KR100578155B1 - Surface treating method of mechanical member - Google Patents

Surface treating method of mechanical member Download PDF

Info

Publication number
KR100578155B1
KR100578155B1 KR1020050099033A KR20050099033A KR100578155B1 KR 100578155 B1 KR100578155 B1 KR 100578155B1 KR 1020050099033 A KR1020050099033 A KR 1020050099033A KR 20050099033 A KR20050099033 A KR 20050099033A KR 100578155 B1 KR100578155 B1 KR 100578155B1
Authority
KR
South Korea
Prior art keywords
mechanical
plasma
mechanical parts
cooling
nitriding
Prior art date
Application number
KR1020050099033A
Other languages
Korean (ko)
Inventor
박도봉
박상우
이경명
김영국
Original Assignee
주식회사 케이피티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이피티 filed Critical 주식회사 케이피티
Priority to KR1020050099033A priority Critical patent/KR100578155B1/en
Application granted granted Critical
Publication of KR100578155B1 publication Critical patent/KR100578155B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Abstract

본 발명에 따르면, 기계부품을 고주파 처리하는 단계(제 1단계)와; 이 고주파 처리된 기계부품을 산질화 하는 단계(제 2단계); 및 이 산질화된 기계부품을 버핑(buffing)하는 단계(제 3단계)를 포함하는 기계부품의 표면 처리방법이 개시된다. 개시된 기계부품의 표면 처리방법에 의하면, 완성된 기계부품을 제작하기 위하여 공정 사이를 이동할 때 발생할 수 있는 기계부품의 찍힘이나 긁힘 등의 문제를 해결할 수 있으며, 정밀가공 전에 고주파 처리를 수행함으로써 기계부품의 가공성을 개선할 수 있다.According to the present invention, there is provided a method (first step) of high frequency processing a mechanical part; Oxynitrating the high-frequency treated mechanical part (second step); And a step (third step) of buffing the oxynitrated machine part. According to the surface treatment method of the disclosed mechanical parts, problems such as stamping or scratching of the mechanical parts that may occur when moving between processes to manufacture the finished mechanical parts can be solved. Can improve the workability.

기계부품, 고주파, 산질화, 버핑 Mechanical parts, high frequency, oxynitride, buffing

Description

기계부품의 표면 처리방법{Surface treating method of mechanical member}Surface treating method of mechanical member

도 1은 종래 기계부품의 표면 처리방법의 일례를 개략적으로 나타낸 공정도,1 is a process diagram schematically showing an example of a surface treatment method of a conventional mechanical part,

도 2는 본 발명의 실시예에 따른 기계부품의 표면 처리방법을 순차적으로 나타낸 공정도이다.2 is a process chart sequentially showing a surface treatment method of a mechanical component according to an embodiment of the present invention.

본 발명은 기계부품의 표면 처리방법에 관한 것으로서, 보다 상세하게는 내식성 및 내마모성 등이 요구되는 기계부품의 표면 처리방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method of a mechanical part, and more particularly, to a surface treatment method of a mechanical part requiring corrosion resistance and abrasion resistance.

일반적으로 기계부품은 사용목적에 따라 정도의 차이는 있으나, 내식성, 내충격성 및 내마모성을 요구한다. 예를 들면, 기어, 캠, 클러치, 피스톤 로드 등과 같은 기계부품은 충격에 대한 강도와 표면의 높은 경도를 동시에 필요로 하는 경우가 많다. 이를 위해 기계부품의 표면에 특별한 처리를 실시하여 표면경도, 내마모성, 내충격성 등의 성질을 개선 시키고, 내부는 적당한 강도를 주어 충격에 대한 저항을 크게 하는 방법을 표면경화법이라고 한다.In general, mechanical parts vary in degree depending on their purpose of use, but they require corrosion resistance, impact resistance and wear resistance. For example, mechanical parts such as gears, cams, clutches, piston rods, etc. often require both strength against impact and high hardness at the same time. For this purpose, special treatment is applied to the surface of mechanical parts to improve the properties such as surface hardness, abrasion resistance, impact resistance, etc., and the method of increasing the resistance to impact by giving the appropriate strength inside is called surface hardening method.

상기 표면경화법 중 하나로서, 질화법(窒化法)은 질화용 강(鋼)을 암모니아 기류 또는 염욕(salt bath) 중에서 가열하여 질소를 확산 침투하는 것으로, 질화용 강은 질화로 표면에 질화철(FeN)층, 즉 질화층을 만드는 것이다. 이러한 질화법에는 가스산질화법, 액체질화법(또는 염욕 질화법), 연질화법, 이온질화법 등이 있다.As one of the surface hardening methods, nitriding is a method of diffusing and infiltrating nitrogen by heating a nitriding steel in an ammonia stream or a salt bath, and the nitriding steel is formed of iron nitride on the surface by nitriding. FeN) layer, that is, to form a nitride layer. Such nitriding methods include gas oxynitride, liquid nitriding (or salt bath nitriding), soft nitriding, ion nitriding and the like.

도 1에는 기계부품이 내식성, 내충격성 및 내마모성 등을 갖도록 하기 위하여 기계부품에 수행되는 종래 표면 처리방법의 일례를 개략적으로 나타낸 공정도가 도시되어 있다. 1 is a process diagram schematically showing an example of a conventional surface treatment method performed on a machine part in order to make the machine part have corrosion resistance, impact resistance and wear resistance.

도시된 바와 같이, 먼저 소재가 투입되면 이를 절단하고 선반 가공과 같은 1차가공을 통해 기계부품의 외형을 갖추도록 한다. 다음으로 1차 가공된 기계부품의 표면에 질화(nitriding) 또는 질화침탄(nitrocarburising)을 하여 산소가 함유된 화합물 층 즉 산소 함유 화합물 층을 형성한다. 그 다음으로, 표면에 형성된 산화물을 버핑(buffing), 래핑(lapping) 또는 폴리싱(polishing) 등의 기계 마무리 단계로 처리한 후, 크롬 도금을 실시하여 기계부품의 내구성 및 내식성 등이 향상되도록 하고 있다.As shown in the drawing, first, when the material is put in, it is cut and equipped with an outer shape of the mechanical part through primary processing such as lathe machining. Next, nitriding or nitrocarburising is performed on the surface of the first machined mechanical part to form an oxygen-containing compound layer, that is, an oxygen-containing compound layer. Next, the oxide formed on the surface is treated with a mechanical finishing step such as buffing, lapping or polishing, followed by chrome plating to improve durability and corrosion resistance of the mechanical parts. .

그러나, 상기한 바와 같은 종래 표면 처리방법에 의하면, 질화와 같은 표면처리를 수행하기 전에, 기계부품의 소재를 절단하고 선반 가공하는 공정에서 기계부품을 운반할 때 찍힘이나 긁힘 등이 발생하여 수율이 떨어지는 문제점이 있다.However, according to the conventional surface treatment method as described above, before carrying out the surface treatment such as nitriding, when the machine parts are transported in the process of cutting and turning the raw material of the mechanical parts, the cutting or the scratches are generated. There is a problem falling.

본 발명은 상기의 문제점을 해결하기 위하여 창출된 것으로서, 기계부품을 제작하기 위하여 공정 사이를 이동할 때 발생할 수 있는 기계부품의 찍힘이나 긁힘 등의 문제를 해결할 수 있도록 개선된 기계부품의 표면 처리방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, and improved surface treatment method of the mechanical parts to solve problems such as stamping or scratches of the mechanical parts that may occur when moving between processes to manufacture the mechanical parts The purpose is to provide.

본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 청구범위에 나타낸 수단 및 조합에 의해 실현될 수 있다.Other objects and advantages of the invention will be described below and will be appreciated by the embodiments of the invention. In addition, the objects and advantages of the invention may be realized by the means and combinations indicated in the claims.

상기의 목적을 달성하기 위하여, 본 발명에 따른 기계부품의 표면 처리방법은 기계부품을 고주파 처리하는 단계(제 1단계)와; 상기 고주파 처리된 기계부품을 산질화 하는 단계(제 2단계); 및 상기 산질화된 기계부품을 버핑(buffing)하는 단계(제 3단계)를 포함한다. In order to achieve the above object, the surface treatment method of a mechanical component according to the present invention comprises the steps of high-frequency processing the mechanical component (first step); Oxynitrating the high-frequency processed mechanical part (second step); And buffing the oxynitrated machine part (third step).

상기 제 2단계의 산질화 단계는, 상기 기계부품의 표면에 산화피막을 형성시키기 위한 예비산화단계와; 암모니아 가스의 분위기에서 소정온도까지 상승시키는 승온단계와; 상압에서 암모니아 및 질소와, CO2 또는 NOX 가스 중 어느 하나를 투입하여 상기 기계부품의 표면을 질화하는 질화단계와; H2O를 투입하면서 상기 질화된 기계부품의 표면을 산화하는 후산화단계; 및 상기 후산화된 기계부품에 질소가스를 투입하고, 가압 무산소로 급냉시키는 냉각단계를 포함할 수 있다.The oxynitridation step of the second step includes a pre-oxidation step for forming an oxide film on the surface of the machine part; A temperature raising step of raising the temperature to a predetermined temperature in an atmosphere of ammonia gas; A nitriding step of nitriding the surface of the machine part by injecting one of ammonia and nitrogen and CO 2 or NO X gas at atmospheric pressure; A post-oxidation step of oxidizing the surface of the nitrided mechanical part while adding H 2 O; And a cooling step of inserting nitrogen gas into the post-oxidized mechanical part and quenching with pressurized anoxic.

대안으로서, 상기 제 2단계의 산질화 단계는, 상기 기계부품의 표면에 다공성의 질화층을 형성시키기 위한 플라즈마 이온 질화단계와; 상기 플라즈마를 유지하면서 분위기의 온도가 산화 온도 범위에 도달할 때까지 냉각시키는 플라즈마 활성화 냉각 단계와; 상기 기계부품의 표면에 산화피막을 형성시키기 위한 후산화단 계; 및 상기 산화 피막이 형성된 기계부품에 질소가스를 투입하고, 가압 무산소 급랭을 실시하는 냉각단계를 포함할 수 있다.Alternatively, the oxynitridation step of the second step may comprise: a plasma ion nitriding step for forming a porous nitride layer on the surface of the machine part; A plasma activation cooling step of cooling the atmosphere until the temperature of the atmosphere reaches the oxidation temperature range while maintaining the plasma; A post oxidation step for forming an oxide film on the surface of the machine part; And a cooling step of introducing nitrogen gas into the mechanical part on which the oxide film is formed, and performing pressurized anoxic quenching.

이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

이에 앞서, 본 명세서 및 청구 범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to explain their invention in the best way. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

따라서, 본 명세서에 기재된 실시 예는 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the exemplary embodiments described herein are only exemplary embodiments of the present invention, and do not represent all of the technical ideas of the present invention, and various equivalents and modifications that may substitute them at the time of the present application may be applied. It should be understood that there may be.

도 2는 본 발명의 실시예에 따른 기계부품의 표면 처리방법을 개략적으로 나타낸 공정도이다. 2 is a process diagram schematically showing a method for treating a surface of a mechanical component according to an embodiment of the present invention.

도시된 바와 같이, 소재절단 및 선반가공 등과 같은 1차가공(S1)에 의해 외형을 갖춘 기계부품이 투입되면, 이 기계부품의 표면을 고주파 처리한다(S2). 이러한 고주파 처리에서는 고주파 발생 장치에 연결된 고주파 유도 가열 코일에 기계부품이 각각 통과하여 열처리 됨으로써, 그 표면의 경도가 높아진다. 이와 같이, 고주파 처리되어 표면 경도가 높아진 기계부품은 운반 또는 이송 중에 찍히거나 긁히 는 등의 손상이 거의 발생하지 않는다.As shown, when a mechanical part having an external shape is input by primary processing (S1) such as material cutting and lathe processing, the surface of the mechanical part is subjected to high frequency treatment (S2). In such a high frequency treatment, the mechanical parts pass through each of the high frequency induction heating coils connected to the high frequency generators and heat treated, thereby increasing the hardness of the surface thereof. As such, mechanical parts having high surface hardness due to high frequency treatment hardly cause damage such as being stamped or scratched during transportation or transportation.

다음으로, 고주파 처리된 기계부품은 요구되는 설계조건에 따라 정밀하게 가공되는 2차가공을 수행하게 된다(S3). 이러한 2차가공은 요구되는 설계조건에 따라 다양한 방법으로 수행될 수 있다. 그런데, 고주파 처리된 기계부품은 미처리된 기계부품에 비하여 가공성이 향상되는 장점을 갖는다. Next, the high frequency processed mechanical parts are subjected to secondary processing that is precisely processed according to the required design conditions (S3). This secondary processing can be carried out in various ways depending on the design conditions required. By the way, the high-frequency processed mechanical parts have the advantage that the workability is improved compared to the untreated mechanical parts.

그 다음으로, 2차가공에 의해 정밀하게 가공된 기계부품의 표면은 산질화된다(S4). 이러한 산질화 단계(S4)는, 가스 산질화 단계가 있으며, 그 대안으로서 플라즈마 산질화 단계가 있다.Next, the surface of the mechanical component precisely processed by secondary processing is oxidized (S4). This oxynitride step (S4), there is a gas oxynitride step, alternatively there is a plasma oxynitride step.

상기 가스 산질화 단계는 예비산화단계와, 승온단계와, 질화단계와, 후산화단계 및 냉각단계을 포함할 수 있다. 상기 가스 산질화 단계를 좀 더 상세히 설명하면, 상기 예비산화단계에서는 기계부품의 표면에 산화피막을 형성시킨다. 다음으로, 상기 승온단계에서는 암모니아 가스의 분위기에서 소정온도까지 상승시킨다. 그 다음으로 상기 질화단계에서는 상압에서 암모니아 및 질소와, CO2 또는 NOX 가스 중 어느 하나를 투입하여 상기 기계부품의 표면을 질화한다. 상기 후산화단계에서는 H2O를 투입하면서 상기 질화된 기계부품의 표면을 산화한다. 끝으로 상기 냉각단계에서는 후산화된 기계부품에 질소가스를 투입하고, 가압 무산소로 급냉시킨다.The gas oxynitridation step may include a preliminary oxidation step, a temperature raising step, a nitriding step, a post oxidation step and a cooling step. The gas oxynitride step will be described in more detail. In the preliminary oxidation step, an oxide film is formed on the surface of a mechanical component. Next, in the temperature raising step, the temperature is raised to a predetermined temperature in an atmosphere of ammonia gas. Next, in the nitriding step, the surface of the machine part is nitrided by adding one of ammonia and nitrogen and CO 2 or NO X gas at normal pressure. In the post-oxidation step, the surface of the nitrided mechanical part is oxidized while H 2 O is added. Finally, in the cooling step, nitrogen gas is added to the post-oxidized mechanical parts and quenched with pressurized anoxic.

대안으로서, 상기 플라즈마 산질화 단계는 플라즈마 이온 질화단계와, 플라즈마 활성화 냉각 단계와, 후산화단계 및 냉각단계를 포함할 수 있다. 상기 플라즈마 산질화 단계를 좀 더 상세히 설명하면, 상기 플라즈마 이온 질화단계에서는, 기 계부품의 표면 위에 다공성의 질화층을 형성시키기 위하여 플라즈마를 이용한 이온 질화법을 적용한다. 다음으로 상기 플라즈마 활성화 냉각 단계에서는, 기계부품의 표면에 질화층 형성이 완료된 후, 플라즈마 로의 분위기를 플라즈마 질화와 동일하게 유지한다. 그리고 플라즈마를 유지하면서 분위기의 온도가 산화 온도 범위에 도달할 때까지 일정한 냉각 속도를 갖도록 냉각시키는 과정이다. 그 다음으로 후산화단계에서는, 상기 플라즈마 활성화 냉각이 완료된 기계부품을 수증기를 공급한 분위기에서 산화시킨다. 이 과정은 산화물층을 화합물층의 내식성과 윤활 특성에 유리한 Fe3O4를 주 상으로 하는 산화 피막층으로 형성시키는 것이 주목적이다. 끝으로 산화 공정 완료 후의 냉각은 산화된 기계부품에 질소만을 공급하고 가압 무산소 급랭을 실시하여 산화물층 표면에 Fe2O3가 형성되지 않도록 하는 것이다.Alternatively, the plasma oxynitridation step may include a plasma ion nitriding step, a plasma activated cooling step, a post oxidation step and a cooling step. The plasma oxynitriding step will be described in more detail. In the plasma ion nitriding step, an ion nitriding method using plasma is applied to form a porous nitride layer on the surface of a mechanical component. Next, in the plasma activation cooling step, after the formation of the nitride layer on the surface of the mechanical component is completed, the atmosphere of the plasma furnace is maintained to be the same as the plasma nitriding. And while maintaining the plasma is a process of cooling to have a constant cooling rate until the temperature of the atmosphere reaches the oxidation temperature range. Subsequently, in the post-oxidation step, the mechanical parts in which the plasma activation cooling is completed are oxidized in an atmosphere supplied with water vapor. The main purpose of this process is to form the oxide layer as an oxide film layer composed mainly of Fe 3 O 4, which is advantageous in corrosion resistance and lubrication characteristics of the compound layer. Finally, the cooling after the completion of the oxidation process is to supply only nitrogen to the oxidized mechanical parts and to perform pressurized anaerobic quenching so that Fe 2 O 3 is not formed on the surface of the oxide layer.

상기 산질화 단계(S4) 후, 끝으로 버핑(buffing)을 통해 산질화 된 기계부품 의 표면을 연삭하여 매끄럽게 한다(S5).After the oxynitride step (S4), the surface of the oxidized mechanical parts through the buffing (grinding) to the end to smooth (S5).

이상과 같이, 본 발명은 비록 한정된 실시 예에 의해 설명되었으나, 본 발명은 이것에 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by a limited embodiment, the present invention is not limited thereto, and the technical idea of the present invention and a patent will be described below by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the claims.

상술한 바와 같이 본 발명에 따른 기계부품의 표면 처리방법에 의하면, 고주파 처리에 의해 표면 경도가 높아진 기계부품을 2차가공 하기 때문에, 운반 또는 이송 중에 찍히거나 긁히는 등의 손상이 거의 발생하지 않는다. 따라서, 수율을 향상시킬 수 있다.As described above, according to the method for treating a surface of a machine part according to the present invention, since the machine part having a high surface hardness is subjected to secondary processing by high frequency treatment, damage such as being stamped or scratched during transportation or transportation is hardly generated. Therefore, the yield can be improved.

또한, 고주파 처리후, 정밀가공, 즉 2차가공을 수행할 수 있기 때문에 2차가공의 가공성이 향상되는 장점을 갖는다.In addition, since high-frequency processing, it is possible to perform precision processing, that is, secondary processing has the advantage that the workability of secondary processing is improved.

Claims (3)

삭제delete 삭제delete 기계부품을 고주파 처리하는 단계(제 1단계);High frequency processing the mechanical parts (first step); 상기 고주파 처리된 기계부품을 산질화하는 단계(제 2단계); 및Oxynitrating the high-frequency processed mechanical part (second step); And 상기 산질화된 기계부품을 버핑(buffing)하는 단계(제 3단계)를 포함하며,Buffing the oxynitized mechanical component (third step), 상기 제 2단계의 산질화 단계는,The oxynitride step of the second step, 상기 기계부품의 표면에 다공성의 질화층을 형성시키기 위한 플라즈마 이온질화단계;A plasma ion nitriding step for forming a porous nitride layer on the surface of the machine part; 상기 플라즈마를 유지하면서 분위기의 온도가 산화 온도 범위에 도달할 때까지 냉각시키는 플라즈마 활성화 냉각 단계;A plasma activation cooling step of cooling the atmosphere until the temperature of the atmosphere reaches the oxidation temperature range while maintaining the plasma; 상기 기계부품의 표면에 산화피막을 형성시키기 위한 후산화단계; 및A post oxidation step for forming an oxide film on the surface of the machine part; And 상기 산화 피막이 형성된 기계부품에 질소가스를 투입하고, 가압 무산소 급랭을 실시하는 냉각단계를 포함하는 것을 특징으로 하는 기계부품의 표면 처리방법.And a cooling step of injecting nitrogen gas into the mechanical part on which the oxide film is formed and performing pressurized anoxic quenching.
KR1020050099033A 2005-10-20 2005-10-20 Surface treating method of mechanical member KR100578155B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050099033A KR100578155B1 (en) 2005-10-20 2005-10-20 Surface treating method of mechanical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050099033A KR100578155B1 (en) 2005-10-20 2005-10-20 Surface treating method of mechanical member

Publications (1)

Publication Number Publication Date
KR100578155B1 true KR100578155B1 (en) 2006-05-10

Family

ID=37181271

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050099033A KR100578155B1 (en) 2005-10-20 2005-10-20 Surface treating method of mechanical member

Country Status (1)

Country Link
KR (1) KR100578155B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124899A3 (en) * 2011-03-16 2012-11-08 Jeon Hae-Dong Machine parts with excellent corrosion resistance and abrasion resistance, and manufacturing method thereof
KR101481124B1 (en) 2012-12-28 2015-01-13 주식회사 포스코 Method for treating shearing edge of metal plate and metal plate with treated shearing edge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734134A (en) * 1993-07-20 1995-02-03 Toyota Motor Corp Surface treatment of crank shaft
JP2000002251A (en) 1998-06-12 2000-01-07 Nippon Seiko Kk Conical roller bearing
KR20000059685A (en) * 1999-03-08 2000-10-05 조형준 Method for oxy-nitro caburixing the steel product for better improving the corrosion - and abrasion - resistanc
JP2003119518A (en) * 2001-10-10 2003-04-23 Ntn Corp Ball screw shaft and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734134A (en) * 1993-07-20 1995-02-03 Toyota Motor Corp Surface treatment of crank shaft
JP2000002251A (en) 1998-06-12 2000-01-07 Nippon Seiko Kk Conical roller bearing
KR20000059685A (en) * 1999-03-08 2000-10-05 조형준 Method for oxy-nitro caburixing the steel product for better improving the corrosion - and abrasion - resistanc
JP2003119518A (en) * 2001-10-10 2003-04-23 Ntn Corp Ball screw shaft and manufacturing method therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1020000059685
15119518

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124899A3 (en) * 2011-03-16 2012-11-08 Jeon Hae-Dong Machine parts with excellent corrosion resistance and abrasion resistance, and manufacturing method thereof
KR101481124B1 (en) 2012-12-28 2015-01-13 주식회사 포스코 Method for treating shearing edge of metal plate and metal plate with treated shearing edge

Similar Documents

Publication Publication Date Title
CN108277449B (en) Heat treatment method for carburizing and quenching low-carbon alloy steel workpiece
JP5535922B2 (en) Heat treatment process for steel
KR101066345B1 (en) Sheave member for belt continuously variable transmissions and method of manufacturing it
JPH11343520A (en) Bevel gear and production of gear having many gear teeth
JP5649884B2 (en) Steel member having nitrogen compound layer and method for producing the same
JP2006028541A (en) Method for manufacturing components for high-strength mechanical structure and components for high-strength mechanical structure
KR100578155B1 (en) Surface treating method of mechanical member
KR20070074378A (en) The method of carburizing
EP2660340A1 (en) Method of thermal treatment for steel elements
KR102463834B1 (en) Method of carbonitriding process for metal products
JPH04333521A (en) Production of bearing ring
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
KR100440876B1 (en) Surface treatment method suitably applied to surface of parts and members slidingly operated in machinery and equipment for vehicles
CN114410933B (en) Carburized layer depth increasing method based on pre-shot blasting
JP2019127624A (en) Production method of steel member
KR101823907B1 (en) complex heat treated gear having excellent machinability and low deformability for heat treatment and method for manufacturing the same
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JPH10259421A (en) Method for heat-treating machine parts
US11326244B2 (en) Steel material for CVT sheave, CVT sheave, and method for manufacturing CVT sheave
JP6759842B2 (en) Steel manufacturing method
KR102293648B1 (en) Low Deformation Heat Treatment of Steel Parts
KR100961040B1 (en) Nitrided Steels having High Strength
KR100522919B1 (en) Low distortion treatment method of high speed tool steel with corrosion-resistance and abrasion-resistance
KR102360964B1 (en) Complex heat treatment method of steel for gear
JP2001049347A (en) Production of endless metallic belt and heat treating device

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130503

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140502

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160503

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170504

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180503

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190503

Year of fee payment: 14