KR100572456B1 - Alloy fuel electrode for fuel cells with improved conductivity - Google Patents

Alloy fuel electrode for fuel cells with improved conductivity Download PDF

Info

Publication number
KR100572456B1
KR100572456B1 KR1019980062126A KR19980062126A KR100572456B1 KR 100572456 B1 KR100572456 B1 KR 100572456B1 KR 1019980062126 A KR1019980062126 A KR 1019980062126A KR 19980062126 A KR19980062126 A KR 19980062126A KR 100572456 B1 KR100572456 B1 KR 100572456B1
Authority
KR
South Korea
Prior art keywords
fuel electrode
alloy
fuel
electrode
fuel cell
Prior art date
Application number
KR1019980062126A
Other languages
Korean (ko)
Other versions
KR20000045566A (en
Inventor
윤영기
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1019980062126A priority Critical patent/KR100572456B1/en
Publication of KR20000045566A publication Critical patent/KR20000045566A/en
Application granted granted Critical
Publication of KR100572456B1 publication Critical patent/KR100572456B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/886Powder spraying, e.g. wet or dry powder spraying, plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inert Electrodes (AREA)

Abstract

개시된 내용은 Ni-Al합금연료극을 소결하여 제조할 때 수소흡수성이 큰 Ti, Zr, W, La등의 금속을 첨가함으로써 전기전도도를 높여 전지성능을 향상할 수 있는 전도성을 향상한 연료전지용 합금연료극에 관한 것이다. 이러한 본 발명에 따른 전도성을 향상한 연료전지용 합금연료극은 Ni-Al합금연료극에 수소흡수성이 큰 금속분말이 첨가됨에 의해 전기전도도를 높여 연료극의 성능을 향상시킬 수 있을 뿐만 아니라, 이로 인하여 결국에는 전지의 전반적인 성능을 배가할 수 있는 효과를 갖는다.Disclosed is a fuel cell alloy fuel electrode having improved conductivity that can improve battery performance by increasing electrical conductivity by adding metals such as Ti, Zr, W, and La that have high hydrogen absorption properties when the Ni-Al alloy fuel electrode is sintered. It is about. In the fuel cell alloy fuel electrode having improved conductivity according to the present invention, the Ni-Al alloy fuel electrode has a high hydrogen-absorbing metal powder added thereto, thereby increasing the electrical conductivity and improving the performance of the fuel electrode. It has the effect of doubling the overall performance of.

Description

전도성을 향상한 연료전지용 합금연료극Alloy fuel electrode for fuel cells with improved conductivity

본 발명은 용융탄산염 연료전지용 합금연료극에 관한 것으로, 특히 Ni-Al합금연료극을 소결하여 제조할 때 수소흡수성이 큰 Ti, Zr, W, La 등의 금속을 첨가함으로써 전기전도도를 높여 전지성능을 향상할 수 있는, 전도성을 향상한 연료전지용 합금연료극에 관한 것이다.The present invention relates to an alloy fuel electrode for a molten carbonate fuel cell, and particularly, when the Ni-Al alloy fuel electrode is manufactured by sintering, it is possible to improve the battery performance by increasing the electrical conductivity by adding metals such as Ti, Zr, W, and La that have high hydrogen absorption properties. The present invention relates to an alloy fuel electrode for fuel cells having improved conductivity.

일반적으로, 연료전지는 연료가 가지고 있는 화학에너지, 즉 연료속의 수소와 공기중의 산소를 전기화학반응을 시켜 전기를 발생시키는 고효율, 저공해 발전장치이다.In general, a fuel cell is a high efficiency, low pollution power generation device that generates electricity by electrochemical reaction between chemical energy of fuel, that is, hydrogen in fuel and oxygen in air.

이와 같은 연료전지는 전해질의 종류에 따라 분류되며, 본 발명에서 언급하고자 하는 용융탄산염 연료전지는 용융탄산염을 전해질로, 천연가스를 개질한 가스를 연료로, 공기를 산화재로 하고 있다.Such fuel cells are classified according to the type of electrolyte, and the molten carbonate fuel cell referred to in the present invention uses molten carbonate as an electrolyte, a gas reformed natural gas as a fuel, and air as an oxidizing material.

물론, 연료전지스택은 도 1에 도시한 바와 같이 기본단위인 셀들이 반복 적층되는 구조를 갖고 있으며, 그 기본단위인 셀 구성은 수소의 산화가 일어나는 연료그인 애노드(10)와, 산소의 환원이 일어나는 공기극인 캐소드(20)의 전극들과, 그들 사이에 개재되어 이온의 이동 통로를 제공하는 전해질매트리스(30)로 구성되어 있다. 이중 연료극은 그 사용재료에 따라 여러 종류가 사용되어 왔다.Of course, the fuel cell stack has a structure in which cells, which are basic units, are repeatedly stacked as shown in FIG. 1, and the cell structure, which is a basic unit, includes a fuel cell anode 10 in which oxidation of hydrogen occurs and reduction of oxygen. It consists of the electrodes of the cathode 20 which is an air cathode which takes place, and an electrolyte mattress 30 interposed therebetween to provide a passage for the movement of ions. There are many kinds of double anodes depending on the materials used.

먼저, 종래에 사용된 니켈(Nickel) 연료극은 연료전지의 장기 운전동안 소결저항서 부족과 더불어 크립(Creep)과 구조적인 안정성의 문제를 야기하였다. 이러한 문제들은 다시 여러 가지 문제를 유발시켜, 연료극에서는 기공의 구조와 분포의 변화가 발생되고 전기적 접촉의 상실로 인한 접촉저항의 증가가 발견되었다. 더우기, 연료극은 미세기공의 형성으로 인해 전해질의 이동이 일어나 전해질 크립과 연료극내의 전해질의 양이 증가하게 되고, 이로 인해 연료극의 성능이 떨어지는 원인이 되었다.First, nickel anodes used in the related art have problems of creep and structural stability as well as lack of sintering resistance during long-term operation of fuel cells. These problems, in turn, caused a variety of problems, resulting in changes in pore structure and distribution in the anode and an increase in contact resistance due to loss of electrical contact. In addition, the anode has a movement of the electrolyte due to the formation of micropores, the electrolyte creep and the amount of the electrolyte in the anode increases, which causes the performance of the anode deteriorated.

이러한 문제점들을 해소하기 위하여 연료극의 크립성을 감소시키고 소결저항성을 증가시키려는 다양한 시도가 진행되어 왔다.In order to solve these problems, various attempts have been made to reduce the creep resistance of the anode and increase the sintering resistance.

그 중 한 방법은 니켈연료극에 리튬알루미네이트(Lithium Aluminate)를 물리적 또는 화학적인 방법으로 분산시키는 것이다. 하지만, 이러한 방법은 연료극에 분산된 리튬 알루미네이트 입자들이 금속입자표면에만 한정되어 존재하고, 니켈금속입자의 전위를 방지하는 정착물로서 작용하지 못하였다. 이와 마찬가지로 다양한 산화물입자들(Al2O3, ZrO2, Ti2, Srtio3, MgO 등)의 분산도 니켈 금속입자내로 산화물입자가 분산되지 않고 표면에만 존재하여 효과적이지 못하였다.One method is to disperse lithium aluminate in a nickel fuel electrode, either physically or chemically. However, this method is limited to the lithium aluminate particles dispersed in the fuel electrode only on the surface of the metal particles, and did not act as a fixture preventing the potential of the nickel metal particles. Similarly, dispersion of various oxide particles (Al 2 O 3, ZrO 2, Ti 2, Srtio 3, MgO, etc.) was not effective because the oxide particles were not dispersed in the nickel metal particles but existed only on the surface.

다른 하나의 방법으로는, 연료극에 니켈-크롬(Nickel-Chromium) 합금을 사용하여 전극내에 크롬산화물(Cr2O3) 입자들을 분산시키는 것이다. 니켈-크롬합금으로 제조된 전극은 단기간의 운전에서는 크립성과 소결저항성이 상당한 증가를 보였으나, 장기 운전에서는 전극내에 분산된 크롬산화물입자들에 의해 형성된 불안정한 구조로 인해 크립과 물리적변화가 가속되는 것으로 나타났다. 특히, 크롬의 함량이 큰 경우 크립저항성은 상당히 증가하지만, 합금입자내부의 크롬산화물을 소모하면서 합금입자의 바깥쪽으로 성장하는 크롬산화물층은 전해질에 의한 전극의 지나친 젖음(Wetting)과 가스/금속계면에서의 선택적인 산화물손실을 유발하는 문제점이 있었다.Another method is to disperse chromium oxide (Cr 2 O 3 ) particles in the electrode using a nickel-chromium alloy in the anode. The electrode made of nickel-chromium alloy showed a significant increase in creep and sinter resistance in short-term operation, but in long-term operation, creep and physical change were accelerated by unstable structure formed by chromium oxide particles dispersed in the electrode. appear. In particular, the creep resistance increases considerably when the content of chromium is large. However, the chromium oxide layer growing out of the alloy particles while chromium oxide inside the alloy particles is consumed. There was a problem causing selective oxide loss in.

또다른 하나의 방법으로는, 연료극 제조에 금속이 코팅된 세라믹입자를 사용하는 것이다. 그러나, 이 방법도 연료전지운전 초기에 크립이 심하게 발생하고, 크립저항성이 충분하지 못하였다.Another method is to use ceramic particles coated with metal to manufacture the anode. However, this method also caused severe creep at the beginning of fuel cell operation and insufficient creep resistance.

그래서, 최근들어 연료극 크립문제를 해결하기 위하여 니켈-알루미늄합금을 사용하여 전극을 제조하는 방법이 개발되었다. 이 방법은 알루미늄은 산화시키고 니켈은 산화시키지 않는 가스분위기에서 소결하여 금속상으로 된 니켈 입자 내부에 미세한 알루미늄 산화물 입자들이 분포된 구조를 가지게 하여 우수한 크립저항성과 소결저항성을 가지게 하는 것으로서 이러한 방법을 부분산화법이라 한다. 그러나, 이러한 부분산화법에 의해 제조된 니켈-알루미늄합금은, 내크립성은 우수하지만, 알루미늄이 전극표면에도 산화물 상태로 존재하게 되어 전기전도도를 떨어뜨려, 결국에는 전지의 성능을 저하시키는 문제점을 야기하였다.Therefore, recently, in order to solve the anode creep problem, a method of manufacturing an electrode using nickel-aluminum alloy has been developed. This method sinters in a gas atmosphere that oxidizes aluminum but does not oxidize nickel, and has a structure in which fine aluminum oxide particles are distributed inside nickel particles made of metal so that they have excellent creep resistance and sinter resistance. It is called oxidation method. However, the nickel-aluminum alloy prepared by the partial oxidation method has excellent creep resistance, but aluminum remains in an oxide state on the surface of the electrode, resulting in a decrease in electrical conductivity, resulting in a problem of degrading battery performance. .

본 발명의 목적은 상기에서와 같은 종래의 결점을 해소하기 위한 것으로서, Ni-Al합금연료극을 소결하여 제조할 때 수소흡수성이 큰 Ti,Zr,W,La등의 금속을 첨가함으로써 전기전도도를 높여 전지성능을 향상할 수 있는 전도성을 향상한 연료전지용 합금연료극을 제공함에 있다.An object of the present invention is to overcome the above-mentioned drawbacks, and when the Ni-Al alloy electrode is manufactured by sintering, the electrical conductivity is increased by adding metals such as Ti, Zr, W, and La that have high hydrogen absorption properties. The present invention provides an alloy fuel electrode for fuel cells having improved conductivity to improve battery performance.

이와 같은 목적을 달성하기 위한 수단으로서 본 발명에 따른 전도성을 향상한 연료 전지용 합금연료극의 구성은, 용융탄산염 연료전지용 Ni-Al계 합금연료극에 있어서, 상기 Ni-Al 합금연료극에 표면수소농도를 높여 연료극의 전기전도도를 향상하는 수소흡수성이 큰 Ti,Zr,W,La등의 금속분말이 첨가된 것을 특징으로 한다.The fuel cell alloy fuel electrode having improved conductivity according to the present invention as a means for achieving the above object is, in the Ni-Al alloy fuel electrode for molten carbonate fuel cell, the surface hydrogen concentration is increased to the Ni-Al alloy fuel electrode Metal powders, such as Ti, Zr, W, and La, which have high hydrogen absorptivity for improving the electrical conductivity of the anode, are added.

이하, 본 발명에 따른전도성을 향상한 연료전지용 합금연료극에 대한 상세히 설명한다.Hereinafter, the fuel cell alloy fuel electrode having improved conductivity according to the present invention will be described in detail.

앞에서도 설명했듯이 수소의 산화가 일어나는 연료극은 내크립성을 향상하기 위해서 Ni-Al 합금연료극을 사용하는데, 이 Ni-Al 합금연료극을 소결하여 제조할 때 수소흡수성이 큰 Ti, Zr, W, La 등의 금속을 첨가하여 연료극을 제조하게 된다. 이때, 첨가되는 제 3금속원소들의 양은 1~5wt%정도가 적당하다. 이러한 합금분말의 제조는 용융-분사에 의한 워터-오토마이제이션(Water-atomization)이나, 고상반응에 의한 팩 시멘테이션(Pack Cementation)방법을 이용하며, 이와 같은 방법에 의해 제조되는 합금분말의 입자크기는 연료극의 기공크기를 고려할 때 10~15㎛정도가 적합하다. 그러면, 이 Ni-Al 합금연료극에 첨가된 금속원소들은 수소를 흡수하여 표면수소농도를 높이는 역할을 하게 된다. 그러므로, 반응시 전기전도도가 상승되어 전지성능이 향상되게 된다.As described above, a fuel electrode in which hydrogen is oxidized uses a Ni-Al alloy fuel electrode to improve creep resistance, and Ti, Zr, W, and La have high hydrogen absorption properties when the Ni-Al alloy fuel electrode is sintered and manufactured. A fuel electrode is manufactured by adding metals such as these. At this time, the amount of the third metal elements added is about 1 ~ 5wt%. The alloy powder is prepared by water-atomization by melt-spraying or by package cementation by a solid phase reaction. Particles of the alloy powder prepared by the above method are manufactured. The size is about 10 ~ 15㎛ considering the pore size of the anode. Then, the metal elements added to the Ni-Al alloy fuel electrode absorb hydrogen and serve to increase the surface hydrogen concentration. Therefore, the electrical conductivity during the reaction is increased to improve the battery performance.

이상 서술한 바와 같이, 본 발명에 따른 전도성을 향상한 연료전지용 합금연료극은 Ni-Al 합금연료극을 소결하여 제조할 때 수소흡수성이 큰 Ti, Zr, W, La등의 금속을 첨가함으로써 전기 전도도를 높여 연료극의 성능을 향상시킬 수 있다. 그러므로 ,결국에는 전지의 전반적인성능을 배가할 수 있는 효과를 갖는다.As described above, in the fuel cell alloy fuel electrode having improved conductivity according to the present invention, when the Ni-Al alloy fuel electrode is manufactured by sintering, the electrical conductivity is increased by adding metals such as Ti, Zr, W, and La that have high hydrogen absorption properties. It can raise the performance of anode. Therefore, in the end, it has the effect of doubling the overall performance of the battery.

도 1은 일반적인 연료전지스택(Stack)의 적층구조를 보여주는 도면이다.FIG. 1 is a diagram illustrating a laminated structure of a typical fuel cell stack.

Claims (1)

용융탄산염 연료전지용 Ni-Al계 합금연료극에 있어서,In the Ni-Al alloy fuel electrode for molten carbonate fuel cell, 상기 Ni-Al 합금연료극을 소결하여 제조할 때, 표면 수소농도를 높여 연료극의 전기전도도를 향상하는 수소흡수성이 큰 Ti, Zr, W, La 등의 금속분말을 첨가하여 이루어지며,When the Ni-Al alloy fuel electrode is manufactured by sintering, it is made by adding metal powders such as Ti, Zr, W, La, etc., which have high hydrogen absorbency, which increases the surface hydrogen concentration to improve the electrical conductivity of the fuel electrode. 상기 금속분말은 용융-분사에 의한 워터-오토마이제이션(Water-atomization)이나, 고상반응에 의한 팩 시멘테이션(Pack Cementation) 방법에 의해 제조되며,The metal powder is prepared by water-atomization by melt-spraying or by pack cementation by a solid phase reaction. 상기 금속분말의 양은 1~5wt%정도로 이루어지며,The amount of the metal powder is made of about 1 ~ 5wt%, 상기 금속분말의 입자크기는 연료극의 기공크기를 고려하여 10~15㎛ 정도로 이루어지는 것을 특징으로 하는 전도성을 향상한 연료전지용 합금연료극.The particle size of the metal powder is a fuel cell alloy fuel electrode for improved conductivity, characterized in that made of about 10 ~ 15㎛ in consideration of the pore size of the fuel electrode.
KR1019980062126A 1998-12-30 1998-12-30 Alloy fuel electrode for fuel cells with improved conductivity KR100572456B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980062126A KR100572456B1 (en) 1998-12-30 1998-12-30 Alloy fuel electrode for fuel cells with improved conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980062126A KR100572456B1 (en) 1998-12-30 1998-12-30 Alloy fuel electrode for fuel cells with improved conductivity

Publications (2)

Publication Number Publication Date
KR20000045566A KR20000045566A (en) 2000-07-25
KR100572456B1 true KR100572456B1 (en) 2006-11-30

Family

ID=19568820

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980062126A KR100572456B1 (en) 1998-12-30 1998-12-30 Alloy fuel electrode for fuel cells with improved conductivity

Country Status (1)

Country Link
KR (1) KR100572456B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220052350A1 (en) * 2018-12-18 2022-02-17 Cellmobility, Inc. Large-Area Copper Nanofoam with Hierarchical Structure for Use as Electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204365A (en) * 1988-02-08 1989-08-16 Fuji Electric Co Ltd Anode of molten carbonate fuel cell
JPH0433265A (en) * 1990-05-28 1992-02-04 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of electrode for molten carbonate fuel cell
JPH05178664A (en) * 1991-07-02 1993-07-20 Tonen Corp Composite dense material and its production
US5312580A (en) * 1992-05-12 1994-05-17 Erickson Diane S Methods of manufacturing porous metal alloy fuel cell components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204365A (en) * 1988-02-08 1989-08-16 Fuji Electric Co Ltd Anode of molten carbonate fuel cell
JPH0433265A (en) * 1990-05-28 1992-02-04 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of electrode for molten carbonate fuel cell
JPH05178664A (en) * 1991-07-02 1993-07-20 Tonen Corp Composite dense material and its production
US5312580A (en) * 1992-05-12 1994-05-17 Erickson Diane S Methods of manufacturing porous metal alloy fuel cell components

Also Published As

Publication number Publication date
KR20000045566A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
US7910262B2 (en) Solid electrolyte type fuel cell and air electrode current collector used for the same
CN109904497B (en) Anti-carbon-deposition metal-supported solid oxide fuel cell and preparation method thereof
KR20100115809A (en) Catalyst, method for producing the same, and use of the same
WO2003001617A2 (en) Electrode layer arrangements in an electrochemical device
JP2010537390A (en) Removal of impurity phase from electrochemical devices
JP3924772B2 (en) Air electrode current collector of solid oxide fuel cell
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
JP2002280026A (en) Air electrode current collector for solid electrolyte fuel cell
KR100572456B1 (en) Alloy fuel electrode for fuel cells with improved conductivity
JPS60746B2 (en) gas electrode
Hilmi et al. Carbonate fuel cell anode: a review
JP4587663B2 (en) Fuel electrode for solid oxide fuel cell and method for producing the same
JP7355047B2 (en) Fuel electrodes and electrochemical cells
JPH0381959A (en) Solid electrolyte fuel cell
JP3547062B2 (en) Sealing material for fuel cells
KR100516988B1 (en) Manufacturing method of alloy fuel electrode for fuel cell preventing sintering support
JPH02822B2 (en)
JP2019160794A (en) Anode for solid oxide fuel cell and solid oxide fuel cell
KR100514782B1 (en) Manufacturing method of pulley process non-oriented electrical steel sheet with low iron loss and high magnetic flux density
JPS6124164A (en) Electrolyte supporter of fused carbonate type fuel cell
JPH05170528A (en) Method for sintering lanthanum chromite
JP2948441B2 (en) Flat solid electrolyte fuel cell
JPH0412457A (en) High-temperature type fuel cell
JPH077668B2 (en) Molten carbonate fuel cell electrode
JPH01204365A (en) Anode of molten carbonate fuel cell

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140401

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160401

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 13

EXPY Expiration of term