KR100586399B1 - Preparation of Drink with Extract from Medicinal Plants - Google Patents

Preparation of Drink with Extract from Medicinal Plants Download PDF

Info

Publication number
KR100586399B1
KR100586399B1 KR1020040008865A KR20040008865A KR100586399B1 KR 100586399 B1 KR100586399 B1 KR 100586399B1 KR 1020040008865 A KR1020040008865 A KR 1020040008865A KR 20040008865 A KR20040008865 A KR 20040008865A KR 100586399 B1 KR100586399 B1 KR 100586399B1
Authority
KR
South Korea
Prior art keywords
ginger
extract
water extract
starch
minutes
Prior art date
Application number
KR1020040008865A
Other languages
Korean (ko)
Other versions
KR20050080775A (en
Inventor
안병용
황호선
Original Assignee
안병용
영농조합법인매원식품
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안병용, 영농조합법인매원식품 filed Critical 안병용
Priority to KR1020040008865A priority Critical patent/KR100586399B1/en
Publication of KR20050080775A publication Critical patent/KR20050080775A/en
Application granted granted Critical
Publication of KR100586399B1 publication Critical patent/KR100586399B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • A23L19/10Products from fruits or vegetables; Preparation or treatment thereof of tuberous or like starch containing root crops
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/02Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation containing fruit or vegetable juices

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

본 발명은 생강 열수추출물을 터마밀 및 비스코짐으로 처리하여 전분의 침전이 차단된 생강추출물을 제조하는 생강추출물의 제조방법에 관한 것이다. The present invention relates to a method for preparing a ginger extract by treating the ginger hot water extract with thermamil and biskojim to produce a ginger extract blocked the starch.

또한 본 발명은 생강 열수추출물을 터마밀 및 비스코짐으로 처리하여 전분의 침전이 차단된 생강추출물을 제조하는 단계; 상기 생강추출물을 생강음료의 배합비 총량을 기준으로 0.5∼10.0 중량% 첨가하여 생강음료를 제조하는 단계로 이루어진 생강음료의 제조방법에 관한 것이다.In another aspect, the present invention comprises the steps of preparing a ginger extract is blocked by sedimentation of starch by treating the ginger hot water extract with Tamil and Biskojim; The present invention relates to a ginger beverage manufacturing method comprising the step of preparing a ginger beverage by adding 0.5 to 10.0% by weight, based on the total amount of the ginger beverage.

생강, 열수추출물, 터마밀, 비스코짐, 전분의 침전, 생강음료Ginger, Hot Water Extract, Tamil, Biscoim, Precipitation of Starch, Ginger Drink

Description

생강추출물 및 생강음료의 제조방법{Preparation of Drink with Extract from Medicinal Plants} Preparation of Ginger Extract and Ginger Beverage {Preparation of Drink with Extract from Medicinal Plants}             

도 1은 터마밀(termamyl) 처리 농도에 따른 생강 물추출물의 요오드가를 나타낸 것이다.Figure 1 shows the iodine number of ginger water extract according to the termamyl treatment concentration.

도 2는 생강물추출물과 터마밀의 반응온도에 따른 요오드반응을 나타낸 것이다.Figure 2 shows the iodine reaction according to the reaction temperature of ginger water extract and Tamil.

도 3은 터마밀의 반응시간에 따른 생강 물추출물의 전분분해를 나타낸 것이다.Figure 3 shows the starch decomposition of ginger water extract according to the reaction time of the turmeric.

도 4는 글루코스를 이용한 환원당 표준곡선을 나타낸 것이다.Figure 4 shows the reduced sugar standard curve using glucose.

도 5는 비스코짐(viscozyme) 처리량에 따른 환원당 측정을 나타낸 것이다.Figure 5 shows the reducing sugar measurement according to the viscozyme throughput.

도 6은 비스코짐 첨가량에 따른 침전현상을 나타낸 것이다.Figure 6 shows the precipitation phenomenon according to the amount of biscozyme added.

도 7은 터마밀을 처리한 생강 물추출물에 대한 비스코짐의 반응온도에 따른 환원당측정을 나타낸 것이다.Figure 7 shows the measurement of reducing sugars according to the reaction temperature of the biscozyme for ginger water extract treated with Termemil.

도 8은 터마밀을 처리한 생강 물추출물에 대한 비스코짐의 반응시간에 따른 환원당 측정을 나타낸 것이다.Figure 8 shows the measurement of reducing sugars according to the reaction time of the biscozyme to ginger water extract treated with Termemil.

도 9는 터마밀을 처리한 생강 물추출에 대한 아밀로글루카제(amyloglucase) 농도변화에 따른 환원당 측정을 나타낸 것이다.Figure 9 shows the measurement of reducing sugars according to the amylo gluase (amyloglucase) concentration change for the water extracted ginger treated with turmeric.

도 10은 터마밀을 처리한 생강 물추출에 대한 아밀로글루카제 반응온도에 따른 환원당측정을 나타낸 것이다.Figure 10 shows the measurement of reducing sugars according to the amyloglucase reaction temperature for the ginger water extract treated with turmeric.

도 11은 터마밀을 처리한 생강 물추출에 대한 아밀로글루카제 반응시간에 따른 환원당 측정을 나타낸 것이다.Figure 11 shows the measurement of reducing sugars according to the amyloglucase reaction time for the ginger water extract treated with Tamil.

도 12는 터마밀과 비스코짐을 동시에 처리한 생강 물추출에 대한 아밀로글루카제 농도에 따른 환원당 측정을 나타낸 것이다.Figure 12 shows the measurement of reducing sugars according to the amyloglucase concentration for ginger water extraction treated simultaneously with Termemil and Biscoimim.

도 13은 생강열수추출물 농축 공정도를 나타낸 것이다.Figure 13 shows the ginger hot water extract concentration process chart.

도 14는 생강추출액의 사진을 나타낸 것이다.Figure 14 shows a picture of the ginger extract.

도 15는 생강 물추출물의 생육억제 효과를 나타낸 것이다.Figure 15 shows the growth inhibitory effect of ginger water extract.

도 16은 살모넬라 타이피무리움(Salmonella typhimurium) TA98에서 생강 물추출물의 항돌연변이원성을 나타낸 것이다.Figure 16 shows the antimutagenicity of ginger water extract in Salmonella typhimurium TA98.

도 17은 살모넬라 타이피무리움(Salmonella typhimurium) TA100S에서 생강 물추출물의 항돌연변이원성을 나타낸 것이다.Figure 17 shows the antimutagenicity of ginger water extract in Salmonella typhimurium TA100 S.

본 발명은 생강 열수추출물을 터마밀 및 비스코짐으로 처리하여 전분의 침전이 차단된 생강추출물을 제조하는 생강추출물의 제조방법에 관한 것이다. 더욱 상 세하게는 본 발명은 생강 열수추출물에 터마밀 100∼300ppm을 첨가하여 70∼96℃에서 1∼60분 처리한 후 비스코짐 4,000∼8,000ppm을 첨가하여 30∼70℃에서 10∼60분 처리하여 전분의 침전이 차단된 생강추출물을 제조하는 생강추출물의 제조방법에 관한 것이다.The present invention relates to a method for preparing a ginger extract by treating the ginger hot water extract with thermamil and biskojim to produce a ginger extract blocked the starch. More specifically, the present invention adds 100-300ppm of teramyl to ginger hot water extract, and then treats 1-60 minutes at 70-96 ° C., then adds 4,000-8,000 ppm of biscozym at 10-60 minutes at 30-70 ° It relates to a method for producing a ginger extract to produce a ginger extract is treated to block the precipitation of starch.

또한 본 발명은 생강 열수추출물을 터마밀 및 비스코짐으로 처리하여 전분의 침전이 차단된 생강추출물을 제조하는 단계; 상기 생강추출물을 생강음료의 배합비 총량을 기준으로 0.5∼10.0 중량% 첨가하여 생강음료를 제조하는 단계로 이루어진 생강음료의 제조방법에 관한 것이다.In another aspect, the present invention comprises the steps of preparing a ginger extract is blocked by sedimentation of starch by treating the ginger hot water extract with Tamil and Biskojim; The present invention relates to a ginger beverage manufacturing method comprising the step of preparing a ginger beverage by adding 0.5 to 10.0% by weight, based on the total amount of the ginger beverage.

국내산 생강시장은 연간 1,500억원 규모의 시장을 형성하는 농가의 고소득 작물이지만(참조: 농업통계정보, 국립농산물품질관리원. 2001년) 가격변동이 심하고 저장성이 용이하지 못하는 단점이 있다. 생 생강의 적정 저장조건은 온도 13∼15℃, 습도 90∼15%로서 10℃ 이하에서는 저온장해를 입어 부패하게 되고, 18℃이상에서는 발아하게 된다(참조: Enmaya, H, Dictionary of Food Science. p. 300. Tokyo, Japan(1981)). 따라서 토굴저장은 인위적인 저장관리가 불가능하므로 부패율이 5개월 내에 10∼50%로 상당히 높은 뿐만 아니라 4월 이후에는 저장 중 발아율도 높아 질적, 양적 손실률이 적지 않게 발생하고 있다(참조: Lee, S.E., Jeong, M.C. and Chung, T.Y, Studies on the development of storage technology for ginger. Korea Food Research Institute, El294-0538 (1994)). 또한 동절기에는 냉해 때문에 생 생강은 거의 유통되지 않으며, 부패가스의 발생, 출하시기의 선택, 작업상의 불편함 등 많은 문제점들을 가지고 있다. 생강은 이상과 같은 문제점 들 때문에 생 생강의 형태로 장기간 유통하는 것이 매우 어려운 실정이다. 국내 생강은 생강 다대기, 생강차, 한약제 및 음료제품의 향미제의 원료로 사용되고 있으며, 산업적으로 가장 많이 이용되고 있는 국산 생강은 김치의 원료로 다대기의 형태가 주류를 이루고 있다. 현재 전북·충남이 우리나라 총생산량의 91%를 차지하고 있으며 전북은 전국 생산량의 19.78%를 생산하고 있으며 전북생산량의 50% 이상이 봉동지역에서 생산되고 있다. 전북도에서 최대의 생강을 생산하는 봉동지역의 농가소득 증대를 위하여 생강조합 산하 가공공장이 운영되고 있으나 대부분 동결건조품의 생산이 주력 사업이며, 생강을 이용한 제품은 생강다대기와 생강차의 제품에 국한되어 있는 실정이다. 따라서 생강을 다량 소비 할 수 있는 대중적인 다류개발이 요구되는 바이다. The domestic ginger market is a high-income crop for farmers that forms a market worth 150 billion won per year (Refer to Agricultural Statistics, National Agricultural Products Quality Management Service, 2001). Proper storage conditions for raw ginger are 13-15 ° C and 90-15% of humidity, resulting in decay due to low temperature damage below 10 ° C, and germination above 18 ° C (see Enmaya, H, Dictionary of Food Science. p. 300. Tokyo, Japan (1981). Therefore, crypt storage cannot be artificially managed, so the corruption rate is considerably high (10-50% within 5 months), and the germination rate during storage after April is high, resulting in a small number of qualitative and quantitative losses (Refer to Lee, SE, Jeong, MC and Chung, TY, Studies on the development of storage technology for ginger.Korea Food Research Institute, El294-0538 (1994)). In addition, in the winter, raw ginger is rarely distributed due to cold conditions, and there are many problems such as generation of decay gas, selection of shipping time, and inconvenience in working. Ginger is very difficult to distribute for a long time in the form of raw ginger because of the above problems. Domestic ginger is used as a raw material for flavoring ginger, ginger tea, herbal medicine and beverage products. Domestic ginger, which is the most used industrially, is the raw material of kimchi, and the form of many daegi is the mainstream. Currently, Jeonbuk and Chungnam account for 91% of Korea's total production, and Jeonbuk produces 19.78% of the country's total production, and more than 50% of Jeonbuk's production is produced in Bongdong. In order to increase farmers' income in Bongdong area, which produces the largest ginger in Jeonbuk-do, Ginger Union's processing plant operates, but most of the production of freeze-dried products is mainly focused on the products of ginger tea and ginger tea. It is true. Therefore, it is required to develop popular varieties that can consume a large amount of ginger.

생강과 관련된 연구들도 생강의 저장방법(참조: Lee, S.E., Jeong, M.C. and Chung, T.Y, Studies on the development of storage technology for ginger. Korea Food Research Institute, El294-0538 (1994); Choi, Y,H., Lee, S.B., So, J.D. and Lee, G.S. The effects of storage amount and ventilator size on the quality of ginger during cellar storage, J. Pastharvest Sci. Tech. 2: 195-202 (1995); Etejere, E.O. and Bhat, R.B. Traditional and modern storage methods of underground root and stem crops in Nigeria. Turrialba 36: 33-37 (1986) 및 Oti, E., Okwuolu, P.A., Ohiri, VU. and Ghijioke, G.O. Biochemical changes in ginger rhizomes stored under river sand and under dry grass in pits in the humid tropics. Trop. SCi. 28: 87-94(1988))이나 저장 전처리(참조: Yusof, N. Sprout inhibition by gamma irradiation in fresh ginger(Zingiber offcinale Roscoe). J. Food Proc. Preserv. 34: 113-122 (1990); Andrew, L.S., Cadwallader, K.R., Grodner, R.M. and Chung, H.Y. Chemical and microbial quality of irradiated ground ginger. Food Sci. 60: 829-832 (1995); Subramanyam, H., Souza, S. and Snvastava, H.C. Storage behaviour of ginger. p. 5. Proc. Symp. Spices-Role Nat'l. Econ., 1st(1962); Pautl, R.E., Chen, N.J. and Goo, T.T.C. Compositional changes in ginger rhizomes during storage. J. Am. Soc. Hort. Sci. 113: 584-588 (1988); Brown, B.1. Ginger storage in acidified sodium metabisulphite solutions. Food Technol.7: 153-162 (1972); 및 Okwuowulu, P,A. and Nnodu, E.C. Some effects of pre-storage chemical treatments and age at harvesting on the stability of fresh ginger rhizomes. Trop. Sci.28: 123-125 (1988))에 대한 연구만이 진행되어 왔으며, 생강의 저장성 증진을 위한 가공기술개발(참조: Shin, A. Evaluation of quality of ginger oleoresin by thermalanalysis, Korean J. Food Sci. Technol. 22: 229-233 (1990)), 생강차 제조기술개발(참조: Jo, K.S. Factors affecting the nonenzymatic browning and its inhibition during storage of ginger paste. Ph.D. dissertation, Dongguk Univ., Seoul (1994)), 생강 페이스트 제조 기술에 관한 연구정도가 보고되어 있을 뿐이다. 그러나 선진국에서는 생강을 오레오레신(oleoresin)과 이센셜 오일(essential oil)의 형태로 생강소다, 생강캔디, 생강차, 생강음료 등의 소재로 이용하고 있으며(참조: Choi, M.S., Kim, D.H., Lee, K.H. and Lee, Y.C. Effect of additives on quality attributes of minced ginger during refrigerated storage. Korean J. Food Sci. Technol. 34: 1048-1056 (2002)) 특히 호주에서는 생강을 이용한 탄산음료가 선풍적으로 시음되고 있다. 따라서 생강 음료의 기호도를 향상시켜 외국인이 즐겨 시음할 수 있는 음료개발은 생강의 대량소비에 크게 이바지 하리라 기대가 된다. Ginger-related studies are also described in Ginger's storage methods (Lee, SE, Jeong, MC and Chung, TY, Studies on the development of storage technology for ginger.Korea Food Research Institute, El294-0538 (1994); Choi, Y , H., Lee, SB, So, JD and Lee, GS The effects of storage amount and ventilator size on the quality of ginger during cellar storage, J. Pastharvest Sci. Tech. 2: 195-202 (1995); Etejere, EO and Bhat, RB Traditional and modern storage methods of underground root and stem crops in Nigeria.Turirialba 36: 33-37 (1986) and Oti, E., Okwuolu, PA, Ohiri, VU. And Ghijioke, GO Biochemical changes in ginger rhizomes stored under river sand and under dry grass in pits in the humid tropics.Trop. SCi. 28: 87-94 (1988)) or storage pretreatment (see Yusof, N. Sprout inhibition by gamma irradiation in fresh ginger (Zingiber offcinale) Roscoe) .J. Food Proc.Preserv. 34: 113-122 (1990); Andrew, LS, Cadwallader, KR, Grodner, RM and Chung, HY Chemical and microbial quality of irradiated ground Ginger.Food Sci. 60: 829-832 (1995); Subramanyam, H., Souza, S. and Snvastava, HC Storage behavior of ginger. p. 5. Proc. Symp. Spices-Role Nat'l. Econ., 1st (1962); Pautl, RE, Chen, NJ and Goo, TTC Compositional changes in ginger rhizomes during storage. J. Am. Soc. Hort. Sci. 113: 584-588 (1988); Brown, B.1. Ginger storage in acidified sodium metabisulphite solutions. Food Technol. 7: 153-162 (1972); And Okwuowulu, P, A. and Nnodu, EC Some effects of pre-storage chemical treatments and age at harvesting on the stability of fresh ginger rhizomes. Trop. Sci. 28: 123-125 (1988)) has only been studied, and development of processing technology to enhance the shelf life of ginger (see Shin, A. Evaluation of quality of ginger oleoresin by thermalanalysis, Korean J. Food Sci) Technol. 22: 229-233 (1990), Development of ginger tea manufacturing technology (Jo, KS Factors affecting the nonenzymatic browning and its inhibition during storage of ginger paste.Ph.D.dissertation, Dongguk Univ., Seoul (1994) ), Only the research on the ginger paste manufacturing technology has been reported. In developed countries, however, ginger is used in the form of oleoresin and essential oils, such as ginger soda, ginger candy, ginger tea, and ginger beverage (see: Choi, MS, Kim, DH, Lee). , KH and Lee, YC Effect of additives on quality attributes of minced ginger during refrigerated storage.Korean J. Food Sci.Technol. 34: 1048-1056 (2002)) . Therefore, the development of drinks that can be enjoyed by foreigners by improving the preference of ginger drinks is expected to contribute greatly to the mass consumption of ginger.

생강에는 탄수화물이 약 70∼79%, 전분은 40∼50% 정도 함유되어 있고, 생강 전분은 높은 호화온도(75∼85℃)를 보이며 90℃까지 스웰링(swelling)이 거의 일어나지 않기 때문에 가교전분(cross-linked starch)과 비슷한 성질을 나타낸다. 따라서 생강추출물을 이용하여 음료를 제조할 경우 생강추출물에 함유되어 있는 전분질의 용해와 침전으로 인하여 시각적 관능미와 수율이 저하된다. 음료를 제조할 경우 침전물로 인한 시각적 관능이 급격히 저하된다. 따라서 혼탁물을 청징하기 위한 방법으로 여러 효소제를 사용하여 각각의 작용특성을 분석하여 혼탁현상을 제거하기 위한 공법을 개발하고 생강 고유의 기능성을 입증하여 생강음료의 소비를 촉진함으로써 생산농가의 소득창출에 기여하고자 한다.
Ginger contains about 70 to 79% of carbohydrates and about 40 to 50% of starch. Ginger starch has high gelatinization temperature (75 ~ 85 ℃) and almost no swelling up to 90 ℃. It has similar properties to (cross-linked starch). Therefore, when the beverage is prepared using the ginger extract, the visual sensuality and yield are lowered due to the dissolution and precipitation of the starch contained in the ginger extract. In the manufacture of beverages, the visual sensory effects of sediments are drastically reduced. Therefore, as a method for clarifying turbidity, we developed a method for eliminating turbidity by analyzing each action characteristic by using various enzymes and promoting the consumption of ginger beverages by proving ginger's inherent functionality to create income for farmers. To contribute.

본 발명은 생강 열수추출물을 터마밀 및 비스코짐으로 처리하여 전분의 침전이 차단된 생강추출물을 제조하는 생강추출물의 제조방법을 제공한다.
본 발명은 생강 열수추출물에 터마밀 및 비스코짐을 동시에 처리하여 전분의 침전이 차단된 생강추출물을 제조하는 것을 특징으로 하는 생강추출물의 제조방법을 제공한다.
한편, 바람직스럽게 상기 생강추출물의 제조방법은 생강 열수추출물에 터마밀 200 ppm을 첨가하여 80~95℃에서 3분 처리한 후, 비스코짐 4,000∼8,000ppm을 첨가하여 40∼60℃에서 20분 처리함으로써 전분의 침전이 차단된 생강 추출물을 제조하는 것이 좋다.
또한 본 발명은 상기에서 제조한 생강추출물을 생강음료의 배합비 총량을 기준으로 0.5∼10.0 중량% 첨가하여 생강음료를 제조하는 것을 특징으로 하는 생강음료의 제조방법을 제공한다.
The present invention provides a method for producing a ginger extract to treat ginger hot water extract with thermamil and biskojim to produce a ginger extract blocked the starch.
The present invention provides a method for producing a ginger extract, characterized in that to prepare the ginger extract is blocked by the precipitation of starch by simultaneously treating the turmeric and biskojim to ginger hot water extract.
On the other hand, preferably, the method of preparing the ginger extract is added 200 ppm of thermamil to the ginger hot water extract and treated for 3 minutes at 80 ~ 95 ℃, 4,000 ~ 8,000ppm is added to the biscojim 20 minutes treatment at 40 ~ 60 ℃ It is good to prepare a ginger extract by blocking the precipitation of starch.
In another aspect, the present invention provides a method for producing a ginger drink, characterized in that the ginger extract prepared by adding 0.5 to 10.0% by weight based on the total amount of the ginger beverage.

생강은 완주군 고산면에서 재배된 것을 전북생강조합으로부터 구입하여 사용하였으며 터마밀 120L, 비스코짐 120L과 아밀로글루카제 300 L은 (주)바이오시스사로부터 구입하였으며, 3,5-살리실산은 준세이(Junsei Chemical)사 제품, 로첼(Rochelle)염과 요오드(Iodine)는 시그마(Sigma)사 제품을 사용하였다. 항돌연변이 시험에 사용된 2-아미노플루오렌(2-aminofluorene; 2-AF), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 아플라톡신(aflatoxin), NADP(β-nicotinamide adenine dinucleotide phosphate), D-글루코스 6-포스페이트, β-나프토플라본(β-naphthoflavone), 페노바르비탈(phenobarbital), 다이메틸설폭사이드(dimethylsulfoxide; DMSO)은 시그마(U.S.A)사 제품을, 기타 시약은 1급 이상의 제품을 사용하였다. 실험용 래트(male, Sprague Dawley)는 대한실험동물(대전)로부터 구입하여 사용하였다.Ginger was grown in Gosan-myeon, Wanju-gun and purchased from Jeonbuk Ginger Union.Thermamil 120L, Biscoim 120L and Amyloglucase 300L were purchased from Biosys Co., Ltd., and 3,5-salicylic acid was produced by Junsei ( Junsei Chemical, Rochelle's salt and Iodine used Sigma. 2-aminofluorene (2-AF), 3-amino-1,4-dimethyl-5 H -pyrido [4,3- b ] indole (Trp-P-1) used in antimutation testing , Aflatoxin, β-nicotinamide adenine dinucleotide phosphate (NADP), D-glucose 6-phosphate, β-naphthoflavone, phenobarbital, dimethylsulfoxide (DMSO) (USA) Co., Ltd., and other reagents were used at least one grade. Experimental rats (male, Sprague Dawley) were purchased from Korean experimental animals (Daejeon).

생강을 수세한 후 겉 표면의 흙을 완전히 제거한 다음 5 mm간격으로 절세하였다. 절세한 생강 1kg과 정제수 9L를 약탕기에 넣고 95℃에서 2시간 동안 추출하 여 이를 여과하여 생강 물추출물을 얻었다. 항돌연변이 및 뇌 혈류량 시험에는 효소 처리된 여액을 동결건조하여 생강 물추출물 분말을 얻어 본 실험에 사용하였다.After washing with ginger, the soil on the outer surface was completely removed, and then cut at 5 mm intervals. 1kg of fine ginger and 9L of purified water were put in a medicine bath and extracted at 95 ° C. for 2 hours to obtain ginger water extract. In the antimutagenic and cerebral blood flow test, the enzyme-treated filtrate was lyophilized to obtain ginger water extract powder.

생강 물추출물 또는 터마밀을 처리한 생강 물추출물 1 mL, 증류수 1 mL과 0.01 N 요오드 용액(10%KI, 1%I2) 400 ㎕을 넣고 혼합한 후 5분간 방치하였다. 이를 UV-1601을 이용해 680 nm에서 흡광도를 측정하여 요오드가를 측정하였다.Add 1 mL of ginger water extract or ginger water extract treated with turmeric, 1 mL of distilled water and 400 μl of 0.01 N iodine solution (10% KI, 1% I 2 ), and leave for 5 minutes. The iodine number was measured by measuring the absorbance at 680 nm using UV-1601.

환원당 측정을 하기 위하여 A용액(4.5% NaOH용액 300 mL에 1% 3,5-니트로살리실산 용액 880 mL를 혼합하고, 이 혼합액에 로셀(Rochelle) 염 255 g을 용해)과 B용액(10 g의 결정 페놀을 10% NaOH용액 22 mL에 용해하고, 물은 가하여 100 mL로 만들고, 이 용액 69 ml에 NaHSO3 6.9 g을 용해)을 혼합하여 시약을 제조하였다. 시험관에 시료 용액 1 mL와 시약 3 mL를 가하고, 끓는 수욕 중에서 5분간 끓인 다음, 냉각한 후 물을 가하여 25 mL 혹은 50 mL로 정용하였다. 이를 내경 1 cm인 포토 셀(photo cell)에 넣어 550 nm의 파장에서 흡광도를 측정하였다(참조: 채수규외 5인. 표준 식품분석학, 지구문화사. p403-404).To measure reducing sugars, mix A solution (300 mL of 1% 3,5-nitrosalicylic acid solution with 300 mL of 4.5% NaOH solution, dissolve 255 g of Rochelle salt) and B solution (10 g of Crystal phenol was dissolved in 22 mL of 10% NaOH solution, water was added to make 100 mL, and 6.9 g of NaHSO 3 was dissolved in 69 ml of this solution) to prepare a reagent. 1 mL of the sample solution and 3 mL of the reagent were added to the test tube, and the mixture was boiled in a boiling water bath for 5 minutes, cooled, and added to 25 mL or 50 mL by adding water. The absorbance was measured at a wavelength of 550 nm in a photo cell with an internal diameter of 1 cm (Ref. 5, Chae Kyu et al., Standard Food Analysis, Geocultural History, p403-404).

균주로서 살모넬라 타이피무리움(Salmonella typhimurium) TA98과 살모넬라 타이피무리움(Salmonella typhimurium) TA100은 한국생명공학연구원 유전자은행으로부터 분양받아(각각의 기탁번호는 KCTC 2053와 KCTC 2054 임) 각각의 유전형질을 확인한 후 사용하였다.As a strain, Salmonella typhimurium TA98 and Salmonella typhimurium TA100 were distributed from the Korea Biotechnology Research Institute Gene Bank (each deposited number is KCTC 2053 and KCTC 2054). It was used after confirming.

S9 분획의 조제는 Ong 등의 방법(참조: Ong, T.M., Mukhtar, M., Wolf, C.R. and Zeiger, E. : Differential effects of cytochrome P450-inducers on promutagen activation capabilities and enzymatic activities of S-9 from rat liver. J. Environ. Pathol. Toxicol., 4, 55∼60 (1980))에 따라서 조제하였으며, 실험용 동물로는 200±10 g의 7주령 된 래트(male, Sprague Dawley)를, 유도물질로는 페노바르비탈(phenobarbital)과 베타-나프토플라본(β-naphtoflavone)을 사용하였다. 조제된 S9 분획은 "Nunc tube"에 1 mL씩 분주하여 -70℃에 보관하면서 사용하였다. S9 mix는 "Ames" 등의 방법에 따라 조제하였다. Formulation of the S9 fraction was carried out by Ong et al. (Ong, TM, Mukhtar, M., Wolf, CR and Zeiger, E .: Differential effects of cytochrome P450-inducers on promutagen activation capabilities and enzymatic activities of S-9 from rat liver. J. Environ. Pathol. Toxicol ., 4 , 55-60 (1980)), and 200 ± 10 g of 7 week old male (male, Sprague Dawley) as an inducer. Phenobarbital and beta-naphtoflavones were used. The prepared S9 fraction was dispensed into 1 mL of "Nunc tube" and stored at -70 ℃. S9 mix was prepared according to the method of "Ames".

균생육 억제효과 실험으로서 균생육에 미치는 생강추출물의 효과는 방법(참조: Ames, B.N. and Maron, D.M. Revised methods for the S. typhimurium mutagenicity test, Mutaion Res., 113, 173∼215 (1983))에 따라 수행하였다. 멸균 시험관에 0.5% S9 mix 0.5 mL, 각 농도별 시료 50 ㎕, 변이원 50 ㎕[2-AF(0.6 ㎍), Trp-P-1(0.4 ㎍), AFB1(0.5 ㎍)], "Oxoid nutrient broth No.2(25 g/L)"에서 하룻밤 배양한 균 배양액(1∼2×109/mL) 100 ㎕를 혼합하여 37℃에서 210 rpm으로 20분간 진탕 배양하였다. 이 배양액을 1/15 M 포스페이트 버퍼(pH 7.0)로 희석하여 5×103 CFU/mL의 농도로 맞춘 다음, 이 균 희석액 100 ㎕에 탑 아가(agar 6 g, NaCl 5 g/L (45℃)) 2 mL를 첨가하여 혼합하고 VBNM(agar 15g, 증류수 920 mL, 50×VB salt 20mL, 40% 글루코스 10 mL, "Oxoid nutrient broth No.2 (25 g/L) 50 mL") 평판배지 상에 도포하여 37℃에서 12시간 배양하였다. 이를 계수하여 생강 물추출물을 첨가하지 않은 대조구와 비교, 균 생육 억제유무를 판정하였다.The effect of ginger extract on fungal growth as a test of fungal growth inhibition was determined by methods (Ames, BN and Maron, DM Revised methods for the S. typhimurium mutagenicity test, Mutaion Res ., 113 , 173-215 (1983)). Followed. 0.5 mL of 0.5% S9 mix in a sterile test tube, 50 μl of sample for each concentration, 50 μl of mutant [2-AF (0.6 μg), Trp-P-1 (0.4 μg), AFB 1 (0.5 μg)], “Oxoid 100 μl of the culture medium (1-2 × 10 9 / mL) cultured overnight in nutrient broth No. 2 (25 g / L) "was mixed and incubated for 20 minutes at 37 rpm at 210 rpm. Dilute this culture with 1/15 M phosphate buffer (pH 7.0) to a concentration of 5 × 10 3 CFU / mL, then add 100 g of agar (6 g of agar, 5 g / L of NaCl (45 ° C) 2) Add 2 mL of mixture and mix with VBNM (15 g of agar, 920 mL of distilled water, 20 mL of 50 × VB salt, 10 mL of 40% glucose, “Oxoid nutrient broth No. 2 (25 g / L) 50 mL”) It was applied to and incubated for 12 hours at 37 ℃. By counting this, it was compared with the control group without the ginger water extract, and the presence or absence of bacterial growth inhibition was determined.

변이원성 및 항돌연변이원성 실험은 "Ames test"를 개량한 "preincubation" 방법(참조: Chen S.T., Hsu, C.Y., Hogan, E.L., Maricque, H., Balentine, J.D. A model of focal ischemic stroke in the rat : Reproducible extensive cortical infraction. Stroke 17(4), 738-743 (1986))으로 실시하였다. 미리 멸균시킨 시험관에 각 농도의 변이원 50 ㎕, 0.5% S9 mix 0.5 mL, 각 농도의 생강추출물 50 ㎕, "Oxoid nutrient broth" No.2에 하룻밤 배양시킨 균 배양액(1∼2×109CFU/mL, OD 0.4) 100 ㎕를 혼합하고, 37℃에서 210 rpm으로 20분간 진탕 배양하였다. 배양액에 미리 준비해 둔 0.5 mM 히스티딘과 바이오틴을 함유한 탑 아가 2 mL를 혼합한 후 미니멀 글루코스 아가 플레이트(agar 15g, 멸균수 930 mL, 50×VB salt 20 mL, 40% 글루코스 50 mL) 상에 도포, 평판 고화시킨 다음, 37℃에서 48시간 배양하여 발생한 복귀 돌연변이주(his + revertant colony)의 수를 계수하여 변이원성 및 항돌연변이원성을 판정하였다. 항돌연변이 효과(억제율)는 [M-S1 / (M-So)×100]으로 계산하였고, 돌연변이원 만을 첨가하였을 때 복귀 돌연변이주의 수를 M, 자연 복귀 돌연변이주의 수를 So, 돌연변이원과 시료를 첨가했을 때의 복귀 돌연변이주의 수를 S1으로 나타내었다. 각각의 실험은 2반복 2 플레이트 씩 실시하였다.Mutagenicity and antimutagenicity experiments were carried out using the "preincubation" method which improved the "Ames test" (see Chen ST, Hsu, CY, Hogan, EL, Maricque, H., Balentine, JD A model of focal ischemic stroke in the rat: Reproducible extensive cortical infraction.Stroke 17 (4), 738-743 (1986)). 50 μl of the mutagen at each concentration, 0.5 mL of 0.5% S9 mix, 50 μl of the ginger extract at each concentration, and bacteria culture cultured overnight in “Oxoid nutrient broth” No. 2 (1-2 × 10 9 CFU) / mL, OD 0.4) 100 μl were mixed and shaken at 37 ° C. for 210 minutes at 210 rpm. 2 mL of the top agar containing 0.5 mM histidine and biotin prepared in the culture was mixed and applied on a minimal glucose agar plate (15 g agar, 930 mL sterile water, 20 mL 50 × VB salt, 50 mL glucose). Mutagenicity and antimutagenicity were determined by counting the number of his + revertant colonies generated by incubating the plate for 48 hours at 37 ° C. The antimutagenic effect (inhibition rate) was calculated by [MS 1 / (M-So) × 100], and when the mutagen alone was added, the number of return mutants was M, the number of natural return mutants was So, and the mutagen and sample were added. return when the number of mutations is shown attention to S 1. Each experiment was conducted with 2 replicates 2 plates.

실험예 1: 생강 물추출물의 터마밀의 농도 변화에 따른 요오드반응Experimental Example 1 Iodine Reaction with Changes in the Tamil Concentration of Ginger Water Extract

터마밀 첨가 농도에 따른 생강 열수추출물의 전분량을 측정하기 위하여 0∼300ppm 농도의 터마밀을 첨가한 100 mL의 생강 열수추출물의 요오드가는 도 1과 같다. In order to measure the starch content of ginger hot water extract according to the concentration of teramyl, the iodine value of 100 mL of ginger hot water extract to which the turmeric of 0-300 ppm concentration was added is shown in FIG. 1.

생강 물추출물의 터마밀처리 농도에 따른 요오드가는 터마밀 첨가 농도가 증가 와 함께 전분은 강하게 분해되었다. 10ppm의 농도의 터마밀을 첨가할 경우 전분량은 급격히 감소되었으며 200ppm이상의 농도에서는 전분의 분해가 둔화되었다. 따라서 생강 물추출물에서 전분을 분해하기 위한 터마밀의 최적 농도는 약 200ppm이 가장 적당한 것으로 판단되었다.Starch was strongly decomposed with the increase in the concentration of thermamil in the extract of ginger water extract. When 10 ppm of thermamil was added, the starch amount decreased drastically, and at the concentration of 200 ppm or more, starch decomposition was slowed down. Therefore, the optimum concentration of thermamil to decompose starch in ginger water extract was determined to be about 200ppm.

실험예 2: 생강 물추출물과 터마밀의 반응온도에 따른 요오드반응Experimental Example 2: Iodine Reaction According to Reaction Temperature of Ginger Water Extract and Tamil

반응온도에 따른 터마밀의 생강 물추출물의 전분 분해력을 알아보기 위하여 생강 물추출물에 터마밀 (Final 200ppm)을 처리하여 항온수조에서 반응온도를 50, 60, 70, 80, 90, 95℃로 점차 증가시켰으며, 반응 시간은 30분간 반응하였다. 그 결과는 도 2와 같다.In order to determine the starch decomposition ability of the ginger water extract of the turmeric according to the reaction temperature, the treatment temperature was gradually increased to 50, 60, 70, 80, 90, 95 ℃ in the constant temperature water tank by treating the turmeric (Final 200ppm) with the ginger water extract. The reaction time was 30 minutes. The result is shown in FIG.

반응온도에 따른 터마밀의 생강 물추출물의 전분 분해력은 반응온도가 높아질수록 효소 활성은 강하였으며, 70℃에서부터 효소 활성이 거의 일정하였으며, 95℃에서 효소 활성은 가장 좋았다. 따라서 터마밀 첨가온도는 80∼95℃가 가장 적합한 것으로 판단되었다.The starch degradability of ginger water extract of Teramyl according to the reaction temperature was higher as the reaction temperature was higher, the enzyme activity was almost constant from 70 ℃, and the enzyme activity was the best at 95 ℃. Therefore, it was judged that 80-95 degreeC was the most suitable for the temperature.

실험예 3: 생강 물추출물과 터마밀의 반응시간에 따른 요오드반응Experimental Example 3: Iodine Reaction According to Reaction Time of Ginger Water Extract and Tamil

생강 물추출물과 터마밀의 반응시간에 따른 전분분해력을 알아보기 위하여 생강 물추출물에 터마밀(Final 200ppm)을 처리하여 90℃ 항온수조에서 반응시간을 변화시켰으며, 그 결과는 도 3과 같다. 터마밀에 의한 생강 물추출물의 전분분해력은 매우 빠른 시간에 전분을 분해하는 것으로 나타났다. 반응시간이 2분 30초 이전에는 시간이 변함에 따라 O.D값이 변하였으나, 반응시간이 2분 30초 이후에는 거의 변화가 없었다. 따라서 터마밀 처리시 반응시간은 3분 이상이 적합한 것으로 판단된다.In order to determine the starch decomposition ability according to the reaction time of ginger water extract and turmeric, the water was treated with turmeric (Final 200ppm) and the reaction time was changed in a 90 ℃ constant temperature water bath, and the result is shown in FIG. 3. The starch degrading power of ginger water extracts by turmeric was shown to decompose starch in a very fast time. Before the reaction time was 2 minutes and 30 seconds, the O.D value was changed as time was changed, but the reaction time was almost unchanged after 2 minutes and 30 seconds. Therefore, it is judged that the reaction time is more than 3 minutes in the treatment of thermamil.

실험예 4: 글루코스를 이용한 환원당 표준곡선Experimental Example 4: Reducing Sugar Standard Curve Using Glucose

글루코스를 이용한 환원당의 표준곡선은 도 4와 같다. 글루코스를 50 ppm부터 500ppm으로 점차 증가 시켰으며, 환원당 측정시 25 mL로 정용하였다. 그 결과는 도 4와 같다. 글루코스의 양이 증가할수록 O.D값은 비례적으로 증가하였다.The standard curve of the reducing sugar using glucose is shown in FIG. Glucose was gradually increased from 50 ppm to 500 ppm, and was reduced to 25 mL when measuring reducing sugars. The result is shown in FIG. 4. As the amount of glucose increased, the O.D value increased proportionally.

실험예 5: 터마밀을 처리한 생강 물추출물과 비스코짐의 농도변화에 따른 환원당 측정Experimental Example 5 Reduction of Sugars with Changes in Concentrations of Ginger Water Extract and Biscoim Treated

터마밀을 처리한 생강 물추출물과 비스코짐처리 농도에 따른 환원당측정을 위해 터마밀을 처리한 생강 물추출물에 비스코짐을 1,000ppm에서 20,000ppm로 점차 증가 시켰으며, 50℃에 2시간 반응을 하였다. 이를 실온에서 300rpm, 20분간 원심분리하여 반응액을 얻어 환원당을 측정하였으며, 50 mL로 정용 하였고, 그 결과는 도 5와 같다. In order to measure the reducing sugars according to the turmeric-treated ginger water extract and biskozyme concentration, the bisconzyme was gradually increased from 1,000ppm to 20,000ppm and reacted at 50 ° C for 2 hours. This was centrifuged at 300 rpm for 20 minutes to obtain a reaction solution, the reducing sugar was measured, and 50 mL was applied. The result is shown in FIG. 5.

비스코짐처리량이 증가할수록 환원당은 점차 증가하였으며, 8,000ppm이상의 농도에서 침전물이 생성되어 혼탁해 있던 생강추출물이 맑아지는 것을 관찰 할 수 있었다. 따라서 비스코짐의 적정량을 4,000∼8,000ppm으로 예상된다. 그러나 4,000ppm 농도의 비스코짐을 처리한 후 원심분리(3,000rpm)한 결과 침전이 잘 이루어 졌으며 흡착제를 첨가하여 여과할 경우에 4,000ppm 농도의 비스코짐을 첨가 하여도 가능하다.Reducing sugar gradually increased as the amount of Viscozim treatment increased, and it became clear that the turbid ginger extract became clear at the concentration of more than 8,000ppm. Therefore, the proper amount of biscorjim is expected to be 4,000 to 8,000 ppm. However, after treatment with 4,000ppm biskozim, centrifugation (3,000rpm) resulted in good precipitation, and it is possible to add 4,000ppm biskozym when filtered by adsorbent.

실험예 6: 터마밀을 처리한 생강 물추출물과 비스코짐의 반응온도에 따른 환원당 측정Experimental Example 6: Reducing Sugars According to the Reaction Temperature of Tendered Ginger Water Extract and Biscoim

터마밀을 처리한 생강 물추출물과 비스코짐의 반응온도에 따른 환원당 측정가를 알기 위하여, 터마밀을 처리한 생강 물추출물에 비스코짐 8,000ppm(final)과 혼합하여 반응 온도를 20, 30, 40, 50, 60, 70℃에서 2시간동안 반응을 하였다. 이를 원심분리 하여 반응액을 얻었고, 환원당 측정시 50 mL로 정용하였다. 이에 대한 결과는 도 7과 같다.In order to know the reducing sugar measurement value according to the reaction temperature of Termemil-treated ginger water extract and Biscoim, the reaction temperature was 20, 30, 40, by mixing with Termemil-treated ginger water extract with Biskozyme 8,000 ppm (final). The reaction was carried out at 50, 60 and 70 ° C. for 2 hours. The reaction solution was obtained by centrifugation, and 50 mL of reducing sugar was measured. The result is shown in FIG. 7.

반응 온도가 50℃에서는 비스코짐의 효소 활성이 가장 좋았으며, 반응 온도가 40℃에서 60℃까지는 비스코짐의 효소 활성은 큰 변화를 나타내지 않았다.At 50 ° C, the enzymatic activity of biscozyme was the best, and the enzymatic activity of biscozyme did not change significantly from 40 ° C to 60 ° C.

실험예 7: 터마밀을 처리한 생강 물추출물에 대한 비스코짐의 반응시간에 따른 환원당측정Experimental Example 7 Reduction of Sugars According to Reaction Time of Biscozym on Ginger Water Extract Treated with Tamil

터마밀을 처리한 생강 물추출물과 비스코짐의 반응시간에 따른 환원당측정하기 위하여 터마밀을 처리한 생강 물추출물에 비스코짐 8,000ppm(Final)과 혼합하여 반응 시간을 0분부터 60분까지 점차 증가시켰으며, 이때 반응온도는 50℃로 하였 다. 이를 원심분리 하여 반응액을 얻었고, 환원당 측정시 50 mL로 정용하였으며, 이에 대한 결과는 도 8과 같다. 비스코짐의 처리 후 반응시간이 0분부터 20분 동안은 O.D값이 계속 되었으나, 20분 이후부터는 반응시간이 증가되어도 O.D값의 변화는 거의 나타나지 않았다. 따라서 비스코짐처리시 반응시간은 20분 이상이 가장 적합한 것으로 판단된다.In order to measure the reducing sugars according to the reaction time of Termemil-treated ginger water extract and Biscoim, the reaction time was gradually increased from 0 minutes to 60 minutes by mixing with Termemil-treated ginger water extract with Biscomage 8,000ppm (Final). At this time, the reaction temperature was 50 ℃. The reaction solution was obtained by centrifugation, and 50 mL of reducing sugar was measured, and the result is shown in FIG. 8. The O.D value continued for 0 to 20 minutes after the treatment of Viscozim, but after 20 minutes, the O.D value was hardly changed even if the reaction time was increased. Therefore, it is determined that the reaction time is 20 minutes or more at the time of biscorgim treatment.

실험예 8: 터마밀을 처리한 생강 물추출과 아밀로글루카제의 농도변화에 따른 환원당측정Experimental Example 8: Reducing Sugars According to the Change of Concentration of Ginger Water Extract and Amyloglucase Treated with Tamil

터마밀을 처리한 생강 물추출물에 대한 아밀로글루카제 첨가농도에 따른 환원당측정을 위해 터마밀을 처리한 생강 물추출물에 아밀로글루카제을 2,000ppm에서 40,000ppm로 점차 증가 시켰으며, 50℃에 30분간 반응을 하였다. 이를 실온에서 300rpm, 20분간 원심분리하여 반응액을 얻어 환원당을 측정하였으며, 50 mL로 정용 하였고, 그 결과는 도 9와 같다. Amyloglucase was gradually increased from 2,000ppm to 40,000ppm in the turmeric-treated ginger water extract to measure the reducing sugar according to the concentration of amyloglucase added to the turmeric-treated ginger water extract. The reaction was carried out for 30 minutes. This was centrifuged at 300 rpm for 20 minutes to obtain a reaction solution, the reducing sugar was measured, and 50 mL was applied. The result is shown in FIG. 9.

터마밀을 처리한 생강 물추출과 아밀로글루카제 첨가 농도에 따른 환원당 측정 O.D값은 아밀로글루카제량에 비례하였다. 아밀로글루카제량이 20,000ppm에서 점차적으로 침전현상이 나타나면서 혼탁했던 추출물의 반응액이 점차 맑아졌다. 따라서 터마밀을 처리한 생강 물추출에 20,000ppm 농도의 아밀로글루카제를 첨가하였다.The O.D value of reducing sugar according to the concentration of ginger water extract and amyloglucase treated with thermamil was proportional to the amount of amyloglucase. As the amount of amyloglucase gradually precipitated at 20,000 ppm, the reaction solution of the turbid extract gradually became clear. Therefore, amyloglucase of 20,000 ppm concentration was added to ginger water-treated ginger.

실험예 9: 터마밀을 처리한 생강 물추출과 아밀로글루카제의 반응온도에 따른 환원 당측정Experimental Example 9: Reduction of Sugars According to the Reaction Temperature of Tendered Ginger Water Extract and Amyloglucase

터마밀을 처리한 생강 물추출물과 아밀로글루카제 반응온도에 따른 환원당측정가를 알아보기 위하여, 터마밀을 처리한 생강 물추출물 5mL에 아밀로글루카제 2,000ppm(Final)과 혼합하여 반응 온도를 20, 30, 40, 50, 60, 70℃에서 30분 동안 반응을 하였다. 이를 원심분리 하여 반응액을 얻었고, 환원당 측정시 50 mL로 정용하였다. 이에 대한 결과는 도 10과 같다.In order to determine the reducing sugar measurement value according to the reaction temperature of the ginger and the amyloglucase reaction, the turmeric extract was mixed with 2,000ppm (Final) of amyloglucase to 5mL of the turmeric-treated ginger water extract. The reaction was carried out for 30 minutes at 20, 30, 40, 50, 60, 70 ℃. The reaction solution was obtained by centrifugation, and 50 mL of reducing sugar was measured. The result is shown in FIG. 10.

터마밀을 처리한 생강 물추출물에 아밀로글루카제 반응온도는 50℃에서 O.D값이 가장 높았고, 40℃에서 60℃사이에는 거의 변화를 보이지 않았다.The reaction temperature of amyloglucase was the highest in O.D at 50 ° C, and showed little change between 40 ° C and 60 ° C.

실험예 10: 터마밀을 처리한 생강 물추출에 대한 아밀로글루카제의 반응시간에 따른 환원당측정Experimental Example 10: Reducing Sugar Measurement According to the Reaction Time of Amyloglucase in Extracted Ginger Water Treated with Tamil

터마밀을 처리한 생강 물추출물과 아밀로글루카제 반응시간에 따른 환원당 측정값을 구하기 위하여 터마밀을 처리한 생강 물추출물에 아밀로글루카제 20,000ppm (final)과 혼합하여 반응 시간을 0분부터 60까지 점차 증가시켰으며, 이때 반응온도는 50℃로 하였다. 이를 원심분리하여 반응액을 얻었고, 환원당측정시 50 mL로 정용 하였으며, 이에 대한 결과는 도 11과 같다. 반응시간이 0분에서 30분 사이에는 점차 O.D값이 점차 증가하였으나, 30분 이후에는 증가값이 없이 일정하였다. 따라서 아밀로글루카제 적합한 반응시간은 30분 이상이 최적으로 판단된다.In order to obtain a reducing sugar measurement value according to the reaction time of turmeric treated ginger and amyloglucase, the reaction time was mixed with 20,000 ppm (final) of amyloglucase in the turmeric treated ginger water extract. From minute to 60 was gradually increased, the reaction temperature was 50 ℃. The reaction solution was obtained by centrifugation, and 50 mL of reducing sugar was used as a measuring solution. The results are shown in FIG. 11. O.D value gradually increased between 0 and 30 minutes, but after 30 minutes, there was no increase. Therefore, the appropriate reaction time for amyloglucase is determined to be 30 minutes or more.

실험예 11: 터마밀과 비스코짐을 처리한 생강 물추출에 대한 아밀로글루카제농도에 따른 환원당 측정Experimental Example 11: Reduction of Sugars According to Amyloglucase Concentration on Ginger Water Extract Treated with Tamil and Viscose

300ppm 농도의 터마밀과 8,000ppm 농도의 비스코짐을 처리한 생강 물추출물에 아밀로글루카제 농도에 따른 환원당 값을 측정하였고, 정용은 100 mL로 하였으며, 이에 따른 결과는 도 12와 같다.Reducing sugar value according to amyloglucase concentration was measured in ginger water extract treated with 300 ppm of thermamil and 8,000 ppm of the biscozime, and the dialysis was 100 mL, and the result is shown in FIG. 12.

터마밀과 비스코짐을 동시에 처리한 생강 물추출에 대한 아밀로글루카제 따른 환원당 측정값은 20,000ppm부터 증가하기 시작하여 아밀로글루카제량에 비례하여 증가하였으며 글루코스로 환산하였을 때 1,195ppm이었다. 이러한 결과는 아밀로글루카제에 의해 최종 글루코스로 전환됨을 시사하는 결과로 해석된다. 그러나 아밀로글루카제를 산업현장에서 응용하기에는 큰 도움이 되지 않을 것으로 예상된다.Reducing sugars measured by amyloglucase for ginger water extracts treated with Teramyl and Biscoimim increased from 20,000ppm and increased in proportion to the amount of amyloglucase, which was 1,195ppm in terms of glucose. These results are interpreted as suggesting the conversion to final glucose by amyloglucase. However, it is not expected that the application of amyloglucasase will be of great help in industrial applications.

실시예 1: 생강추출 농축액의 제조Example 1: Preparation of Ginger Extract Concentrate

생강 8kg 및 정제수 32L를 95℃에서 2시간 가열하여 60메쉬로 여과한 후 생강추출물을 터마밀 200ppm을 사용하여 80∼95℃에서 3분 이상 처리 후 50℃로 냉각하고 비스코짐 4,000∼8,000ppm을 사용하여 40∼60℃에서 20분 이상 처리 한 후 90℃에서 15분간 방치함으로서 효소를 실활시킨 후 0.06%의 벤토나이트(bentonite)를 첨가한 후 여과한 여액의 당도는 1.5 Bx.이였으며 20% 덱스트린을 첨가하여 60 Bx가 되도록 감압농축하였다. 도 13은 생강열수추출물의 농축 공정도이며 도 14는 생강추출액의 사진이다. 8 kg of ginger and 32 liters of purified water were heated at 95 ° C. for 2 hours, filtered through 60 mesh, and the ginger extract was treated at 80-95 ° C. for at least 3 minutes using 200 ppm of thermamil and cooled to 50 ° C. After 20 minutes at 40-60 ℃ for more than 20 minutes, the enzyme was inactivated for 15 minutes at 90 ℃ and then added with 0.06% bentonite and the sugar content of the filtrate was 1.5 Bx. And 20% dextrin It was concentrated under reduced pressure to add 60 Bx. Figure 13 is a process chart of the concentration of ginger hot water extract and Figure 14 is a photograph of the ginger extract.

실시예 2: 생강 음료조성물 배합Example 2 Ginger Beverage Composition

생강추출 농축액 1.460 중량%를 첨가하여 제조한 생강음료의 배합비는 표 1과 같다. 즉, 음료의 배합수로는 증류수, 감미료는 정백당, 제품의 풍미를 위한 것으로 현미농축액과 당알콜인 아마밀 K를 사용하였고, 정미료로 글라이신, 구연산나트륨을, 산미료로는 구연산을, 기타 아스코빅 산, 탄산칼슘, 홍화황색색소를 사용하였으며 생강의 맛과 향을 보강하기 위한 생강향을 사용하여 제조하였다. The compounding ratio of the ginger beverage prepared by adding 1.460 wt% of the ginger extract concentrate is shown in Table 1. That is, distilled water, sweetener for white sugar and flavor of the product were used as a blended drink, and brown rice concentrate and sugar alcohol, flax, K was used.Glycine, sodium citrate, citric acid and other ascorbic acid were used as seasoning. Calcium carbonate, safflower yellow pigment was used and prepared using ginger flavor to enhance the taste and aroma of ginger.

생음료 배합비Raw beverage compounding ratio 원료명  Raw material name 함량(중량%) Content (% by weight) 생강농축액Ginger Concentrate 1.460  1.460 현미농축액Brown Rice Concentrate 0.30  0.30 아마밀 KFlax K 04.50  04.50 정백당Baekbaekdan 7.60  7.60 글라이신Glycine 0.030  0.030 구연산Citric acid 0.075  0.075 구연산 NaCitric Acid Na 0.040  0.040 비타민 CVitamin c 0.030  0.030 탄산칼슘Calcium carbonate 0.030  0.030 홍화황색소Safflower yellow 0.030  0.030 생강향Ginger flavor 0.150  0.150 정제수Purified water 85.755 85.755

실시예 3: 생강음료의 관능검사Example 3: sensory test of ginger drink

생강음료의 관능검사는 맛, 향미, 색, 전체적 기호도를 기호도와 강도를 나누어 5단계 평점법(매우 나쁘다, 나쁘다, 보통이다, 좋다, 매우 좋다)으로 3회 반복 실시하였고, 결과는 SAS통계처리에 의한 "Ducan,s multipul range test"로 유의성을 검정하였다. The sensory test of ginger beverage was repeated three times with five levels of rating (very bad, bad, normal, good, and very good) by dividing taste and flavor, color, and overall preference in terms of taste and intensity. Significance was tested by "Ducan , s multipul range test".

실시예 4: 생강추출물의 균생육 억제 효과Example 4: Ginger Extract Inhibitory Effect

항돌연변이의 활성은 시험법, 변이원, 균 농도 및 균의 종류에 따라 경향이 다르게 나타날 수 있음은 물론 활성의 유·무까지도 다르게 나타날 수 있으며, 특히 시료의 항균력에 의한 균수의 감소나 세포분열 속도의 감소로 인하여 위양성의 결과를 나타낼 수도 있다. 생강추출물은 항균성을 갖고 있다고 보고되어 있는데, 이러한 항균성은 균자체를 사멸시킬 수 있어 항돌연변이원성을 나타낸다고 오인할 수 있다. 따라서 본 발명은 균주의 생육저해 유·무를 알아보기 위하여 변이원인 2-AF, Trp-P-1와 AFB1을 각각 첨가한 상태에서 생강 물추출물을 농도별로 첨가하여 살모넬라 타이피무리움(Salmonella typhimurium) TA98, TA100의 생장에 미치는 영향을 검토하였으며, 그 결과는 도 15와 같다.Antimutagenic activity may be different depending on the test method, the mutant, the bacterial concentration, and the type of bacteria, as well as the presence or absence of the activity. In particular, the antimicrobial activity may reduce the number of cells or cause cell division. The decrease in speed may also result in false positives. Ginger extract has been reported to have antimicrobial properties, and this antimicrobial activity can kill the mycelium, which can be mistaken for showing antimutagenicity. Therefore, in the present invention, Salmonella typhimurium was added by adding ginger water extracts at different concentrations in the state of adding 2-AF, Trp-P-1 and AFB1, respectively, to determine the growth inhibition of the strain. The effects on the growth of TA98 and TA100 were examined, and the results are shown in FIG. 15.

생강 물추출물을 0.1 mg/plate에서 3.0 mg/plate까지 점차 증가시켰으며, 그 결과 생육억제를 나타내는 최대농도는 3.0 mg/plate이였다. 이러한 생육저해효과는 TA98과 TA100에서 유사하였다. 따라서 항돌연변이원성 평가는 생육저해를 나타내지 않은 2.0 mg/plate이하의 농도에서 실험을 행하였다.Ginger water extract was gradually increased from 0.1 mg / plate to 3.0 mg / plate. As a result, the maximum concentration indicating growth inhibition was 3.0 mg / plate. This inhibitory effect was similar in TA98 and TA100. Therefore, the antimutagenicity test was conducted at a concentration of 2.0 mg / plate or less, which showed no growth inhibition.

실시예 5: 생강추출물의 돌연변이원성Example 5: Mutagenicity of Ginger Extract

생강 물추출물이 돌연변이 유발에 미치는 영향을 검토하기 위하여 생육억제를 나타내지 않는 농도인 1.0ug/plate와 2.0 ug/plate에서 "Ames test"를 실시하였다(표 2). 살모넬라 타이피무리움(Salmonella typhimurium) TA98과 TA100에 있어서 생강 물추출물을 첨가했을 때의 콜로니 수는 생강 물추출물을 첨가하지 않는 대조 구와 거의 비슷하게 나타났다. 이와 같은 결과로부터 메탄올 추출물 자체에는 돌연변이원성이 없는 것으로 판단되었다.In order to examine the effect of ginger water extract on mutagenesis, the "Ames test" was conducted at 1.0 ug / plate and 2.0 ug / plate, which showed no growth inhibition (Table 2). In Salmonella typhimurium TA98 and TA100, the number of colonies when ginger water extract was added was about the same as the control without adding ginger water extract. From these results, it was determined that the methanol extract itself was not mutagenic.

생강 물추출물의 돌연변이원성Mutagenicity of Ginger Water Extract 생강추출물Ginger Extract Hisrevertants/plateHis + revertants / plate TA 98TA 98 TA 100TA 100 대조구Control 15(±4)15 (± 4) 142(±7)142 (± 7) 1.0 mg/plate1.0 mg / plate 18(±2)18 (± 2) 147(±9)147 (± 9) 2.0 mg/plate2.0 mg / plate 17(±1)17 (± 1) 156(±11)156 (± 11)

실시예 6: 생강추출물의 항돌연변이원성Example 6: Antimutagenicity of Ginger Extract

2-AF는 S9 mix에 함유되어 있는 시트크롬 P450(CYP)에 의해 N-하이드록시-2-아미노플루오렌(N-hydroxy-2-aminofluorene_으로 전환되어지며, 이 대사물질은 DNA와 공유결합하여 돌연변이를 일으킨다. 또한 불고기 중의 대표적 헤테로사이클릭 아민인 Trp-P-1은 CYP 1A에 의해 활성화되고, 활성화된 Trp-P-1은 DNA와 공유결합하여 돌연변이를 일으키는 것으로 알려져 있다. 그리고 AFB1은 콩류 및 저장곡류에 기생하는 곰팡이 아스퍼질러스 플라버스(Aspergillus flavus)가 내는 맹독으로 DNA-AFB1 바인딩을 나타내어 간암발생에 주된 역할을 하는 것으로 알려져 있다. 이처럼 식품 중에 노출될 위험성이 많은 대표적인 간접변이원에 대한 생강물추출물의 항돌연변이원성을 검색코자 하였다.2-AF is converted to N-hydroxy-2-aminofluorene_ by sheet chrome P450 (CYP) contained in S9 mix, and this metabolite covalently binds to DNA. In addition, Trp-P-1, a representative heterocyclic amine in bulgogi, is activated by CYP 1A, and activated Trp-P-1 is known to covalently bind to DNA and cause mutations. Aspergillus flavus , a fungus parasitic in soybeans and stored cereals, is known to play a major role in liver cancer by exhibiting DNA-AFB1 binding. To investigate the antimutagenicity of Ginger Water Extract against.

생강 물추출물을 생육억제 및 돌연변이원성을 나타내지 않는 최대 농도인 2.0 ug/plate이하의 농도를 첨가하여 돌연변이 유발 억제효과를 조사하였고, 간접 돌연변이원으로서 TA98에서는 Trp-P-1, 2-AF과 AFB1을 사용하였고, TA100에서는 2- AF과 AFB1을 사용하였으며, 이에 따른 결과는 도 16 및 도 17과 같다.Ginger water extracts were tested for mutagenesis inhibitory effects by adding a concentration of 2.0 ug / plate or less, which is the maximum concentration that does not show growth inhibition and mutagenicity. Trp-P-1, 2-AF and AFB1 in TA98 as an indirect mutagen In the TA100, 2-AF and AFB1 were used, and the results are shown in FIGS. 16 and 17.

틀변경 변이주인 살모넬라 타이피무리움(Salmonella typhimurium) TA98에서 Trp-P-1, 2-AF과 AFB1을 돌연변이원으로 하였을 때 생강추출물의 최저농도인 0.1 ug/plate에서는 각각 17.3, 7.9와 0.8%의 돌연변이 억제효과를 나타내었으며, 최대농도인 2.0 mg/plate에서는 각각 95.2, 74.4 및 91.0%의 높은 항돌연변이원성을 나타냈다. 염기쌍 치환 돌연변이 변이주인 살모넬라 타이피무리움(Salmonella typhimurium) TA100에서 2-AF과 AFB1을 돌연변이원으로 하였을 때 생강추출물의 최저농도인 0.1 ug/plate에서는 각각 1.6 및 10.4%의 돌연변이 억제효과를 나타내었으며, 최대농도인 2.0 mg/plate에서는 각각 89.8 및 84.0%의 높은 항돌연변이원성을 나타냈다. 이러한 항돌연변이원성은 생강 물추출물의 양이 증가할수록 점차 증가하는 경향을 보였다.When the Trp-P-1, 2-AF and AFB1 were used as mutagens in Salmonella typhimurium TA98, the strain-modifying strain, the minimum concentration of ginger extract 0.1 ug / plate was 17.3, 7.9 and 0.8%, respectively. Mutation inhibitory effect was observed, and the highest concentration of 2.0 mg / plate showed high antimutagenicity of 95.2, 74.4 and 91.0%, respectively. Mutation of 2-AF and AFB1 in Salmonella typhimurium TA100, a base pair-mutant mutant strain, showed 1.6 and 10.4% of mutation inhibition at 0.1 ug / plate, the lowest concentration of ginger extract, respectively. The maximum concentration of 2.0 mg / plate showed high antimutagenicity of 89.8 and 84.0%, respectively. The antimutagenicity increased gradually as the amount of ginger water extract increased.

생강에는 다량의 전분질과 셀루로오스등이 다량 함유되어 있어 음료를 제조할 경우, 생강추출물에 함유된 전분질의 용해와 침전으로 인하여 생성되는 혼탁현상 때문에 시각적 관능미가 급격히 저하된다. 따라서 생강 열수추출물의 농축액에서 생성되는 침전물의 생성을 차단하기 위한 공법을 개발코저 여러 효소제를 사용하여 각각의 작용특성을 분석하였다. 또한 이러한 공정으로 제조된 생강 열수추출물의 기능성을 조사하였다.Ginger contains a large amount of starch and cellulose, so when preparing a beverage, the visual sensuality is sharply degraded due to turbidity caused by the dissolution and precipitation of the starch contained in the ginger extract. Therefore, the development of a method for blocking the formation of sediment produced in the concentrate of ginger hot water extract was carried out using various enzymes to analyze their respective characteristics. Also investigated the functionality of ginger hot water extract prepared by this process.

농축액 제조공정 1에서 사용된 터마밀의 최적 첨가 농도는 200ppm, 반응온도 는 80∼96℃, 반응시간은 3분 이상으로 나타났으며, 공정 2단계에서 사용된 비스코짐의 최적 첨가 농도는 4,000∼8,000ppm, 반응온도는 40∼60℃, 반응시간은 20분 이상이였다. 공정 3단계에서 사용된 아밀로글루카제 20,000ppm 이상의 농도에서 반응온도는 50℃에서 30분 이상 반응시킬 경우 환원당의 농도는 증가되었으나 청징효과에는 뚜렷한 영향을 미치지 못하였다. 따라서 전 처리 과정으로 공정 1, 2의 과정을 이용하였으며, 이러한 공정으로 처리된 생강 열수추출물의 농축액에서는 침전물의 생성을 대부분 차단 할 수 있었다. The optimum concentration of teramyl used in the concentrate preparation process 1 was 200ppm, the reaction temperature was 80 ~ 96 ℃, and the reaction time was more than 3 minutes. The optimum concentration of biscozyme used in process 2 was 4,000∼8,000 ppm, reaction temperature was 40-60 degreeC, and reaction time was 20 minutes or more. At a concentration of 20,000 ppm or more of amyloglucase used in the step 3, the reaction temperature was increased when the reaction temperature was increased at 50 ° C. for 30 minutes or more, but the refining effect was not obvious. Therefore, the processes of steps 1 and 2 were used as the pretreatment process, and the concentrate of ginger hot water extract treated with this process was able to block most of the formation of sediment.

또한 생강 열수추출물의 기능성으로서 항돌연변이원성을 조사하였다. 생강 물추출물의 항돌연변이원성은 plate 당 2.0 ug에서, 틀변경 변이주인 살모넬라 타이피무리움(Salmonella typhimurium) TA98에서 Trp-P-1, 2-AF과 AFB1을 사용하였을 경우 95.2, 74.4 및 91.0%의 높은 항돌연변이원성을 나타내었으며, 염기쌍치환 변이주인 살모넬라 타이피무리움(Salmonella typhimurium) TA100에서 2-AF과 AFB1을 사용하였을 경우 각각 89.8와 84.0%의 높은 항돌연변이원성을 나타냈으며, 모두 용량 의존적으로 항돌연변이 효과를 것으로 나타났다. 이러한 결과들은 생강 열수추출물이 곰팡이독인 아플라톡신이나 태운 불고기중에 함유된 헤테로사이클릭 아민류의 발암물질의 활성을 억제하는 기능성 식품의 가치를 부여 할 수 있다.In addition, antimutagenicity was investigated as a function of ginger hot water extract. Antimutagenicity of Ginger water extracts was 2.0 ug per plate and 95.2, 74.4 and 91.0 when Trp-P-1, 2-AF and AFB 1 were used in Salmonella typhimurium TA98, a strain-modifying strain. It showed high antimutagenicity of% and showed high antimutagenicity of 89.8 and 84.0% when 2-AF and AFB 1 were used in Salmonella typhimurium TA100. Dose-dependent antimutagenic effects have been shown. These results can impart the value of functional foods that inhibit the activity of carcinogens of heterocyclic amines contained in aflatoxin, which is a fungal poison, or roasted bulgogi.

Claims (3)

생강 열수추출물에 터마밀 및 비스코짐을 동시에 처리하여 전분의 침전이 차단된 생강추출물을 제조하는 것을 특징으로 하는 생강추출물의 제조방법.Method of producing a ginger extract, characterized in that the ginger hot water extract is simultaneously treated with Tamil and Biskojim to prepare a ginger extract blocked the precipitation of starch. 제1항에 있어서, 상기 생강추출물의 제조방법은,According to claim 1, The ginger extract manufacturing method, 생강 열수추출물에 터마밀 200 ppm을 첨가하여 80~95℃에서 3분 처리한 후, 비스코짐 4,000∼8,000ppm을 첨가하여 40∼60℃에서 20분 처리함으로써 전분의 침전이 차단된 생강 추출물을 제조하는 것을 특징으로 하는 생강추출물의 제조방법.200 ml of teramyl was added to the ginger hot water extract, followed by 3 minutes of treatment at 80-95 ° C., followed by 20 minutes at 40-60 ° C. with 4,000-8,000 ppm of biscozyme to prepare ginger extracts from which starch was blocked. Method of producing a ginger extract, characterized in that. 제2항에서 제조한 생강추출물을 생강음료의 배합비 총량을 기준으로 0.5∼10.0 중량% 첨가하여 생강음료를 제조하는 것을 특징으로 하는 생강음료의 제조방법.Method for producing a ginger drink, characterized in that the ginger extract prepared in claim 2 by adding 0.5 to 10.0% by weight based on the total amount of the ginger drink.
KR1020040008865A 2004-02-11 2004-02-11 Preparation of Drink with Extract from Medicinal Plants KR100586399B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040008865A KR100586399B1 (en) 2004-02-11 2004-02-11 Preparation of Drink with Extract from Medicinal Plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040008865A KR100586399B1 (en) 2004-02-11 2004-02-11 Preparation of Drink with Extract from Medicinal Plants

Publications (2)

Publication Number Publication Date
KR20050080775A KR20050080775A (en) 2005-08-18
KR100586399B1 true KR100586399B1 (en) 2006-06-08

Family

ID=37267507

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040008865A KR100586399B1 (en) 2004-02-11 2004-02-11 Preparation of Drink with Extract from Medicinal Plants

Country Status (1)

Country Link
KR (1) KR100586399B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608486B1 (en) * 2005-12-27 2006-08-02 이진아 Ginger juice using plant fiber for fabrication material and absorption material
KR101634232B1 (en) * 2014-09-25 2016-06-28 박경숙 fermented ginger and the method using the same
KR102035428B1 (en) * 2018-08-07 2019-11-08 김완섭 Fermented ginger extract, and manufacturing method thereof

Also Published As

Publication number Publication date
KR20050080775A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
Marsilio et al. Use of a lactic acid bacteria starter culture during green olive (Olea europaea L cv Ascolana tenera) processing
KR101274664B1 (en) Beverage composition containing mulberry leaves extract and ferment
Khosravi et al. Development of fermented date syrup using Kombucha starter culture
KR20120125042A (en) A process for preparing a fermented broth of herbal medicine by combined microorganisms, a fermented broth prepared by the process, and a fermented food prepared by the fermented broth
CN104560608B (en) Red-color dragon fruit vinegar processing process
Wang et al. Comparison of nutrients and microbial density in goji berry juice during lactic acid fermentation using four lactic acid bacteria strains
KR20100050240A (en) Preparing method of watermelon vinegar and beverage composition containing watermelon vinegar
KR100426562B1 (en) The physiofunctional fermented liquor with purple sweet potato and the producing method of therof
KR100586399B1 (en) Preparation of Drink with Extract from Medicinal Plants
Omafuvbe Effect of salt on the fermentation of soybean (Glycine max) into daddawa using Bacillus subtilis as starter culture
KR101422247B1 (en) A fermentation method of function and taste enhanced melomel using schizandra chinensis and honey and melomel fermented by the same
KR20200013946A (en) Process for producing low acidity acetic acid fermented beverage using persimmon and Low acidity acetic acid fermented beverage with antioxidant effect
KR101321143B1 (en) Functional fermented Allium victorialis L. and manufacturing method thereof
KR100672016B1 (en) Manufacturing method of takju for improvement of preservative function
KR100526393B1 (en) Method for preparing of persimmon wine
KR20030000078A (en) Waterm elon wine using saccharomyces sp. kws06 and method for the preparation of it
KR100237110B1 (en) A process of persimmon vinegar using sweet persimmon
KR101355746B1 (en) Method for manufacturing of wine used Actinidia arguta
KR100237109B1 (en) A process of persimmon vinegar using astringent persimmon
KR101176997B1 (en) Novel grape fruit tea and method of production of the same
Muzaifa et al. Phytochemicals and Sensory Quality of Cascara Kombucha Made From Coffee By-Products.
Anjliany et al. Qualities of arabica and robusta cascara kombucha with different concentrations of starter
TWI760892B (en) Process for producing monacolin k and/or chlorogenic acid and cultured product obtained thereform
CN104130953B (en) Solve fat Asia sieve yeast, after grape harvest the application in disease control and using method
KR20100135575A (en) Method for processing enhanced health functional tradition rice wine using opuntia humifusa and product thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121120

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee