게 얻은 발포립자의 경우 50℃에서 50분 이상 건조시켰다. When the mixture is stirred at 200 rpm for about 30 minutes, the added mixture is uniformly coated on the foam particles. The foamed granules thus obtained are dried in a 50 ° C. dryer for about 50 minutes to obtain flame-retardant polystyrene foam resin particles. Thus obtained foam granules were dried at 50 ° C. for at least 50 minutes.

비교실시예의 방법으로 얻은 수지입자로 건축물의 보온단열재나 건축물의 패널 단열재로 성형 후 건축물의 내장재료 및 구조의 난연성 시험방법(KS F2271)에 따라 테스트 하였다. The resin particles obtained by the method of the comparative example were molded into a heat insulating material of a building or a panel heat insulating material of a building, and then tested according to the test method for flame retardancy of the interior material and structure of the building (KS F2271).

페놀수지의 끈적임으로 인하여 발포립자끼리 뭉치는 현상이 발생되었으며, 발포립 표면으로부터 분말이탈이 심하게 발생되었으며, 그 결과 화염을 전면으로 받으면 화염불꽃은 발생하지 않았어도 성형체의 형상 붕괴가 발생되어 난연3급 수준에 준하는 불연성을 나타내지 못했다.Due to the stickiness of the phenolic resin, agglomeration of the foamed particles occurred, and powder detachment occurred severely from the surface of the foamed grain.As a result, when the flame was received to the front, the shape collapse of the molded body occurred even though the flame did not occur. It did not show a level of incombustibility.

실시예 7 융착성 시험Example 7 Adhesion Test

상기 실시예 1 - 6 에서 얻어진 시료로 100 x 50 x 200 mm 시편을 제조한 후, 동일한 힘으로 시편을 굴곡시켜 파쇄하였다. 파쇄된 시편의 단면을 육안으로 관측하여 균열이 형성되거나 파쇄된 발포립의 수를 총 발포립의 수에 대해서 백분율 로 나타내어 성형품의 융착성을 표시하였다. 융착성이 좋으면, 파쇄된 발포립의 분율이 높게 되며, 반대가 된다. After the 100 x 50 x 200 mm specimens were prepared from the samples obtained in Examples 1-6, the specimens were bent and crushed with the same force. The cross section of the crushed specimen was visually observed to indicate the fusion of the molded article by indicating the number of cracked or broken foamed granules as a percentage of the total foamed grains. If the adhesion is good, the fraction of the crushed foam granules is high, and vice versa.

실시예Example 융착성(%)Adhesiveness (%) 실시예 1Example 1 7171 실시예 2Example 2 7575 실시예3Example 3 8080 실시예4Example 4 7575 실시예5Example 5 7676 실시예6Example 6 7777 비교실시예Comparative Example 3030

본 발명에 의해서 폴리스티렌 발포체 입자에 수산화 금속화합물, 열경화성 수지, 및 경화촉매를 코팅, 경화시킴으로서 제조되는 신규한 난연 폴리스티렌 발포입자의 제조단계를 포함하는 신규한 판넬의 제조방법과 폴리스티렌 발포체 입자에 수산화 금속화합물, 열경화성 액상 페놀 수지, 및 경화촉매를 코팅, 경화시킴으로서 제조되는 신규한 난연 폴리스티렌 발포입자가 제공되었다.According to the present invention, there is provided a novel method for preparing a panel comprising the steps of preparing a new flame retardant polystyrene foam particle prepared by coating and curing a metal hydroxide compound, a thermosetting resin, and a curing catalyst on a polystyrene foam particle and a metal hydroxide on the polystyrene foam particle. Provided are novel flame retardant polystyrene foam particles prepared by coating and curing compounds, thermosetting liquid phenolic resins, and curing catalysts.

또한 본 발명에 의해서 폴리스티렌 발포체 입자에 수산화 금속화합물, 열경화성 수지, 및 경화촉매를 코팅, 경화시킴으로서 제조되는 신규한 난연 폴리스티렌 발포입자를 이용하여 제조되는 판넬이 제공되었다. 본 발명에 의해서 얻어진 난연 폴리스티렌 발포체수지입자로 건축물의 보온 단열재나, 패널단열재는 기존의 일반 스티로폴 단열재와 비교시 가공성 및 일반 물성면에 큰 차이 없이 사용가능한 특징을 갖고있다. Also provided by the present invention is a panel made of novel flame retardant polystyrene foam particles prepared by coating and curing a metal hydroxide compound, a thermosetting resin, and a curing catalyst on a polystyrene foam particle. Flame-retardant polystyrene foam resin particles obtained by the present invention as a thermal insulating material or a panel insulation material of the building has a feature that can be used without significant difference in terms of workability and general physical properties compared to the conventional styropol insulation.

Claims (7)

폴리스티렌 발포입자 100 중량부에 수산화 알루미늄( Al(OH)₃), 수산화 마그네슘( Mg(OH)₂), 및 이들의 혼합물로 이루어진 그룹에서 선택되는 수산화 금속 화합물 10-80중량부, 열경화성 액상 페놀수지 10-300중량부, 및 상기 페놀수지 100 중량부를 기준으로 0.02-30중량부의 경화촉매를 코팅, 가교 시키는 단계를 포함하는 난연 폴리스티렌 발포체 수지입자의 제조 방법.10 to 80 parts by weight of a metal hydroxide compound selected from the group consisting of aluminum hydroxide (Al (OH) ₃), magnesium hydroxide (Mg (OH) ₂), and mixtures thereof, 100 parts by weight of polystyrene foam particles, and a thermosetting liquid phenol resin 10-300 parts by weight, and coating and crosslinking 0.02-30 parts by weight of a curing catalyst based on 100 parts by weight of the phenolic resin, the method of producing a flame-retardant polystyrene foam resin particles. 삭제delete 제 1 항에 있어서, 상기 열경화성 액상 페놀 수지는 불휘발분이 25 - 85 중량 % 인 수용성 또는 유용성 액상 페놀 수지인 난연 폴리스티렌 발포체 수지입자의 제조 방법.The method for producing flame retardant polystyrene foam resin particles according to claim 1, wherein the thermosetting liquid phenol resin is a water-soluble or oil-soluble liquid phenol resin having a nonvolatile content of 25 to 85% by weight. 제 1 항에 있어서, 상기 경화 촉매는 염화암모늄, 인산, 메탄 설폰산, 페놀 설폰산, p-톨루엔설폰산 및 이들의 혼합물로 이루어진 그룹에서 선택되는 난연 폴리스티렌 발포체 수지입자의 제조 방법.The method of claim 1, wherein the curing catalyst is selected from the group consisting of ammonium chloride, phosphoric acid, methane sulfonic acid, phenol sulfonic acid, p-toluenesulfonic acid, and mixtures thereof. 제 1 항에 있어서, 헥사브로모 사이크로도데칸(HBCD), 테트라브로모 싸이크 로 옥탄(TBCO), 테트라 브로모페닐아릴에테르(TPA) 및 이들의 혼합물로 이루어진 그룹에서 선택되는 할로겐화 난연제를 10 - 90 중량부 더 포함하는 난연 폴리스티렌 발포체 수지입자의 제조 방법.The halogenated flame retardant according to claim 1, wherein the halogenated flame retardant is selected from the group consisting of hexabromo cyclododecane (HBCD), tetrabromo cyclooctane (TBCO), tetra bromophenylarylether (TPA) and mixtures thereof. -Method for producing a flame-retardant polystyrene foam resin particles further comprising 90 parts by weight. 제 1 항에 있어서, 상기 발포된 폴리스티렌 비중은 0.03 - 0.010 인 방법.The method of claim 1 wherein the foamed polystyrene specific gravity is 0.03-0.010. 제 1 항의 방법으로 제조된 난연 폴리스티렌 발포체 수지입자.Flame-retardant polystyrene foam resin particles prepared by the method of claim 1.
KR1020040108342A 2004-12-18 2004-12-18 Method for producing non-inflammable pre-expanded polystyrene beads that keeps its shape when it burnt KR100602196B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040108342A KR100602196B1 (en) 2004-12-18 2004-12-18 Method for producing non-inflammable pre-expanded polystyrene beads that keeps its shape when it burnt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040108342A KR100602196B1 (en) 2004-12-18 2004-12-18 Method for producing non-inflammable pre-expanded polystyrene beads that keeps its shape when it burnt

Publications (2)

Publication Number Publication Date
KR20060069680A KR20060069680A (en) 2006-06-22
KR100602196B1 true KR100602196B1 (en) 2006-07-19

Family

ID=37163605

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040108342A KR100602196B1 (en) 2004-12-18 2004-12-18 Method for producing non-inflammable pre-expanded polystyrene beads that keeps its shape when it burnt

Country Status (1)

Country Link
KR (1) KR100602196B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839651B1 (en) 2006-01-17 2008-06-19 주식회사 동부하이텍 Expandable polystyrene bead coated by aluminium particle, and production method thereof
WO2012005424A1 (en) 2010-07-08 2012-01-12 제일모직 주식회사 Flame retardant foam polystyrene bead and method for manufacturing same
KR101936763B1 (en) 2017-06-30 2019-04-03 대웅엔텍 주식회사 The manufacture machine of self-extinguishing Expandable Polystyrene

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536941A (en) * 2007-05-30 2010-12-02 ジャ−チョン キム Expandable polystyrene beads having excellent heat insulation and flame retardancy and method for producing the same
KR100880905B1 (en) * 2007-09-18 2009-02-03 정우화인 주식회사 Method of coating eps beads for fire proof board
KR100852622B1 (en) * 2007-10-09 2008-08-18 주식회사 우영 Manufacturing method of flame retardant expanded polystyrene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128824A (en) 2001-10-26 2003-05-08 Kanegafuchi Chem Ind Co Ltd Styrenic resin foam and method for producing the same
JP2003138053A (en) 2001-11-08 2003-05-14 Kanegafuchi Chem Ind Co Ltd Styrenic resin foamed body and process for producing the same
KR20040084006A (en) * 2003-03-26 2004-10-06 주식회사 현암 A non-combustion polystyrene panel and method for manufacturing of it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128824A (en) 2001-10-26 2003-05-08 Kanegafuchi Chem Ind Co Ltd Styrenic resin foam and method for producing the same
JP2003138053A (en) 2001-11-08 2003-05-14 Kanegafuchi Chem Ind Co Ltd Styrenic resin foamed body and process for producing the same
KR20040084006A (en) * 2003-03-26 2004-10-06 주식회사 현암 A non-combustion polystyrene panel and method for manufacturing of it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839651B1 (en) 2006-01-17 2008-06-19 주식회사 동부하이텍 Expandable polystyrene bead coated by aluminium particle, and production method thereof
WO2012005424A1 (en) 2010-07-08 2012-01-12 제일모직 주식회사 Flame retardant foam polystyrene bead and method for manufacturing same
KR101936763B1 (en) 2017-06-30 2019-04-03 대웅엔텍 주식회사 The manufacture machine of self-extinguishing Expandable Polystyrene

Also Published As

Publication number Publication date
KR20060069680A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
TWI477552B (en) Fire-resistant polyurethane material and fire-resistant structure
US20100301509A1 (en) Coating composition for foam particles, and method for the production of molded foam bodies
JP2009506150A (en) Foam plate manufacturing method
US20100204350A1 (en) Expandable polystyrene bead with superior adiabatic and flameproof effects and method of producing the same
EP2702119B1 (en) Fire retardant polystyrene
KR20080047416A (en) Method for producing cellular material slabs
KR100602205B1 (en) Method for producing non-inflammable pre-expanded polystyrene beads that keeps its shape when it burnt containing expandable graphite
US10494497B2 (en) Processes for preparing foam composites
KR101096798B1 (en) Expandable polystyrene bead and method for preparing the same
KR101493434B1 (en) Flame retardant coating composition for expanded polystyrene
KR100602196B1 (en) Method for producing non-inflammable pre-expanded polystyrene beads that keeps its shape when it burnt
KR101608508B1 (en) Method of semi-non-combustible foam styrene foam
KR101093995B1 (en) Flame-retardant expanded polystyrene bead manufacturing method
KR20100120088A (en) Expandable polystyrene bead with fireproofing property, the manufacturing method thereof and nonflammable styropor producing the same bead
US6342540B1 (en) Method for producing water expandable styrene polymers
KR100878775B1 (en) Polystrene foam bead improved its incombustibility and polystyrene foam using thereof and method for producing the same
US3994836A (en) Process for preparing flame resistant molded articles of foamed polystyrene
KR101795750B1 (en) Composition for flame retardant, flame retardant polystyrene foam and manufacturing method of the same
KR20120034638A (en) Particulate, expandable polystyrene as well as a method for preparing the same
KR100986100B1 (en) Method of Coating Expendable Polystyrene Beads for Fire Proof Board
KR101555612B1 (en) Preparation method of drivit associate nonflammable expanded polystyrene for facing material of building
KR101428949B1 (en) Flame resistance coating liquid and the manufacturing process for expanded polystyreng bead
KR101928336B1 (en) Composition for polystyrene foam and a manufacturing method for extruded polystyrene form using the same
KR102556207B1 (en) Organic-inorganic hybrid flame retarding compositions for preparing flame retarding EPS beads, the flame retarding EPS beads coated by the compositions and the method for preparing the same
KR101729384B1 (en) Flame Retardant Composition and Molded Article Comprising The Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130709

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140610

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150706

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160708

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170710

Year of fee payment: 12