KR100581005B1 - Growth method of ??? nanorod and nanowire using single precursor and chemical vapor deposition - Google Patents

Growth method of ??? nanorod and nanowire using single precursor and chemical vapor deposition Download PDF

Info

Publication number
KR100581005B1
KR100581005B1 KR1020030033825A KR20030033825A KR100581005B1 KR 100581005 B1 KR100581005 B1 KR 100581005B1 KR 1020030033825 A KR1020030033825 A KR 1020030033825A KR 20030033825 A KR20030033825 A KR 20030033825A KR 100581005 B1 KR100581005 B1 KR 100581005B1
Authority
KR
South Korea
Prior art keywords
silicon carbide
substrate
nanowires
single precursor
silicon
Prior art date
Application number
KR1020030033825A
Other languages
Korean (ko)
Other versions
KR20040101858A (en
Inventor
김재수
노대호
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020030033825A priority Critical patent/KR100581005B1/en
Publication of KR20040101858A publication Critical patent/KR20040101858A/en
Application granted granted Critical
Publication of KR100581005B1 publication Critical patent/KR100581005B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes

Abstract

본 발명은 규소, 흑연, 유리 등으로 이루어진 기판위에 상압과 저압 열화학 증착법을 이용하여 탄화규소 나노로드 및 나노와이어를 성장시키는 방법을 개시한다. 본 발명에 의한 성장 방법에서는 규소와 탄소가 함께 포함되어 있는 단일 전구체인 HMDS, 1,3-DSB, TMS, TPS 또는 MTS을 사용하여 탄화규소 나노로드를 성장시키는 것이 특징이며, 세부적으로는 니켈, 철, 코발트, 크롬, 란탄, 티타늄, 몰리브덴, 금 또는 그들이 포함된 화합물을 분산코팅형식으로 기판위에 코팅한 다음, 700 ~ 1000℃ 사이에서 열처리하여 표면에 미세한 크기로 응집시킨다. 그 후 앞서 나열한 단일전구체를 사용하여 열화학 증착시켜 탄화규소 나노로드 및 나노와이어를 성장시킨다.The present invention discloses a method for growing silicon carbide nanorods and nanowires using atmospheric pressure and low pressure thermochemical vapor deposition on a substrate made of silicon, graphite, glass, and the like. In the growth method according to the present invention, silicon carbide nanorods are grown by using HMDS, 1,3-DSB, TMS, TPS, or MTS, which is a single precursor containing silicon and carbon. Iron, cobalt, chromium, lanthanum, titanium, molybdenum, gold or a compound containing them are coated on the substrate in a dispersion coating, and then heat-treated between 700 and 1000 ° C. to agglomerate finely on the surface. Thereafter, thermochemical deposition using the single precursors listed above is used to grow silicon carbide nanorods and nanowires.

탄화규소 나노로드, 탄화규소 나노와이어, 열화학증착법, 분산코팅, 단일전구체Silicon Carbide Nanorods, Silicon Carbide Nanowires, Thermochemical Vapor Deposition, Dispersion Coating, Single Precursor

Description

단일전구체와 열화학증착법을 이용한 탄화규소 나노로드 및 나노와이어의 성장방법{GROWTH METHOD OF SiC NANOROD AND NANOWIRE USING SINGLE PRECURSOR AND CHEMICAL VAPOR DEPOSITION} GROWTH METHOD OF SINC NANOROD AND NANOWIRE USING SINGLE PRECURSOR AND CHEMICAL VAPOR DEPOSITION}

도 1a는 니켈과 HMDS를 사용하여 성장시킨 탄화규소 나노로드를 보여주는 사진. 1A is a photograph showing silicon carbide nanorods grown using nickel and HMDS.

도 1b는 철과 TMS를 사용하여 성장시킨 탄화규소 나노로드를 보여주는 사진. 1b is a photograph showing silicon carbide nanorods grown using iron and TMS.

도 1c는 크롬과 HMDS를 사용하여 성장시킨 탄화규소 나노로드를 보여주는 사진. 1C is a photograph showing silicon carbide nanorods grown using chromium and HMDS.

도 1d는 코발트와 HMDS를 사용하여 성장시킨 탄화규소 나노로드를 보여주는 사진. 1D is a photograph showing silicon carbide nanorods grown using cobalt and HMDS.

본 발명은 탄화규소 나노로드 및 나노와이어를 전자부품에 사용하기 위하여 기존의 성장방법을 개선하여 기판 위에 성장시키는 방법에 관한 것으로, 구체적으로는 단일전구체를 사용하여 소자로 사용될 기판위에 열화학 증착법을 사용하여 600∼900℃의 온도에서 탄화규소 나노로드와 나노와이어를 성장시키는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of growing silicon carbide nanorods and nanowires on a substrate by improving an existing growth method for use in electronic components. Specifically, a thermochemical deposition method is used on a substrate to be used as a device using a single precursor. The present invention relates to a method for growing silicon carbide nanorods and nanowires at a temperature of 600 to 900 ° C.

탄화규소는 높은 전자 이동도와 우수한 전기적 특성을 가지고 있어 전자소자제작에 적합한 재료로 주목받고 있다. 특히 우수한 고온 강도와 높은 열전도도, 고온 내산화성을 지니고 있다. Silicon carbide has attracted attention as a material suitable for manufacturing electronic devices because of its high electron mobility and excellent electrical properties. In particular, it has excellent high temperature strength, high thermal conductivity and high temperature oxidation resistance.

최근에 대부분의 전자소자가 고직접화 되고 사용환경이 가혹해 짐에 따라서 규소를 기반으로 한 소자의 물리적 한계가 두각되고 있어 이를 대처할 소자용 재료중 하나로서 탄화규소가 거론되고 있다. 나노크기의 탄화규소는 주로 휘스커와 유사한 로드(rod)와 와이어(wire) 형태의 제조방법이 연구되었으며, 발광과 수광소자등에는 나노크기의 두께를 가지는 박막이나 나노크기의 입자들로 이루어진 나노결정 박막들이 사용되고 있다.Recently, as most electronic devices become more direct and the usage environment is severe, silicon carbide is being considered as one of the device materials to cope with the physical limitations of silicon-based devices. Nano-sized silicon carbide is mainly studied in the form of rods and wires similar to whiskers, and nanocrystals composed of thin films or nano-sized particles having nano-sized thicknesses in light emitting and light-receiving devices. Thin films are being used.

최근의 탄화규소 나노와이어의 강도를 나노빔을 사용하여 측정한 결과 거의 이론값에 이른다는 것이 밝혀졌다. Recent measurements of the strength of silicon carbide nanowires using nanobeams have shown that they almost reach theoretical values.

최근에 나노구조를 이용한 여러 전기소자 및 광학소자의 개발이 이루어지고 있으며 그 중 대표적인 예가 FED(Field Emission Display)이다. FED에 사용되는 전계발광체로서 초기에 규소나 몰리브덴을 전기화학적 식각공정에 의하여 가공하여 사용하였으나, 전계방출시 발생하는 고온에 의하여 열피로(thermal fatigue) 현상이 발생하였다. 따라서 FED의 수명이 현저하게 감소하였으며, 가공기술의 한계 때문에 화소가 다른 전계소자에 비하여 적었다. Recently, the development of various electric and optical devices using nanostructures has been made, and a representative example thereof is a field emission display (FED). Silicon and molybdenum were initially processed by electrochemical etching as an electroluminescent material used in the FED, but thermal fatigue occurred due to the high temperature generated during the field emission. Therefore, the lifetime of the FED is significantly reduced, and the pixels are smaller than those of other electric field devices due to the limitation of processing technology.

탄소 나노튜브의 합성기술이 발달하고, 우수한 전계방출특성이 밝혀지면서 탄소 나노튜브를 전계방출원으로 사용하려는 시도가 이루어져왔고, 부단한 연구에 의하여 탄소 나노튜브를 전계방출원으로 사용한 FED의 시제품 시연이 이루어졌다. 그러나 탄소 나노튜브의 경우 전계방출특성은 우수하나 내구성이 약간 떨어지는 단점이 존재하였다. 따라서 탄소 나노튜브 이외의 FED용 전계방출원의 연구가 필요하였으며 그 중의 하나가 탄화규소 나노로드이다.As the synthesis technology of carbon nanotubes is developed and excellent field emission characteristics have been revealed, attempts have been made to use carbon nanotubes as field emission sources, and uninterrupted research has demonstrated the prototype of FED using carbon nanotubes as field emission sources. Was done. However, in the case of carbon nanotubes, the field emission characteristics were excellent but the durability was slightly decreased. Therefore, research on field emission sources for FED other than carbon nanotubes was required, and one of them is silicon carbide nanorods.

탄화규소 나노로드 및 나노와이어의 합성은 대부분 탄화규소 휘스커의 제조기술에서 유래되었으며, 탄소 나노튜브의 제조방법을 응용한 여러 방법이 도입되었다. 대표적인 제조방법으로는 아크방전을 이용한 방법과, 탄소 나노구조체를 모체로 하는 열탄화법이 있다. Synthesis of silicon carbide nanorods and nanowires was mostly derived from the manufacturing technology of silicon carbide whiskers, and various methods using the manufacturing method of carbon nanotubes were introduced. Representative methods include arc discharge and thermocarbonation based on carbon nanostructures.

아크 방전법은 진공분위기 중에서 탄화규소로 이루어진 양극과 냉각이 이루어지는 음극 사이에 고전압을 인가함으로서 양극에서 분해되어 나오는 탄화규소가 음극에서 급속히 냉각되면서 나노크기를 가지는 입자들을 얻는 방법이다. The arc discharge method is a method of obtaining nano-sized particles as the silicon carbide decomposed from the anode is rapidly cooled at the cathode by applying a high voltage between the anode made of silicon carbide and the cathode to be cooled in a vacuum atmosphere.

열탄화법은 크게 탄소 나노구조체를 변환시키는 방법과 촉매와 결합되어 있는 탄소입자를 휘발시키는 방법으로 나누어진다. 먼저 탄소 나노구조체를 변환시키는 방법은 탄소나노튜브나 나노크기를 가지는 탄소입자와 규소 산화물과 규소의 혼합물을 가열하여 발생하는 산화실리콘 증기를 반응시킴으로써 외벽에 탄화규소를 형성시키는 것이다. 촉매와 결합된 탄소를 휘발시키는 방법은 고온에서 촉매와 결합된 탄소와 규소를 휘발시켜 기체 상태에서 반응시켜 고체로 변화되면서 나노크기를 가지는 탄화규소를 생성한다. Thermocarbonization is largely divided into a method of converting carbon nanostructures and a method of volatilizing carbon particles bonded to a catalyst. First, a method of converting carbon nanostructures is to form silicon carbide on an outer wall by reacting silicon oxide vapor generated by heating a mixture of carbon nanotubes or nano-sized carbon particles with a silicon oxide and silicon. The method of volatilizing carbon combined with a catalyst volatilizes carbon and silicon combined with a catalyst at a high temperature to react in a gaseous state to produce a nano-sized silicon carbide.

이와 같은 종래 방법들의 단점은 1200 ~ 1800℃의 고온에서의 장시간 공정이 필수적이고, 생성된 탄화규소는 여러 가지 불순물을 함유하고 있다는 것이다. 또한 전기소자나 전계방출 소자로 사용하기 위해서는 탄화규소 나노로드 또는 나노와이어를 세정공정과 고가의 분급공정을 거쳐서 분류한 후, 스크린 프린팅 기법을 사용하여 전자 소자용 기판에 접착하여야 한다. A disadvantage of these conventional methods is that a long time process at a high temperature of 1200 to 1800 ° C. is essential, and the resulting silicon carbide contains various impurities. In addition, in order to be used as an electric device or a field emission device, silicon carbide nanorods or nanowires are classified through a cleaning process and an expensive classification process, and then bonded to an electronic device substrate using a screen printing technique.

따라서, 본 발명의 목적은 성장 온도를 낮춘 탄화규소 나노로드 또는 나노와이어 성장 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a silicon carbide nanorod or nanowire growth method with lowered growth temperature.

또한, 본 발명의 목적은 세정공정과 고가의 분급공정 없이 기판위에 탄화규소 나노로드 또는 나노와이어를 직접 성장시킴으로서 실제적으로 반도체 제조공정에 적용 가능케 하는 것이다.It is also an object of the present invention to grow silicon carbide nanorods or nanowires directly on a substrate without a cleaning process and an expensive classification process, thereby making it practically applicable to semiconductor manufacturing processes.

또한, 본 발명의 다른 목적은 저온에서 소자로 사용될 기판위에 탄화규소 나노로드 및 와이어를 성장시킴으로써 전계 발광소자 및 전자소자로서 사용 가능한 탄화규소 나노로드 및 나노와이어의 성장방법을 제공하는 것이다. Another object of the present invention is to provide a method for growing silicon carbide nanorods and nanowires which can be used as an electroluminescent device and an electronic device by growing silicon carbide nanorods and wires on a substrate to be used as an element at a low temperature.

상기와 같은 목적을 달성하기 위하여 본 발명은 기존 공정의 문제점인 고온공정을 규소와 탄소가 같이 포함되어있는 단일전구체를 사용하여 해결하였고, 열화학증착법을 통하여 기판위에 직접적으로 나노로드 및 나노와이어를 성장시킴으로써 성장공정을 간소화시킨다. In order to achieve the above object, the present invention solves the high temperature process, which is a problem of the existing process, using a single precursor containing silicon and carbon, and grows nanorods and nanowires directly on the substrate through thermochemical deposition. This simplifies the growth process.

구체적으로 본 발명은 니켈(Ni), 철(Fe), 코발트(Co), 크롬(Cr), 란탄(La), 티타늄(Ti), 몰리브덴(Mo), 금(Au) 혹은 이들의 화합물로 이루어진 현탁액을 사용하여 촉매를 기판 위에 접착시키고, 접착된 촉매층을 급속 열처리 공정을 통하여 나노크기를 가진 입자들로 응집시키고, 규소와 탄소가 같이 포함되어있는 단일전구체를 사용하여 탄화규소 나노와이어 및 나노로드를 성장시키는 것을 포함하여 구성된다.Specifically, the present invention is made of nickel (Ni), iron (Fe), cobalt (Co), chromium (Cr), lanthanum (La), titanium (Ti), molybdenum (Mo), gold (Au) or a compound thereof A suspension is used to bond the catalyst onto the substrate, and the adhered catalyst layer is agglomerated into nano-sized particles through a rapid heat treatment process, and silicon carbide nanowires and nanorods using a single precursor containing silicon and carbon together. It comprises a growth.

바람직하게는 상기 단일전구체로는 HMDS(Hexamethyldisilane), 1,3-DSB(1,3-Disliabutane), TMS(Tetramethylsilane), TPS(Triprophylsilane), MTS(methyltrichlorosilane) 중 하나를 선택한다.Preferably, the single precursor is selected from HMDS (Hexamethyldisilane), 1,3-DSB (1,3-Disliabutane), TMS (Tetramethylsilane), TPS (Triprophylsilane), and MTS (methyltrichlorosilane).

기판 상에 촉매를 접착시키는 과정은 니켈(Ni), 철(Fe), 코발트(Co), 크롬(Cr), 란탄(La), 티타늄(Ti), 몰리브덴(Mo), 금(Au)이나 그 화합물을 분산코팅을 이용하여 기판 위에 촉매층을 코팅시킨다. 촉매로 사용될 금속 또는 그 화합물의 코팅을 돕고, 젖음성을 증가시키기 위하여 기판에 약간의 구멍이 있는 것이 바람직하다. 이 과정은 탄화규소가 성장하기 위해 촉매로 사용될 금속 또는 그 화합물을 소자로 사용될 실리콘 또는 유리 기판에 입히는 과정으로서 현탁액의 농도는 약 10∼50mol%가 바람직하다. The process of adhering the catalyst on the substrate includes nickel (Ni), iron (Fe), cobalt (Co), chromium (Cr), lanthanum (La), titanium (Ti), molybdenum (Mo), gold (Au) or its The compound is coated with a catalyst layer on the substrate using dispersion coating. It is desirable to have some pores in the substrate to aid in coating the metal or compound thereof to be used as a catalyst and to increase wettability. This process is a process of coating a metal or a compound to be used as a catalyst for growth of silicon carbide on a silicon or glass substrate to be used as an element, and the concentration of the suspension is preferably about 10 to 50 mol%.

다음 단계에서는 촉매로 사용될 금속 또는 그 혼합물이 부착된 기판을 급속 가열 후 열처리 하는 공정과, 응집된 촉매를 기반으로하여 탄화규소 나노로드 및 나노와이어를 성장시키는 증착공정으로 나뉘어진다.The next step is divided into a process of rapidly heating and heat-treating a substrate on which a metal or a mixture thereof is used as a catalyst and a deposition process of growing silicon carbide nanorods and nanowires based on the aggregated catalyst.

급속 가열후 열처리하는 목적은 일반적인 속도로 가열시 발생하는 결정입자의 성장을 최대한 억제하고 급속 열처리가 입자 사이에 미세한 균열을 만들고 이 균열의 벌어짐이 커짐에 따라서 미세한 크기의 원형으로 뭉치게 되어, 나노크기의 결정을 형성한다. 적용되는 승온속도는 분당 200℃ 이상이어야 하며, 승온속도가 적을 때 분화되는 결정립들이 서로 성장하여 막형태를 이루게 되며. 촉매로서의 역할을 담당하지 못한다. 촉매의 열처리의 온도는 700∼1000℃ 사이로 결정되며, 열처리 온도는 기판위에 접착된 금속 및 그 화합물의 녹는점, 수소나 분위기 가스와의 반응온도에 따라 결정되는 것이 바람직하다. The purpose of heat treatment after rapid heating is to suppress the growth of crystal grains generated during heating at a normal rate as much as possible, and rapid heat treatment creates fine cracks between the particles, and as the cracks become larger, they are aggregated into a circle of fine size. Form crystals of size. The temperature increase rate applied should be 200 ℃ or more per minute, and when the temperature increase rate is low, the differentiating grains grow to form a film. It does not play a role as a catalyst. The temperature of the heat treatment of the catalyst is determined to be between 700 and 1000 ° C., and the heat treatment temperature is preferably determined according to the melting point of the metal and the compound adhered on the substrate and the reaction temperature with hydrogen or atmospheric gas.

열처리에 의하여 촉매의 응집화가 이루어진 후, 상압 또는 저압 열화학 증착장치를 사용하여 600∼900℃의 온도에서 탄화규소 나노로드를 성장시키게 된다. After the catalyst is agglomerated by heat treatment, the silicon carbide nanorods are grown at a temperature of 600 to 900 ° C. using an atmospheric pressure or a low pressure thermochemical vapor deposition apparatus.

나노로드 및 나노와이어 성장에 필요한 단일전구체는 대부분 액상의 형태를 가지고 있으므로, 항온조 안에서 0∼20℃의 일정온도를 유지시키며, 수소 가스나 아르곤 가스 등을 전달 가스로 사용하여 반응관에 흘려보낸다. 항온조 안의 온도는 각 단일전구체의 발화점, 기화점등의 화학적 특성을 고려하여 결정되는 것이 바람직하다. Since the single precursor required for the growth of nanorods and nanowires is mostly in the form of a liquid phase, it maintains a constant temperature of 0 to 20 ° C. in a thermostat and sends hydrogen gas or argon gas to the reaction tube using a delivery gas. The temperature in the thermostat is preferably determined in consideration of chemical properties such as the flash point and the vaporization point of each single precursor.

반응관 안에 너무 많은 양의 단일전구체 가스가 흘러 들어갈 경우 나노로드 및 와이어의 성장이 이루어지지 않는 경우가 존재하므로 유량을 조절하면서 다른 경로를 통하여 수소나 아르곤 가스 등을 희석가스로 흘려보낸다. 반응온도와 단일전구체 가스의 유량, 희석가스의 유량, 내부압력, 반응 시간 등의 변수는 경험적인 실험과 사용장비의 편의성과 안정성을 고려하여 결정하는 것이 바람직하다If too much single precursor gas flows into the reaction tube, nanorods and wires do not grow. Therefore, hydrogen or argon gas is flowed to the dilution gas through another path while controlling the flow rate. Variables such as the reaction temperature, the flow rate of the single precursor gas, the flow rate of the diluent gas, the internal pressure, and the reaction time should be determined in consideration of the empirical experiment and the convenience and stability of the equipment used.

본 발명에 따라 성장시킨 탄화규소 나노로드를 도 1a 내지 도 1d에 나타내었다. 도 1a는 니켈과 HMDS를 사용하여 성장시킨 탄화규소 나노로드이며, 도 1b는 철과 TMS를 사용하여 성장시킨 탄화규소 나노로드이며, 도 1c는 크롬과 HMDS를 사용하여 성장시킨 탄화규소 나노로드이며, 도 1d는 코발트와 HMDS를 사용하여 성장시 킨 탄화규소 나노로드를 각각 보여준다. Silicon carbide nanorods grown according to the present invention are shown in FIGS. 1A-1D. FIG. 1A shows silicon carbide nanorods grown using nickel and HMDS, FIG. 1B shows silicon carbide nanorods grown using iron and TMS, and FIG. 1C shows silicon carbide nanorods grown using chromium and HMDS. 1D shows silicon carbide nanorods grown using cobalt and HMDS, respectively.

이상에서 설명한 바와 같이 본 발명에 따르면 성장 온도를 현저히 낮춘 탄화규소 나노로드 또는 나노와이어 제조가 가능하며, 특히 세정공정과 고가의 분급공정 없이 기판위에 탄화규소 나노로드 또는 나노와이어를 직접 성장시킬 수 있어 반도체 제조공정에 적용 가능하다. 또한, 전계 발광소자 및 전자소자로서 사용 가능한 탄화규소 나노로드 및 나노와이어의 성장방법을 제공할 수 있다. As described above, according to the present invention, it is possible to manufacture silicon carbide nanorods or nanowires with a significantly lower growth temperature, and in particular, silicon carbide nanorods or nanowires can be directly grown on a substrate without a cleaning process and an expensive classification process. Applicable to the semiconductor manufacturing process. In addition, it is possible to provide a method for growing silicon carbide nanorods and nanowires that can be used as electroluminescent devices and electronic devices.

Claims (8)

촉매로서 니켈(Ni), 철(Fe), 코발트(Co), 크롬(Cr), 란탄(La), 티타늄(Ti), 몰리브덴(Mo), 금(Au) 또는 이들의 합금 중 적어도 하나의 물질로 이루어진 현탁액을 기판 위에 코팅하여 촉매층을 형성하고; At least one of nickel (Ni), iron (Fe), cobalt (Co), chromium (Cr), lanthanum (La), titanium (Ti), molybdenum (Mo), gold (Au) or alloys thereof Coating a suspension consisting of a substrate to form a catalyst layer; 상기의 촉매층을 급속 열처리 공정을 통하여 나노크기를 가진 입자들로 응집시키고;Agglomerating the catalyst layer into nano-sized particles through a rapid heat treatment process; 규소와 탄소가 같이 포함되어있는 액상의 단일전구체를 사용하여 600∼900℃의 온도에서 열화학 증착에 의하여 상기 기판 상에 탄화규소 나노와이어 및 나노로드를 성장시키는 것을 포함하여 구성되는 Comprising growing silicon carbide nanowires and nanorods on the substrate by thermochemical deposition at a temperature of 600-900 ° C. using a liquid single precursor containing silicon and carbon together. 탄화규소 성장방법. How to grow silicon carbide. 제1항에 있어서, 상기 단일전구체는 TPS, TMS, HMDS, 1,3-DSB, MTS 중에서 선택되는 적어도 하나의 물질인 탄화규소 성장방법.The method of claim 1, wherein the single precursor is at least one material selected from TPS, TMS, HMDS, 1,3-DSB, MTS. 제1항에 있어서, 상기 기판은 실리콘, 유리 또는 흑연으로 구성되는 탄화규소 성장방법.The method of claim 1, wherein the substrate is comprised of silicon, glass, or graphite. 제1항에 있어서, 상기 기판 상에 형성되는 촉매층은 분산코팅에 의하여 형성되는 것을 특징으로 하는 탄화규소 성장방법.The method of claim 1, wherein the catalyst layer formed on the substrate is formed by dispersion coating. 제1항에 있어서, 상기 기판에는 미세한 구멍이 형성되어 있는 것을 특징으로 하는 탄화규소 성장방법.The silicon carbide growth method according to claim 1, wherein fine holes are formed in the substrate. 제1항에 있어서, 상기 현탁액의 농도는 약 10∼50mol% 인 것을 특징으로 하는 탄화규소 성장방법.The method of claim 1, wherein the concentration of the suspension is about 10 to 50 mol% silicon carbide growth method. 제1항에 있어서, 열화학 증착시 분위기 가스로서 수소 또는 아르곤 가스를 흘려주는 것을 특징으로 하는 탄화규소 성장방법.The method of growing silicon carbide according to claim 1, wherein hydrogen or argon gas is flowed as an atmospheric gas during thermochemical deposition. 삭제delete
KR1020030033825A 2003-05-27 2003-05-27 Growth method of ??? nanorod and nanowire using single precursor and chemical vapor deposition KR100581005B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030033825A KR100581005B1 (en) 2003-05-27 2003-05-27 Growth method of ??? nanorod and nanowire using single precursor and chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030033825A KR100581005B1 (en) 2003-05-27 2003-05-27 Growth method of ??? nanorod and nanowire using single precursor and chemical vapor deposition

Publications (2)

Publication Number Publication Date
KR20040101858A KR20040101858A (en) 2004-12-03
KR100581005B1 true KR100581005B1 (en) 2006-05-17

Family

ID=37378489

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030033825A KR100581005B1 (en) 2003-05-27 2003-05-27 Growth method of ??? nanorod and nanowire using single precursor and chemical vapor deposition

Country Status (1)

Country Link
KR (1) KR100581005B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101172604B1 (en) * 2010-09-13 2012-08-08 고려대학교 산학협력단 Metal compound nanostructure and method for fabricating the same
KR101491206B1 (en) * 2012-02-29 2015-02-06 세종대학교산학협력단 Method of manufacturing Emitter for Field Emission and Field Emission Device manufactured by using the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416428A (en) * 2004-07-19 2006-01-25 Seiko Epson Corp Method for fabricating a semiconductor element from a dispersion of semiconductor particles
KR100661640B1 (en) * 2004-09-03 2006-12-27 학교법인 포항공과대학교 PROCESS FOR THE GROWTH IN SiC NANOWIRES DIRECTLY FROM NiO/SI
KR100666477B1 (en) * 2005-06-16 2007-01-11 한국과학기술연구원 Titanium dioxide nanorod and its fabrication method
KR101725565B1 (en) * 2009-04-16 2017-04-10 메르크 파텐트 게엠베하 Synthesis of silicon nanorods
US8698122B2 (en) 2010-04-02 2014-04-15 Samsung Electronics Co., Ltd. Silicon nanowire comprising high density metal nanoclusters and method of preparing the same
KR101706353B1 (en) 2010-04-02 2017-02-14 삼성전자주식회사 Silicon nanowire comprising high density metal nanocluster and process for preparing the same
CN101850971B (en) * 2010-06-04 2012-02-29 浙江理工大学 Method for preparing high-yield SiC nanowire
KR102031413B1 (en) 2017-08-18 2019-10-11 한국기술교육대학교 산학협력단 Preparation Method for Graphene Nanosphere

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101172604B1 (en) * 2010-09-13 2012-08-08 고려대학교 산학협력단 Metal compound nanostructure and method for fabricating the same
KR101491206B1 (en) * 2012-02-29 2015-02-06 세종대학교산학협력단 Method of manufacturing Emitter for Field Emission and Field Emission Device manufactured by using the same

Also Published As

Publication number Publication date
KR20040101858A (en) 2004-12-03

Similar Documents

Publication Publication Date Title
Gole et al. Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates
JP3819382B2 (en) Carbon nanotube matrix and growth method thereof
KR100581005B1 (en) Growth method of ??? nanorod and nanowire using single precursor and chemical vapor deposition
CN1959896A (en) Field emission of Nano carbon tube, and preparation method
JP2007186416A (en) Method of synthesizing silicon wire
Han et al. Controlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method
JP2008143771A (en) Method of forming oxide based nano structures
Hsu et al. Vertical single-crystal ZnO nanowires grown on ZnO: Ga/glass templates
Tseng et al. Low-temperature growth of ZnO nanowires
CN111906296A (en) Preparation method of composite material with metal particles coated with graphene
JP2005075720A (en) SiC-COATED CARBON NANOTUBE, MANUFACTURING METHOD THEREFOR AND COMPOSITE MATERIAL THEREOF
JP4016105B2 (en) Manufacturing method of silicon nanowires
JP4581381B2 (en) Method for producing gallium oxide nanostructure
Ishiyama et al. Silicon nanowires grown by metal-catalyst-free VLS process
Kim et al. Growth mechanism of needle-shaped ZnO nanostructures over NiO-coated Si substrates
JP3834638B2 (en) Method for producing boron nitride nanotubes filled with nickel or nickel silicide
JP3837573B2 (en) Method for producing carbon nanotube bonded with nitrogen atom
KR100807081B1 (en) Method for Selective Growth of One-dimensional Silicon Carbide Deposits
KR100561701B1 (en) Synthesis method of ??? nanorod and nanowire
KR100694449B1 (en) Method for Preparing Metal Oxide Nanostructure
Hsu et al. Selective growth of vertical ZnO nanowires on ZnO: Ga∕ Si3N4∕ SiO2∕ Si templates
CN115287595B (en) Preparation method of vanadium doped single-layer tungsten disulfide film
CN116022747B (en) Method for preparing boron nitride nanotube, nanomaterial, semiconductor device and device
JP4674353B2 (en) Boron nitride nanotubes introduced with fluorine atoms and method for producing the same
Palomino et al. Silicon nanowires as electron field emitters

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130430

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140421

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee