KR100564877B1 - Composition for ultra hydrophilicity, hydrophilic heat exchanging pipe and method for coating hydrophilic film - Google Patents

Composition for ultra hydrophilicity, hydrophilic heat exchanging pipe and method for coating hydrophilic film Download PDF

Info

Publication number
KR100564877B1
KR100564877B1 KR1020030045350A KR20030045350A KR100564877B1 KR 100564877 B1 KR100564877 B1 KR 100564877B1 KR 1020030045350 A KR1020030045350 A KR 1020030045350A KR 20030045350 A KR20030045350 A KR 20030045350A KR 100564877 B1 KR100564877 B1 KR 100564877B1
Authority
KR
South Korea
Prior art keywords
superhydrophilic
sol
transfer tube
heat transfer
heat
Prior art date
Application number
KR1020030045350A
Other languages
Korean (ko)
Other versions
KR20050003838A (en
Inventor
정봉철
방완근
남동진
정인수
최정환
Original Assignee
주식회사 신성엔지니어링
주식회사 티오즈
주식회사 한국나노
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 신성엔지니어링, 주식회사 티오즈, 주식회사 한국나노 filed Critical 주식회사 신성엔지니어링
Priority to KR1020030045350A priority Critical patent/KR100564877B1/en
Publication of KR20050003838A publication Critical patent/KR20050003838A/en
Application granted granted Critical
Publication of KR100564877B1 publication Critical patent/KR100564877B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Paints Or Removers (AREA)

Abstract

본 발명은 초친수 코팅 조성물 및 그 코팅방법에 관한 것이며, 이에 따른 초친수성 전열관을 제공한다. 금속산화물 졸을 입경 분포를 달리하여 제조한 후, 이를 전열관 표면에 적어도 1회 이상 코팅하여 친수성, 내구성이 뛰어난 초친수성 전열관을 제조할 수 있다. 따라서, 냉동장치 및 난방장치의 열효율을 더욱 극대화시킬 수 있다. The present invention relates to a superhydrophilic coating composition and a coating method thereof, thereby providing a superhydrophilic heat transfer tube. After the metal oxide sol is prepared by varying the particle size distribution, it may be coated on at least one or more times on the surface of the heat pipe to prepare a superhydrophilic heat pipe having excellent hydrophilicity and durability. Therefore, the thermal efficiency of the refrigerating device and the heating device can be further maximized.

초친수 코팅, 금속산화물 졸, 전열관Super hydrophilic coating, metal oxide sol, heat pipe

Description

초친수 코팅 조성물, 초친수성 전열관 및 그 코팅 방법{COMPOSITION FOR ULTRA HYDROPHILICITY, HYDROPHILIC HEAT EXCHANGING PIPE AND METHOD FOR COATING HYDROPHILIC FILM} Superhydrophilic coating composition, superhydrophilic heat pipe and coating method thereof {COMPOSITION FOR ULTRA HYDROPHILICITY, HYDROPHILIC HEAT EXCHANGING PIPE AND METHOD FOR COATING HYDROPHILIC FILM}

도 1은 일반적인 냉동장치의 구성을 보여주는 모식도.1 is a schematic diagram showing the configuration of a typical refrigeration apparatus.

도 2a는 전열관의 일례를 보여주는 사시도.2A is a perspective view showing an example of a heat transfer pipe.

도 2b는 전열관 표면에 형성된 격자무늬의 홈을 보여주는 사진.Figure 2b is a photograph showing the groove of the grid pattern formed on the surface of the heat pipe.

도 3a는 코팅없는 전열관의 접촉각 테스트 결과를 보여주는 사진.Figure 3a is a photograph showing the results of the contact angle test of the coating tube without a coating.

도 3b는 본 발명에 따라 친수성 코팅된 전열관의 접촉각 테스트 결과를 보여주는 사진.Figure 3b is a photograph showing the contact angle test results of the hydrophilic coated heat pipe according to the present invention.

본 발명은 초친수 코팅 조성물, 초친수성 전열관 및 그 코팅 방법에 관한 것으로서, 냉동장치 또는 난방장치의 증발기, 흡수기, 재생기 등에 사용되는 열교환기 파이프의 표면에 초친수 조성물을 코팅하여 친수 기능을 부여함으로써 냉동장치 또는 난방장치의 열효율을 획기적으로 개선시킨다.The present invention relates to a superhydrophilic coating composition, a superhydrophilic heat exchanger tube and a coating method thereof, by providing a hydrophilic function by coating the superhydrophilic composition on the surface of a heat exchanger pipe used in an evaporator, an absorber, a regenerator, etc. of a refrigerating device or a heating device. Significantly improve the thermal efficiency of refrigeration or heating systems.

본 발명에 의한 초친수 코팅 조성물은 특히 흡수식 냉동장치의 증발기 전열 관의 친수코팅에 적합하다. The superhydrophilic coating composition according to the invention is particularly suitable for the hydrophilic coating of evaporator heat transfer tubes of absorption chillers.

흡수식 냉동기란, 냉매가스의 액체 용해도가 온도, 압력에 따라 달라지는 것을 이용한 냉동기로서, 증기 압축식 냉동기의 압축기 대신 흡수기와 재생기를 갖추고 있으며, 냉매로서는 물 또는 암모니아를 사용하고, 용액으로는 브롬화리튬 수용액 또는 물이 주로 사용된다. 흡수식 냉동기에서는 압축식 냉동기와 같이 냉매를 기계적으로 압축하지 않고 농후용액에 흡수시키게 되는데, 이로 인해 형성되는 희박용액은 펌프에 의해 재생기로 보내진다. 재생기에서는 상기 희박용액이 가열되면서 다시 증기로 분리되고, 이 냉매는 응축기에서 응축액화된 뒤 증발기로 보내진다. 일반적으로 증발기 내의 압력은 진공상태로서, 전열관의 관내에는 냉매인 물이 흐르고 있고 관외에는 냉매로서 증류수가 산포되어있는데, 이 관외 냉매가 증발하면서 발생되는 냉매증기의 증발잠열에 의해 관내의 물이 냉각되어 냉수상태로 공기조화기등에 공급되는 것이다.Absorption refrigerator is a refrigerator using the liquid solubility of refrigerant gas according to temperature and pressure, and has an absorber and a regenerator instead of a compressor of a vapor compression refrigerator, using water or ammonia as a refrigerant, and a lithium bromide solution as a solution. Or water is mainly used. In the absorption refrigerator, the refrigerant is absorbed in the concentrated solution without mechanically compressing the compressor, and the lean solution formed is sent to the regenerator by a pump. In the regenerator, the lean solution is separated back into steam as it is heated, and the refrigerant is condensed in the condenser and then sent to the evaporator. In general, the pressure in the evaporator is a vacuum state, and water as a refrigerant flows in the tube of the heat transfer tube, and distilled water is dispersed as a refrigerant outside the tube. The water in the tube is cooled by the latent heat of evaporation of the refrigerant vapor generated as the refrigerant outside the tube is evaporated. It is supplied to an air conditioner in cold water.

도 1은 일반적인 흡수식 냉동기의 구성과 냉동사이클을 개략적으로 도시한 도면으로서, 도시된 바와 같이, 종래 흡수식 냉동기는 냉매를 가열하는 고온재생기(1) 및 저온재생기(2)와, 이들 고온재생기(1) 및 저온재생기(2)에서 보내진 냉매를 응축액화시키는 응축기(3)와, 이 응축기(3)에 의해 응축액화된 냉매를 주변의 열을 흡수하여 저온·저압의 증기로 증발시키는 증발기(4)와, 이 증발기(4)에 의해 증발된 냉매증기를 상기 용액에 흡수시키는 흡수기(5)와, 상기 용액의 열교환을 실시하는 저온용액 열교환기(6) 및 고온 용액 열교환기(7)로 구성되어 배관(8)에 의해 상호 연결된 구조를 갖추고있으며, 상기 증발기(4)와 흡수기(5)의 내부에는 각각 냉수와 냉각수가 유통하는 전열관(9a)(9b)과, 각각의 배관(8)을 통해 운반되는 냉매 또는 용액을 살포하는 분사기(10a)(10b)가 각각 갖추어져 있다. FIG. 1 is a view schematically showing a configuration and a refrigeration cycle of a general absorption chiller. As shown in the drawings, a conventional absorption chiller includes a high temperature regenerator 1 and a low temperature regenerator 2 for heating a refrigerant, and these high temperature regenerators 1. ) And a condenser (3) for condensing and liquefying the refrigerant sent from the low temperature regenerator (2), and an evaporator (4) for absorbing the surrounding heat of the refrigerant condensed and condensed by the condenser (3) and evaporating it into steam at low and low pressure. And an absorber (5) for absorbing refrigerant vapor evaporated by the evaporator (4) into the solution, a low temperature solution heat exchanger (6) and a high temperature solution heat exchanger (7) for exchanging the solution. (8) has a structure interconnected by each other, inside the evaporator (4) and the absorber (5) is carried through the heat pipes (9a) (9b) and the respective piping (8) through which cold water and cooling water flow, respectively. Injectors for spreading refrigerant or solution 0a) and 10b are provided, respectively.

또한, 흡수식 냉동기에는 증발기(4) 하부로부터 냉매를 펌핑하여 상기 분사기(10a) 측으로 이송시키는 냉매펌프(11)와, 상기 냉매를 흡수기(5)로 바이패스시키기 위한 차단밸브(12)와, 상기 흡수기(5)의 하부로부터 취화리튬(LiBr) 수용액을 펌핑하여 고온재생기(1) 및 저온재생기(2) 측으로 이송시키는 용액순환펌프(13)와, 상기 용액순환펌프(13)에 의해 운반된 상기 용액을 흡수기(5) 측으로 분사시키는 용액스프레이 펌프(14)가 갖추어져 있다. In addition, the absorption chiller includes a refrigerant pump 11 for pumping refrigerant from the lower part of the evaporator 4 and transferring the refrigerant to the injector 10a, a shutoff valve 12 for bypassing the refrigerant to the absorber 5, and A solution circulation pump 13 for pumping an aqueous lithium embrittlement (LiBr) solution from the lower part of the absorber (5) to the high temperature regenerator (1) and the low temperature regenerator (2) side, and the solution circulating pump (13) The solution spray pump 14 which injects a solution to the absorber 5 side is provided.

상기 증발기(4)와 흡수기(5)는 서로 접하여 설치되어 있되, 그 사이에는 엘리미네이터(15)가 배치되어 상기 증발기(4)와흡수기(5)는 상호 연통가능하게 되어 있다. 일반적으로 흡수식 냉동기에서 엘리미네이터(15)의 역할은 증발기(4)에서 증발된 냉매증기 만이 흡수기(5)측으로 유동될 수 있도록 하는 한편, 상기 냉매증기를 효과적으로 흡수하기 위해 흡수기(5)에서 분사하게 되는 용액이 증발기(4)내에 침입하지 못하도록 함으로써 증발기(4)내 냉매가 오염되어 증발능력이 급격하게 감소되는 것을 방지한다. 다시 말해, 상기 엘리미네이터(15)는 냉매증기의 이동은 용이하도록 하는 반면, 흡수기(5)내의 흡수용액이 증발기(4)로 침입하지 못하도록 차단하게 된다.The evaporator 4 and the absorber 5 are provided in contact with each other, and an eliminator 15 is disposed therebetween so that the evaporator 4 and the absorber 5 can communicate with each other. In general, the role of the eliminator 15 in the absorption chiller allows only the refrigerant vapor evaporated in the evaporator 4 to flow to the absorber 5 side, while spraying in the absorber 5 to effectively absorb the refrigerant vapor. By preventing the solution to be infiltrated into the evaporator 4, the refrigerant in the evaporator 4 is contaminated to prevent the evaporation capacity from being sharply reduced. In other words, the eliminator 15 facilitates the movement of the refrigerant vapor, while blocking the absorption solution in the absorber 5 from entering the evaporator 4.

상기에서 설명된 바와 같이, 흡수식 냉방에 이용되는 냉수는 증발기(4)내의 전열관(9a)을 통과하면서 상기 냉매의 증발잠열에 의해 열을 빼앗겨 냉각되게 되는데, 증발기(4)에서 증발된 냉매증기는 흡수기(5) 내로 유입되어 전열관(9b)의 관외 면에 산포됨과 아울러 흡수기(5) 내의 농후용액에 흡수되고, 상기 냉매증기를 흡수할 때 발생된 흡수열은 상기 전열관(9b)의 관내에 공급된 냉각수에 의해 제거됨에 따라 흡수기(5)내 농후용액은 항상 일정한 온도로 유지된다. 냉매증기를 흡수한 흡수기(5)내의 상기 농후용액은 농도가 묽어지는 희석작용이 발생되어 희박용액으로 되는데, 용액순환펌프(13)에 의해 펌핑되어 저온용액 열교환기(6)를 거치면서 고온재생기(1)와 저온재생기(2)로부터 회수되는 고온용액에 의해 예열된 후, 두 갈래로 나뉘어져서 일부는 저온재생기(2)로 유입되고 다른 일부는 고온 용액 열교환기(7)를 거쳐 고온재생기(1)로 유입된다. 고온재생기(1)로 유입된 용액은 가열수단(17)으로부터 공급되는 연소가스, 증기 등에 의해 가열되어 고온의 냉매증기를 발생시키면서 고온농후용액으로 된다.As described above, the cold water used for absorption cooling passes through the heat transfer pipe 9a in the evaporator 4 to be deprived of heat by the latent heat of evaporation of the refrigerant, and the refrigerant vapor evaporated in the evaporator 4 is cooled. The heat of absorption flows into the absorber 5 and is dispersed in the tube outer surface of the heat transfer tube 9b and absorbed by the concentrated solution in the absorber 5, and the heat of absorption generated when absorbing the refrigerant vapor is supplied into the tube of the heat transfer tube 9b. The rich solution in the absorber 5 is always kept at a constant temperature as it is removed by the cooled cooling water. The concentrated solution in the absorber (5) absorbing the refrigerant vapor is diluted to produce a dilute action, which becomes a lean solution, which is pumped by the solution circulation pump (13) to pass through the low temperature solution heat exchanger (6) After being preheated by the high temperature solution recovered from (1) and the low temperature regenerator (2), it is divided into two parts, partly introduced into the low temperature regenerator (2), and the other part is passed through the high temperature solution heat exchanger (7). Flows into 1). The solution introduced into the high temperature regenerator 1 is heated by combustion gas, steam or the like supplied from the heating means 17 to form a high temperature concentrated solution while generating a high temperature refrigerant vapor.

고온재생기(1)내 용액의 수위는 고온재생기(1)에 구비된 공지의 플로우트밸브(16)를 이용하여 제어하게 되는데, 이 플로우트밸브(16)는 고온재생기(1)내 유입유량이 많은 경우 입구측 배관(21)의 개도(開度)를 점차 축소시키고, 유입유량이 적은 경우에는 입구측 배관(21)의 개도를 점차 확대하여 고온재생기(1)내 용액수위가 일정하게 유지되도록 자동으로 제어된다.The water level of the solution in the high temperature regenerator 1 is controlled by using a known float valve 16 provided in the high temperature regenerator 1, and this float valve 16 has a large flow rate in the high temperature regenerator 1 The opening degree of the inlet pipe 21 is gradually reduced, and when the inflow flow rate is small, the opening degree of the inlet pipe 21 is gradually enlarged to automatically maintain the level of the solution in the high temperature regenerator 1. Controlled.

한편, 상기 저온재생기(2)로 들어온 상기 희박용액은 고온재생기(1)에서 발생하여 이송된 냉매증기에 의해 가열되어 냉매증기를 발생시키면서 중간농도의 용액으로 농축되고, 상기 고온재생기(1)에서 농축된 고온농후용액은 출구측 배관(22)을 통해배출되어 고온 용액 열교환기(7)를 거친 후, 저온재생기(2)로부터 환류하는 중간농도의 용액과 만나 혼합되면서 저온용액열교환기(6)를 통해 흡수기(5)측으로 회수된다. 이때, 회수되는 용액은 용액스프레이 펌프(14)에 의해 펌핑되어 상기 분사기(10b)를 통해 흡수기(5)내로 분사된다.On the other hand, the lean solution entering the low temperature regenerator (2) is heated by the refrigerant vapor generated by the high temperature regenerator (1) and is concentrated to a solution of medium concentration while generating a refrigerant vapor, the high temperature regenerator (1) The concentrated hot concentrated solution is discharged through the outlet pipe 22, passed through the hot solution heat exchanger 7, and then mixed with the intermediate solution refluxed from the cold regenerator 2 to be mixed with the cold solution heat exchanger 6 It is withdrawn to the absorber 5 side through. At this time, the recovered solution is pumped by the solution spray pump 14 and injected into the absorber 5 through the injector 10b.

그리고, 고온재생기(1)는 가열수단(17)에 의해 고온재생기(1) 내부의 용액을 가열하여 냉매증기를 생성시키게 되고, 여기서 발생한 냉매증기는 저온재생기(2)를 가열하는 열원으로 사용된다. 저온재생기(2)의 가열에 사용된 냉매와 저온재생기(2)에서 발생되는 냉매는 응축기(3)에서 냉각수에 의해 냉각되어 응축되는데, 응축기(3)에서 응축된 상기 냉매는 중력과압력차에 의해 증발기(4)로 유입되고, 응축기(3)로부터 증발기(4)로 유입된 상기 응축냉매는 일정한 냉매수위까지 채워진상태에서 다시 냉매펌프(11)에 의해 펌핑되어 분사기(10a)를 통해 증발기(4)내에 분사되어 냉방에 필요한 냉수를 얻게 된다. 또한, 상기 분사기(10a)를 통해 분사된 일부 냉매액은 증발하여 엘리미네이터(15)를 거쳐 흡수기(5)로 이동하고, 나머지 냉매액은 증발기(4) 하단에 모여 다시 냉매펌프(11)로 흡입된다.The high temperature regenerator 1 heats the solution inside the high temperature regenerator 1 by the heating means 17 to generate refrigerant vapor, and the generated refrigerant vapor is used as a heat source for heating the low temperature regenerator 2. . The refrigerant used for heating the low temperature regenerator 2 and the refrigerant generated in the low temperature regenerator 2 are cooled by the cooling water in the condenser 3 and condensed. The refrigerant condensed in the condenser 3 is subjected to the gravity and pressure difference. The condensation refrigerant introduced into the evaporator (4), the condensation refrigerant introduced from the condenser (3) to the evaporator (4) is pumped again by the refrigerant pump (11) in a state filled up to a constant refrigerant level to the evaporator (10a) through the injector (10a) 4) It is sprayed inside to obtain cold water required for cooling. In addition, some of the refrigerant liquid injected through the injector (10a) is evaporated to move through the eliminator 15 to the absorber (5), the remaining refrigerant liquid is collected at the bottom of the evaporator (4) again the refrigerant pump (11) Is inhaled.

이러한 냉동기에 있어서 열효율을 증대시키기 위해서는 여러가지 조건들이 잘 갖추어져 있어야 하는데, 특히 열교환기의 열교환 특성이 중요하며, 그중에서도 증발기의 전열관의 증발능력이 매우 중요하게 대두되고 있다. In order to increase the thermal efficiency in such a refrigerator, various conditions must be well equipped, in particular, the heat exchange characteristics of the heat exchanger is important, and among them, the evaporation capacity of the heat transfer tube of the evaporator is very important.

증발기내의 전열관은 앞서 상술한 바와 같이 응축기로부터 전해지는 냉매(주로 물)을 전열관 내에 흐르는 냉각수와 열교환에 의하여 증발시켜 다시 흡수기로 보내게 되는데, 전열관과 냉매인 물과의 접착성, 즉 전열관 표면의 친수성에 따라 열교환 능력이 크게 달라진다.As described above, the heat transfer tube in the evaporator evaporates the refrigerant (mainly water) transferred from the condenser to the absorber by heat exchange with the cooling water flowing in the heat transfer tube, and sends it to the absorber again. The heat exchange capacity varies greatly depending on the hydrophilicity.

종래에는 열교환 효율을 높이기 위하여 증발기의 전열관 표면에 산화철 막을 형성하여 친수성이 부여된 전열관에 수분의 흡착 및 증발을 최대화하여 열효율을 개선하는 노력이 진행되어 왔으나, 이와 같은 산화철막의 코팅은 진공상태인 증발기 내에서 가스의 발생을 일으켜 수분의 흡착 및 증발 효율을 떨어뜨리게 된다.Conventionally, in order to improve the heat exchange efficiency, efforts have been made to improve the thermal efficiency by maximizing the adsorption and evaporation of water in the heat transfer tubes to which hydrophilicity is formed by forming an iron oxide film on the heat transfer tube surface of the evaporator. Gases are generated in the interior, reducing the adsorption and evaporation efficiency of moisture.

따라서, 본 발명의 목적은 냉동장치 또는 난방장치의 증발기 내의 전열관의 열교환 특성을 더욱 향상시키는데 있다.Accordingly, an object of the present invention is to further improve the heat exchange characteristics of the heat transfer tubes in the evaporator of the refrigerating device or the heating device.

또한, 본 발명의 다른 목적은 증발기, 응축기, 흡수기 등 열교환이 발생하는 모든 장치들에 적용될 수 있는 친수성 코팅 조성물을 제공하는데 있다.Another object of the present invention is to provide a hydrophilic coating composition that can be applied to all devices in which heat exchange occurs, such as an evaporator, a condenser, and an absorber.

본 발명의 또 다른 목적은 내구성과 내식성, 열충격성이 뛰어난 친수성 전열관을 제공하는데 있다.Another object of the present invention is to provide a hydrophilic heat transfer tube excellent in durability, corrosion resistance and thermal shock.

기타, 본 발명의 다른 목적 및 특징은 이하의 상세한 설명 및 특허청구범위를 통하여 명확하게 나타날 것이다. Other objects and features of the present invention will become apparent from the following detailed description and claims.

상기 목적을 달성하기 위하여, 본 발명은 일반식 R1 a Si(OR2)4-a (여기서, R1 및 R2는 각각 탄소수 1 ~ 6의 각각 독립적인 탄화수소이며, a는 0 내지 3의 정수) 으로 표현되는 유기실란의 가수분해물 또는 부분축합물 20 ~ 75중량% 및 TiO2, SiO2, SnO2, ZnO, ZrO2 , WO3 및 V2O5 중에서 선택되는 어느 하나 이상의 금속산화물 25 ~ 80중량% 로 구성되는 졸 용액과; 상기 졸 용액 100 중량부에 대하여 탄소수 1 ~ 4 의 알코올 50 ~ 200중량부;를 포함하며, 상기 졸 용액은 금속산화물 입자의 입경 분포를 서로 달리한 입자성 졸(particulate sol)과 고분자성 졸(polymeric sol)로 이루어지는 것을 특징으로 하는 초친수 코팅 조성물을 제공한다.In order to achieve the above object, the present invention is a general formula R 1 a Si (OR 2 ) 4-a (wherein R 1 and R 2 are each independently a hydrocarbon having 1 to 6 carbon atoms, a is 0 to 3 20 to 75% by weight of a hydrolyzate or partial condensate of an organosilane represented by an integer) and at least one metal oxide selected from TiO 2 , SiO 2 , SnO 2 , ZnO, ZrO 2 , WO 3 and V 2 O 5 . A sol solution composed of about 80% by weight; 50 to 200 parts by weight of alcohol having 1 to 4 carbon atoms based on 100 parts by weight of the sol solution, wherein the sol solution includes a particulate sol and a polymeric sol having different particle diameter distributions of metal oxide particles. It provides a super hydrophilic coating composition, characterized in that made of polymeric sol).

상기 유기실란은 메틸트리메톡시실란, 메틸트리에톡시실란, 테트라메톡시실란, 테트라에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 페닐트리에톡시실란, 페닐트리메톡시실란, 디페닐디메톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란 중에서 선택되는 어느 하나 이상의 물질이며, 상기 알코올은 메탄올, 에탄올, 부탄올, 이소프로필알콜 중에서 선택되는 어느 하나 이상의 물질이고 이러한 물질들은 예시적으로 열거된 것에 불과하며 이외에도 다양한 물질들이 사용될 수 있다. The organosilane may be methyltrimethoxysilane, methyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, phenyltrimethoxysilane, diphenyl Dimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, any one or more materials selected from, and the alcohol is any one or more materials selected from methanol, ethanol, butanol, isopropyl alcohol and these materials are illustrative Only listed and various other materials can be used.

상기 조성물은 또한, 친수성과 함께 내구성을 유지할 수 있도록 특히, 내온수성을 발현할 수 있도록 아미노기를 포함한 실란, 예를 들어 아미노프로필트리메톡시실란, 아미노프로필트리에톡시실란, 아미노프로필메틸디메톡시실란 등을 주요 매트릭스 내에 추가적으로 포함할 수 있으며, 열경화성 촉매로서 Pt, Au, Ag 또는 Pd 중에서 선택되는 어느 하나 이상의 물질을 0.1 ~ 5%의 범위로 추가적으로 포함할 수 있다. The composition may also contain a silane containing an amino group, such as aminopropyltrimethoxysilane, aminopropyltriethoxysilane, aminopropylmethyldimethoxysilane, in order to maintain durability with hydrophilicity, in particular to express hot water resistance. Etc. may be additionally included in the main matrix, and may further include any one or more materials selected from Pt, Au, Ag, or Pd as a thermosetting catalyst in the range of 0.1 to 5%.

또한, 본 발명은 일반식 R1 a Si(OR2)4-a (여기서, R1 및 R2는 각각 탄소수 1 ~ 6의 각각 독립적인 탄화수소이며, a는 0 내지 3의 정수) 으로 표현되는 유기실란의 가수분해물 또는 부분축합물 20 ~ 75중량% 및 TiO2, SiO2, SnO2, ZnO, ZrO 2 , WO3 및 V2O5 중에서 선택되는 어느 하나 이상의 금속산화물 25 ~ 80중량% 로 구성되며 금속산화물 입자의 입경 분포를 서로 달리한 입자성 졸(particulate sol)과 고분자성 졸(polymeric sol)로 이루어지는 졸 용액을 졸-겔법을 이용하여 준비하고; 상기 졸 용액 100 중량부에 대하여 탄소수 1 ~ 4 의 알코올 50 ~ 200중량부를 혼합하여 코팅 조성물을 제조하고; 상기 조성물을 표면에 격자무늬로 홈이 형성되어 있는 전열관의 표면에 코팅하고; 코팅된 전열관을 건조시킨 후, 열처리하는 단계로 이루어지는 전열관의 초친수 코팅 방법을 제공한다.In addition, the present invention is represented by the general formula R 1 a Si (OR 2 ) 4-a (wherein R 1 and R 2 are each independently hydrocarbon having 1 to 6 carbon atoms, a is an integer of 0 to 3) 20 to 75% by weight of the hydrolyzate or partial condensate of the organosilane and 25 to 80% by weight of at least one metal oxide selected from TiO 2 , SiO 2 , SnO 2 , ZnO, ZrO 2 , WO 3 and V 2 O 5 A sol solution composed of a particulate sol and a polymeric sol having different particle diameter distributions of metal oxide particles is prepared by using a sol-gel method; Preparing a coating composition by mixing 50 to 200 parts by weight of an alcohol having 1 to 4 carbon atoms with respect to 100 parts by weight of the sol solution; Coating the composition on a surface of a heat pipe having grooves formed in a lattice pattern on the surface thereof; It provides a method for superhydrophilic coating of the heat transfer tube consisting of drying the coated heat transfer tube, and then heat treatment.

친수성 향상에 따른 열효율 증가를 위하여 상기 코팅 단계 및 열처리 단계를 2회 이상 반복할 수도 있다.The coating step and the heat treatment step may be repeated two or more times in order to increase the thermal efficiency according to the improvement of the hydrophilicity.

상기 건조단계는 60 ~ 100℃의 온도에서 0.5 ~ 2시간 동안, 상기 열처리는 150 ~ 250℃의 온도에서 1 ~ 5시간 동안 수행하는 것이 바람직하다. The drying step is 0.5 to 2 hours at a temperature of 60 ~ 100 ℃, the heat treatment is preferably performed for 1 to 5 hours at a temperature of 150 ~ 250 ℃.

본 발명에 따른 금속산화물 나노졸은 입경 분포를 달리한 두 가지 종류를 혼합하여 사용함으로써 크기가 다른 입자들이 만들어내는 표면거칠기에 의해서 코팅시 비표면적을 최대화하며 또한 콤팩트한 코팅막을 이루도록 하였다. The metal oxide nanosol according to the present invention is used by mixing two kinds of particles having different particle size distributions to maximize the specific surface area during coating and to form a compact coating film by surface roughness produced by particles having different sizes.

또한, 본 발명에 따른 나노졸의 경우는 제조시 화학양론적 양 보다 과량의 산을 포함시킴으로써 결합밀도(cross-linking density)를 더욱 크게 하고, 저온의 열처리를 통해서도 코팅막의 밀도나 경도를 높일 수 있다.In addition, in the case of the nanosol according to the present invention, by including an acid in excess of the stoichiometric amount during manufacture, the cross-linking density is further increased, and the density or hardness of the coating film can be increased even through low temperature heat treatment. have.

한편, 백금 또는 팔라듐 등의 촉매의 첨가로 빛의 조사가 없더라도 장기간 친수성을 유지할 수 있다. On the other hand, addition of a catalyst such as platinum or palladium can maintain hydrophilicity for a long time even without light irradiation.

이와 같은 초친수성 코팅 조성물을, 도 2a에 예시적으로 도시한, 전열관 코일에 코팅하여 열처리함으로서 열효율을 획기적으로 개선한 열교환기 코일을 제작하였다. 이는 에너지 효율을 극대화하여 연료의 사용량을 줄일 수 있고, 유독물 발생의 저감과 함께 에너지 비용의 절감 효과를 얻을 수 있다. 이러한 초친수성 전열관은 냉동장치 또는 난방장치의 증발기, 흡수기 또는 재생기로 사용할 수 있다.By coating such a superhydrophilic coating composition on a heat pipe coil, which is exemplarily shown in FIG. 2A, a heat exchanger coil was produced in which the thermal efficiency was significantly improved. This can maximize the energy efficiency to reduce the amount of fuel used, and to reduce the generation of toxic and energy costs. Such superhydrophilic heat pipes can be used as evaporators, absorbers or regenerators in refrigeration or heating devices.

한편, 전열관의 열교환 능력을 더욱 향상시키기 위하여 전열관의 표면에 격자무늬의 홈을 일정하게 형성시켜 응축수의 흡착이 극대화 될 수 있도록 하였으며, 이 때 골과 산의 간격과 높이를 적절하게 유지시켰다. 도 2b는 도 2a의 전열관 표면(A)에 형성된 격자무늬의 홈을 보여주는 일례이다. On the other hand, in order to further improve the heat exchange capacity of the heat transfer tube, the grooves of the heat transfer tube were regularly formed to maximize the adsorption of condensed water by maintaining the grooves of the valley and the acid. FIG. 2B is an example showing the groove of the lattice pattern formed in the heat transfer tube surface A of FIG. 2A.

본 발명에 따른 초친수 코팅 조성물을 코팅한 경우 매우 우수한 친수특성을 보였다. 도 3a 및 도 3b는 각각 코팅되지 않은 동관과 본 발명에 따른 코팅된 동관의 접촉각 테스트 결과를 보여주는 사진이다. 도 3b의 경우 동관 표면에 물방울이 떨어지는 즉시 거의 표면 높이와 유사하게 퍼져 매우 우수한 흡착 능력을 가지고 있음을 알 수 있다.In the case of coating the superhydrophilic coating composition according to the present invention showed a very good hydrophilic properties. 3A and 3B are photographs showing the results of contact angle test of the uncoated copper tube and the coated copper tube according to the present invention, respectively. In the case of Figure 3b it can be seen that as soon as the water droplets fall on the surface of the copper tube spreads almost similar to the surface height has a very good adsorption capacity.

이하, 실시예를 통하여 본 발명의 특징 및 이에 따른 효과를 더욱 구체적으로 설명한다.Hereinafter, the features of the present invention and the effects thereof will be described in more detail with reference to Examples.

실시예 1.Example 1.

평균 입경 5nm 이하의 고분자성 TiO2 졸 4.5g에 평균 입경 10nm의 TiO2 미분말 1.2g을 0.3mm 직경의 지르코니아 비드를 사용하여 24시간동안 밀링하였다. 여기 에 TEOS 4g과 APTMS(propyltrimethoxysilane) 1g을 넣고 상온에서 3시간 동안 교반하였다. 여기에 백금나이트레이트를 전체 고형분의 0.3 ~ 3%의 범위로 첨가하고 다시 2시간 동안 교반하였다. 여기에 이소프로필 알코올 10g, 탈이온수 8g, 계면활성제 0.1g 및 열경화잠열촉매로서 소듐아세테이트 0.5g을 넣고 1시간 교반하였다. 4.5 g of polymeric TiO 2 sol having an average particle diameter of 5 nm or less and 1.2 g of TiO 2 fine powder having an average particle diameter of 10 nm were milled for 24 hours using 0.3 mm diameter zirconia beads. 4 g of TEOS and 1 g of APTMS (propyltrimethoxysilane) were added thereto, followed by stirring at room temperature for 3 hours. Platinum nitrate was added thereto in the range of 0.3 to 3% of the total solids and stirred for 2 hours. 10 g of isopropyl alcohol, 8 g of deionized water, 0.1 g of surfactant, and 0.5 g of sodium acetate as a latent thermosetting catalyst were added thereto, and the mixture was stirred for 1 hour.

이렇게 하여 완성된 코팅 조성물을 전열관의 표면에 코팅하고 60℃에서 30분간 건조한 후, 180℃에서 2시간 열처리 하였다.The coating composition thus obtained was coated on the surface of the heat transfer tube, dried at 60 ° C. for 30 minutes, and then heat-treated at 180 ° C. for 2 hours.

실시예 2.Example 2.

평균 입경 5nm 이하의 고분자성 TiO2 졸 4.5g에 평균 입경 10nm의 TiO2 미분말 1.2g을 0.3mm 직경의 지르코니아 비드를 사용하여 24시간동안 밀링하였다. 여기에 TEOS 4g과 APTMS 1g을 넣고 상온에서 3시간 동안 교반하였다. 여기에 팔라듐나이트레이트를 전체 고형분의 0.3 ~ 3%의 범위로 첨가하고 다시 2시간 동안 교반하였다. 여기에 이소프로필 알코올 10g, 탈이온수 8g, 계면활성제 0.1g 및 열경화잠열촉매로서 소듐아세테이트 0.5g을 넣고 1시간 교반하였다. 4.5 g of polymeric TiO 2 sol having an average particle diameter of 5 nm or less and 1.2 g of TiO 2 fine powder having an average particle diameter of 10 nm were milled for 24 hours using 0.3 mm diameter zirconia beads. 4 g of TEOS and 1 g of APTMS were added thereto and stirred at room temperature for 3 hours. Palladium nitrate was added thereto in the range of 0.3 to 3% of the total solids and stirred for 2 hours. 10 g of isopropyl alcohol, 8 g of deionized water, 0.1 g of a surfactant, and 0.5 g of sodium acetate as a thermosetting latent catalyst were added and stirred for 1 hour.

이렇게 하여 완성된 코팅 조성물을 전열관의 표면에 코팅하고 60℃에서 30분간 건조한 후, 180℃에서 2시간 열처리 하였다.The coating composition thus obtained was coated on the surface of the heat transfer tube, dried at 60 ° C. for 30 minutes, and then heat-treated at 180 ° C. for 2 hours.

실시예 3.Example 3.

평균 입경 10nm의 TiO2 미분말 1.2g을 TEOS 4g 및 APTMS 1g과 혼합하고 상온에서 3시간 동안 교반하였다. 여기에 백금나이트레이트를 전체 고형분의 0.3 ~ 3%의 범위로 첨가하고 다시 2시간 동안 교반하였다. 여기에 이소프로필 알코올 10g, 탈이온수 8g, 계면활성제 0.1g 및 열경화잠열촉매로서 소듐아세테이트 0.5g을 넣고 1시간 교반하였다. 1.2 g of TiO 2 fine powder having an average particle diameter of 10 nm was mixed with 4 g of TEOS and 1 g of APTMS and stirred at room temperature for 3 hours. Platinum nitrate was added thereto in the range of 0.3 to 3% of the total solids and stirred for 2 hours. 10 g of isopropyl alcohol, 8 g of deionized water, 0.1 g of surfactant, and 0.5 g of sodium acetate as a latent thermosetting catalyst were added thereto, and the mixture was stirred for 1 hour.

이렇게 하여 완성된 코팅 조성물을 전열관의 표면에 코팅하고 60℃에서 30분간 건조한 후, 180℃에서 2시간 열처리 하였다.The coating composition thus obtained was coated on the surface of the heat transfer tube, dried at 60 ° C. for 30 minutes, and then heat-treated at 180 ° C. for 2 hours.

실시예 4.Example 4.

평균 입경 5nm 이하의 고분자성 TiO2 졸 4.5g에 TEOS 4g과 APTMS 1g을 넣고 상온에서 3시간 동안 교반하였다. 여기에 백금나이트레이트를 전체 고형분의 0.3 ~ 3%의 범위로 첨가하고 다시 2시간 동안 교반하였다. 여기에 이소프로필 알코올 10g, 탈이온수 8g, 계면활성제 0.1g 및 열경화잠열촉매로서 소듐아세테이트 0.5g을 넣고 1시간 교반하였다. 4 g of TEOS and 1 g of APTMS were added to 4.5 g of polymeric TiO 2 sol having an average particle diameter of 5 nm or less, and stirred at room temperature for 3 hours. Platinum nitrate was added thereto in the range of 0.3 to 3% of the total solids and stirred for 2 hours. 10 g of isopropyl alcohol, 8 g of deionized water, 0.1 g of surfactant, and 0.5 g of sodium acetate as a latent thermosetting catalyst were added thereto, and the mixture was stirred for 1 hour.

이렇게 하여 완성된 코팅 조성물을 전열관의 표면에 코팅하고 60℃에서 30분간 건조한 후, 180℃에서 2시간 열처리 하였다.The coating composition thus obtained was coated on the surface of the heat transfer tube, dried at 60 ° C. for 30 minutes, and then heat-treated at 180 ° C. for 2 hours.

실시예 5.Example 5.

평균 입경 5nm 이하의 고분자성 TiO2 졸 4.5g에 평균 입경 10nm의 TiO2 미분말 1.2g을 0.3mm 직경의 지르코니아 비드를 사용하여 24시간동안 밀링하였다. 여기에 TEOS 4g을 넣고 상온에서 3시간 동안 교반하였다. 여기에 백금나이트레이트를 전체 고형분의 0.3 ~ 3%의 범위로 첨가하고 다시 2시간 동안 교반하였다. 여기에 이소프로필 알코올 10g, 탈이온수 8g, 계면활성제 0.1g 및 열경화잠열촉매로서 소듐아세테이트 0.5g을 넣고 1시간 교반하였다. 4.5 g of polymeric TiO 2 sol having an average particle diameter of 5 nm or less and 1.2 g of TiO 2 fine powder having an average particle diameter of 10 nm were milled for 24 hours using 0.3 mm diameter zirconia beads. 4 g of TEOS was added thereto and stirred at room temperature for 3 hours. Platinum nitrate was added thereto in the range of 0.3 to 3% of the total solids and stirred for 2 hours. 10 g of isopropyl alcohol, 8 g of deionized water, 0.1 g of surfactant, and 0.5 g of sodium acetate as a latent thermosetting catalyst were added thereto, and the mixture was stirred for 1 hour.

이렇게 하여 완성된 코팅 조성물을 전열관의 표면에 코팅하고 60℃에서 30분간 건조한 후, 180℃에서 2시간 열처리 하였다.The coating composition thus obtained was coated on the surface of the heat transfer tube, dried at 60 ° C. for 30 minutes, and then heat-treated at 180 ° C. for 2 hours.

실시예 6.Example 6.

평균 입경 5nm 이하의 고분자성 TiO2 졸 4.5g에 평균 입경 10nm의 TiO2 미분말 1.2g을 0.3mm 직경의 지르코니아 비드를 사용하여 24시간동안 밀링하였다. 여기에 APTMS 1g을 넣고 상온에서 3시간 동안 교반하였다. 여기에 백금나이트레이트를 전체 고형분의 0.3 ~ 3%의 범위로 첨가하고 다시 2시간 동안 교반하였다. 여기에 이소프로필 알코올 10g, 탈이온수 8g, 계면활성제 0.1g 및 열경화잠열촉매로서 소듐아세테이트 0.5g을 넣고 1시간 교반하였다. 4.5 g of polymeric TiO 2 sol having an average particle diameter of 5 nm or less and 1.2 g of TiO 2 fine powder having an average particle diameter of 10 nm were milled for 24 hours using 0.3 mm diameter zirconia beads. 1 g of APTMS was added thereto and stirred at room temperature for 3 hours. Platinum nitrate was added thereto in the range of 0.3 to 3% of the total solids and stirred for 2 hours. 10 g of isopropyl alcohol, 8 g of deionized water, 0.1 g of surfactant, and 0.5 g of sodium acetate as a latent thermosetting catalyst were added thereto, and the mixture was stirred for 1 hour.

이렇게 하여 완성된 코팅 조성물을 전열관의 표면에 코팅하고 60℃에서 30분간 건조한 후, 180℃에서 2시간 열처리 하였다.The coating composition thus obtained was coated on the surface of the heat transfer tube, dried at 60 ° C. for 30 minutes, and then heat-treated at 180 ° C. for 2 hours.

실시예 7.Example 7.

평균 입경 5nm 이하의 고분자성 TiO2 졸 4.5g에 평균 입경 10nm의 TiO2 미분말 1.2g을 0.3mm 직경의 지르코니아 비드를 사용하여 24시간동안 밀링하였다. 여기에 MTMS(Methyltrimethoxysilane) 4g과 APTMS 1g을 넣고 상온에서 3시간 동안 교반하였다. 여기에 백금나이트레이트를 전체 고형분의 0.3 ~ 3%의 범위로 첨가하고 다시 2시간 동안 교반하였다. 여기에 이소프로필 알코올 10g, 탈이온수 8g, 계면활성제 0.1g 및 열경화잠열촉매로서 소듐아세테이트 0.5g을 넣고 1시간 교반하였다. 4.5 g of polymeric TiO 2 sol having an average particle diameter of 5 nm or less and 1.2 g of TiO 2 fine powder having an average particle diameter of 10 nm were milled for 24 hours using 0.3 mm diameter zirconia beads. 4 g of MTMS (Methyltrimethoxysilane) and 1 g of APTMS were added thereto and stirred at room temperature for 3 hours. Platinum nitrate was added thereto in the range of 0.3 to 3% of the total solids and stirred for 2 hours. 10 g of isopropyl alcohol, 8 g of deionized water, 0.1 g of surfactant, and 0.5 g of sodium acetate as a latent thermosetting catalyst were added thereto, and the mixture was stirred for 1 hour.

이렇게 하여 완성된 코팅 조성물을 전열관의 표면에 코팅하고 60℃에서 30분 간 건조한 후, 180℃에서 2시간 열처리 하였다.The coating composition thus obtained was coated on the surface of the heat transfer tube, dried at 60 ° C. for 30 minutes, and then heat-treated at 180 ° C. for 2 hours.

실시예 8.Example 8.

평균 입경 5nm 이하의 고분자성 TiO2 졸 4.5g에 평균 입경 10nm의 TiO2 미분말 1.2g을 0.3mm 직경의 지르코니아 비드를 사용하여 24시간동안 밀링하였다. 여기에 TEOS 4g과 APTMS 1g을 넣고 상온에서 3시간 동안 교반하였다. 여기에 이소프로필 알코올 10g, 탈이온수 8g, 계면활성제 0.1g 및 열경화잠열촉매로서 소듐아세테이트 0.5g을 넣고 1시간 교반하였다. 4.5 g of polymeric TiO 2 sol having an average particle diameter of 5 nm or less and 1.2 g of TiO 2 fine powder having an average particle diameter of 10 nm were milled for 24 hours using 0.3 mm diameter zirconia beads. 4 g of TEOS and 1 g of APTMS were added thereto and stirred at room temperature for 3 hours. 10 g of isopropyl alcohol, 8 g of deionized water, 0.1 g of surfactant, and 0.5 g of sodium acetate as a latent thermosetting catalyst were added thereto, and the mixture was stirred for 1 hour.

이렇게 하여 완성된 코팅 조성물을 전열관의 표면에 코팅하고 60℃에서 30분간 건조한 후, 180℃에서 2시간 열처리 하였다.The coating composition thus obtained was coated on the surface of the heat transfer tube, dried at 60 ° C. for 30 minutes, and then heat-treated at 180 ° C. for 2 hours.

상기 실시예들을 통하여 얻는 피복 조성물을 전열관에 코팅한 후, 물과의 접촉각 테스트, 코팅막과 전열관과의 부착성 테스트(스카치 테이프 접착 테스트), 내온수성 테스트(80℃ 온수에서 24시간 침지 후 접촉각 측정)를 실시하였다. 테스트 결과는 다음의 표와 같다.After coating the coating composition obtained through the above examples on the heat transfer tube, the contact angle test with water, the adhesion test between the coating film and the heat transfer tube (Scotch tape adhesion test), the hot water resistance test (contact angle measurement after immersion in hot water at 80 ℃ for 24 hours ) Was performed. The test results are shown in the following table.

실시예 1Example 1 실시예 2Example 2 실시예3Example 3 실시예4Example 4 실시예 5Example 5 실시예 6Example 6 실시예 7Example 7 실시예 8Example 8 접촉각 (열처리직후)Contact angle (just after heat treatment)  3 °  3 °  5 °  5 °  5 °  3 ° 15° 15 °  7 ° 접촉각 (암실 방치 90일 후)후After contact angle (90 days after dark)  9 ° 10°  10 ° 13° 13 ° 13° 13 ° 23° 23 °  9 ° 43° 43 ° 24° 24 ° 내온수성Hot water resistance 3 ° 4 ° 3 ° 5 ° 7 ° 60°60 ° 45°45 ° 12°12 ° 부착성Adhesion 100/100100/100 100/100100/100 100/100100/100 100/100100/100 100/100100/100 100/100100/100 100/100100/100 100/100100/100

실시예 1 내지 4의 경우가 접촉각 및 내온수성에서 상대적으로 우수한 것으로 나타났다.Examples 1 to 4 were found to be relatively superior in contact angle and hot water resistance.

한편, 코팅된 전열관을 30분 주기로 0℃와 80℃ 사이에서 온도를 변화시켜가며 총 1000 사이클로 열충격 테스트를 실시하였다. 테스트 결과 친수능력의 열화가 일어나지 않았으며, 전열관 표면 코팅 상태도 변화없이 그대로 유지되었다.On the other hand, the coated heat pipe was subjected to a thermal shock test in a total of 1000 cycles by varying the temperature between 0 ℃ and 80 ℃ every 30 minutes. The test showed no deterioration of hydrophilicity, and the surface coating state of the tube remained unchanged.

또한, 코팅하지 않은 전열관(흡착 비율 60 - 70%)과 비교해 볼 때 본 발명에 따른 초친수성 전열관은 응축수의 흡착이 거의 100%에 가까운 우수한 흡착 능력을 보였다.In addition, the superhydrophilic heat pipe according to the present invention showed an excellent adsorption capacity of almost 100% of the adsorption of condensed water as compared to the uncoated heat pipe (adsorption ratio of 60 to 70%).

이상에서 살펴본 바와 같이, 본 발명에 따르면, 고온, 다단계에 걸친 복잡한 가공 공정없이 초친수 조성물을 전열관 표면에 코팅함으로써 단순화 공정에 의하여 전열관의 열교환 능력을 향상시키며, 특히, 증발기, 응축기 등이 빛이 없는 암실 상태에서 장기간 사용되는 경우에도 친수성의 저하없이 열교환 성능을 유지할 수 있다. 따라서, 열효율이 매우 우수하고 내구성이 뛰어난 전열관을 제공한다.As described above, according to the present invention, the superhydrophilic composition is coated on the surface of the heat pipe without high temperature, multi-step complex processing, thereby improving heat exchange capacity of the heat pipe by a simplification process. Even if it is used for a long time in a dark room without heat condition can maintain the heat exchange performance without deterioration of hydrophilicity. Thus, it is possible to provide a heat transfer tube having excellent thermal efficiency and excellent durability.

Claims (14)

일반식 R1 a Si(OR2)4-a (여기서, R1 및 R2 는 각각 탄소수 1 ~ 6의 각각 독립적인 탄화수소이며, a는 0 내지 3의 정수) 으로 표현되는 유기실란의 가수분해물 또는 부분축합물 20 ~ 75중량% 및, Hydrolyzate of organosilane represented by general formula R 1 a Si (OR 2 ) 4-a , wherein R 1 and R 2 are each independently hydrocarbons having 1 to 6 carbon atoms, and a is an integer of 0 to 3 Or 20 to 75% by weight of the condensate, and TiO2, SiO2, SnO2, ZnO, ZrO2 , WO3 및 V2 O5 중에서 선택되는 어느 하나 이상의 금속산화물 25 ~ 80중량% 로 구성되는 졸 용액과; A sol solution composed of 25 to 80% by weight of at least one metal oxide selected from TiO 2 , SiO 2 , SnO 2 , ZnO, ZrO 2 , WO 3 and V 2 O 5 ; 상기 졸 용액 100 중량부에 대하여 탄소수 1 ~ 4 의 알코올 50 ~ 200중량부;를 포함하며,Includes; 50 to 200 parts by weight of alcohol having 1 to 4 carbon atoms with respect to 100 parts by weight of the sol solution; 상기 졸 용액은 금속산화물 입자의 입경 분포를 서로 달리한 입자성 졸(particulate sol)과 고분자성 졸(polymeric sol)로 이루어지는 것을 특징으로 하는 The sol solution is characterized by consisting of a particle sol (particulate sol) and polymeric sol (polymeric sol) having a different particle diameter distribution of the metal oxide particles 초친수 코팅 조성물. Superhydrophilic Coating Composition. 제1항에 있어서, 상기 유기실란은 메틸트리메톡시실란, 메틸트리에톡시실란, 테트라메톡시실란, 테트라에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 페닐트리에톡시실란, 페닐트리메톡시실란, 디페닐디메톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란 중에서 선택되는 어느 하나 이상의 물질인 초친수 코팅 조성물. The method of claim 1, wherein the organosilane is methyltrimethoxysilane, methyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, phenyltri A superhydrophilic coating composition, which is any one or more materials selected from methoxysilane, diphenyldimethoxysilane, vinyltrimethoxysilane, and vinyltriethoxysilane. 제1항에 있어서, 상기 알코올은 메탄올, 에탄올, 부탄올, 이소프로필알콜 중에서 선택되는 어느 하나 이상의 물질인 초친수 코팅 조성물. The superhydrophilic coating composition of claim 1, wherein the alcohol is at least one material selected from methanol, ethanol, butanol, and isopropyl alcohol. 제1항에 있어서, 아미노기를 포함하는 실란을 추가적으로 포함하는 초친수 코팅 조성물. The superhydrophilic coating composition of claim 1, further comprising a silane comprising an amino group. 제4항에 있어서, 상기 아미노기를 포함하는 실란은 아미노프로필트리메톡시실란, 아미노프로필트리에톡시실란, 아미노프로필메틸디메톡시실란 중에서 선택되는 어느 하나인 초친수 코팅 조성물. The superhydrophilic coating composition according to claim 4, wherein the silane comprising an amino group is any one selected from aminopropyltrimethoxysilane, aminopropyltriethoxysilane, and aminopropylmethyldimethoxysilane. 제1항에 있어서, 열경화성 촉매로서 Pt, Au, Ag 또는 Pd 중에서 선택되는 어느 하나 이상의 물질을 0.1 ~ 5%의 범위로 추가적으로 포함하는 초친수 코팅 조성물. The superhydrophilic coating composition of claim 1, further comprising 0.1 to 5% of at least one material selected from Pt, Au, Ag, or Pd as a thermosetting catalyst. 제1항의 조성물이 표면에 코팅되어 있는 것을 특징으로 하는 초친수성 전열관.Superhydrophilic heat transfer tube, characterized in that the composition of claim 1 is coated on the surface. 제7항에 있어서, 상기 전열관의 표면에 격자무늬로 홈이 형성되어 있는 초친수성 전열관.The superhydrophilic heat transfer tube according to claim 7, wherein grooves are formed in a lattice pattern on the surface of the heat transfer tube. 제7항에 있어서, 상기 전열관은 동관인 초친수성 전열관.8. The superhydrophilic heat pipe of claim 7, wherein the heat pipe is a copper pipe. 제7항에 있어서, 상기 전열관은 냉동장치 또는 난방장치의 증발기, 흡수기, 또는 재생기로 사용하는 것을 특징으로 하는 초친수성 전열관.8. The superhydrophilic heat transfer tube according to claim 7, wherein the heat transfer tube is used as an evaporator, absorber, or regenerator of a refrigerating device or a heating device. 일반식 R1 a Si(OR2)4-a (여기서, R1 및 R2 는 각각 탄소수 1 ~ 6의 각각 독립적인 탄화수소이며, a는 0 내지 3의 정수) 으로 표현되는 유기실란의 가수분해물 또는 부분축합물 20 ~ 75중량% 및 TiO2, SiO2, SnO2, ZnO, ZrO2 , WO3 및 V2O5 중에서 선택되는 어느 하나 이상의 금속산화물 25 ~ 80중량% 로 구성되며 금속산화물 입자의 입경 분포를 서로 달리한 입자성 졸(particulate sol)과 고분자성 졸(polymeric sol)로 이루어지는 졸 용액을 졸-겔법을 이용하여 준비하고; Hydrolyzate of organosilane represented by general formula R 1 a Si (OR 2 ) 4-a , wherein R 1 and R 2 are each independently hydrocarbons having 1 to 6 carbon atoms, and a is an integer of 0 to 3 Or 20 to 75% by weight of the partial condensate and 25 to 80% by weight of any one or more metal oxides selected from TiO 2 , SiO 2 , SnO 2 , ZnO, ZrO 2 , WO 3 and V 2 O 5 . Preparing a sol solution comprising a particle sol and a polymer sol having different particle size distributions by using a sol-gel method; 상기 졸 용액 100 중량부에 대하여 탄소수 1 ~ 4 의 알코올 50 ~ 200중량부를 혼합하여 코팅 조성물을 제조하고;Preparing a coating composition by mixing 50 to 200 parts by weight of an alcohol having 1 to 4 carbon atoms with respect to 100 parts by weight of the sol solution; 상기 조성물을 표면에 격자무늬로 홈이 형성되어 있는 전열관의 표면에 코팅하고; Coating the composition on a surface of a heat pipe having grooves formed in a lattice pattern on the surface thereof; 코팅된 전열관을 건조시킨 후, 열처리하는 단계로 이루어지는Drying the coated heat pipe, followed by heat treatment. 전열관의 초친수 코팅 방법.Super hydrophilic coating method of heat pipe. 제11항에 있어서, 상기 코팅 단계 및 열처리 단계를 2회 이상 반복하는 것을 특징으로 하는 전열관의 초친수 코팅 방법. 12. The method of claim 11, wherein the coating step and the heat treatment step are repeated two or more times. 제11항에 있어서, 열처리는 150 ~ 250℃의 온도에서 1 ~ 5시간 동안 수행되는 전열관의 초친수 코팅 방법. The method of claim 11, wherein the heat treatment is superhydrophilic coating method of the heat transfer tube is carried out for 1 to 5 hours at a temperature of 150 ~ 250 ℃. 제11항에 있어서, 건조는 60 ~ 100℃의 온도에서 0.5 ~ 2시간 동안 수행되는 전열관의 초친수 코팅 방법. The method of claim 11, wherein the drying is carried out for 0.5 ~ 2 hours at a temperature of 60 ~ 100 ℃ superhydrophilic coating method of the heat transfer tube.
KR1020030045350A 2003-07-04 2003-07-04 Composition for ultra hydrophilicity, hydrophilic heat exchanging pipe and method for coating hydrophilic film KR100564877B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030045350A KR100564877B1 (en) 2003-07-04 2003-07-04 Composition for ultra hydrophilicity, hydrophilic heat exchanging pipe and method for coating hydrophilic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030045350A KR100564877B1 (en) 2003-07-04 2003-07-04 Composition for ultra hydrophilicity, hydrophilic heat exchanging pipe and method for coating hydrophilic film

Publications (2)

Publication Number Publication Date
KR20050003838A KR20050003838A (en) 2005-01-12
KR100564877B1 true KR100564877B1 (en) 2006-03-30

Family

ID=37218883

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030045350A KR100564877B1 (en) 2003-07-04 2003-07-04 Composition for ultra hydrophilicity, hydrophilic heat exchanging pipe and method for coating hydrophilic film

Country Status (1)

Country Link
KR (1) KR100564877B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907042B1 (en) 2007-10-25 2009-07-09 사카팬코리아 주식회사 Method and apparatus for coating of heat exchanger
KR101858814B1 (en) * 2016-07-12 2018-05-17 두산중공업 주식회사 Heat transfer tube for condensor coating system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783070B1 (en) * 2006-03-22 2007-12-07 제일모직주식회사 Organosilane composition, Hardmask Composition Coated under Photoresist and Process of producing integrated circuit devices using thereof
KR100783068B1 (en) * 2006-03-22 2007-12-07 제일모직주식회사 Organosilane composition, Hardmask Composition Coated under Photoresist and Process of producing integrated circuit devices using thereof
KR100783064B1 (en) * 2006-03-13 2007-12-07 제일모직주식회사 Organosilane composition, Hardmask Composition Coated under Photoresist and Process of producing integrated circuit devices using thereof
KR101227470B1 (en) * 2011-04-14 2013-01-29 한국생산기술연구원 METHOD FOR TREATING SURFACE OF PARTICLE FOR E-PAPER USING EXTERNAL ADDITIVE OF TiO2 AND PARTICLE FOR E-PAPER USING EXTERNAL ADDITIVE OF TiO2 PREPARED BY USING THE METHOD

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907042B1 (en) 2007-10-25 2009-07-09 사카팬코리아 주식회사 Method and apparatus for coating of heat exchanger
KR101858814B1 (en) * 2016-07-12 2018-05-17 두산중공업 주식회사 Heat transfer tube for condensor coating system
US10155245B2 (en) 2016-07-12 2018-12-18 DOOSAN Heavy Industries Construction Co., LTD System for coating heat transfer tube for condenser

Also Published As

Publication number Publication date
KR20050003838A (en) 2005-01-12

Similar Documents

Publication Publication Date Title
AU2006253864B2 (en) System and method for managing water content in a fluid
US5297398A (en) Polymer desiccant and system for dehumidified air conditioning
US8302425B2 (en) Regenerative adsorption system with a spray nozzle for producing adsorbate vapor and condensing desorbed vapor
US4287721A (en) Chemical heat pump and method
CN101418972A (en) Solar groove type and flat-plate type combine heat-collecting solution regeneration method, device thereof and applications
KR100564877B1 (en) Composition for ultra hydrophilicity, hydrophilic heat exchanging pipe and method for coating hydrophilic film
CN207501329U (en) A kind of cooling system of adjustable air humidity
CN107702240A (en) A kind of combined type solution dehumidification again generating apparatus and dehumidifying renovation process
KR100461934B1 (en) Fluid cooling and gas dehumidification cooling method and apparatus
JP5630010B2 (en) Air purifier
CN107806682A (en) A kind of cooling system of adjustable air humidity
WO2013063210A1 (en) Thin film-based compact absorption cooling system
CN105674452B (en) Air ejection humidification-membrane type combines desiccant cooling system with compression
CN107575970A (en) A kind of combined-type water cold air conditioning system and operation method
WO2015098698A1 (en) Adsorption heat exchanger and manufacturing method for adsorption fin used in adsorption heat exchanger
JP2003001746A (en) Copper member having hydrophilicity and water repellency, method for manufacturing the same, and heat transfer pipe
CN113856421B (en) Air carrier band tritium-containing wastewater system suitable for spent fuel aftertreatment
CN1232607C (en) Dehumidification solution suitable to air conditioning
US11338220B2 (en) Atmospheric water generator apparatus
CN211120100U (en) Integrated refrigerated lithium bromide refrigerator
CN105698584A (en) Heat exchange fin, heat exchanger with heat exchange fins and dehumidifier
CN220453829U (en) Runner dehumidifier cold source utilizes system step by step
CN2270216Y (en) Tubular fin type quick adsorbent bed
CN117989627A (en) Clean air conditioner utilizing normal temperature air cold energy in fluidization mode and exhaust steam condensation method
CN114893832A (en) Solution dehumidification system driven by carbon dioxide transcritical refrigeration cycle coupling

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130305

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140304

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150310

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160309

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180305

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190305

Year of fee payment: 16