KR100550993B1 - Driving method of plasma display panel and plasma display device - Google Patents

Driving method of plasma display panel and plasma display device Download PDF

Info

Publication number
KR100550993B1
KR100550993B1 KR1020040037283A KR20040037283A KR100550993B1 KR 100550993 B1 KR100550993 B1 KR 100550993B1 KR 1020040037283 A KR1020040037283 A KR 1020040037283A KR 20040037283 A KR20040037283 A KR 20040037283A KR 100550993 B1 KR100550993 B1 KR 100550993B1
Authority
KR
South Korea
Prior art keywords
voltage
electrode
discharge
address
sustain
Prior art date
Application number
KR1020040037283A
Other languages
Korean (ko)
Other versions
KR20050113699A (en
Inventor
김태성
양진호
정우준
채승훈
김진성
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020040037283A priority Critical patent/KR100550993B1/en
Publication of KR20050113699A publication Critical patent/KR20050113699A/en
Application granted granted Critical
Publication of KR100550993B1 publication Critical patent/KR100550993B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C5/00Stoves or ranges for liquid fuels
    • F24C5/20Stoves or ranges for liquid fuels with special adaptation for travelling, e.g. collapsible

Abstract

플라즈마 디스플레이 패널의 구동 방법에 있어서, 리셋 기간에 완만하게 상승하는 램프 전압을 인가한 후 하강 램프 전압의 최종 전압을 모든 방전 셀에서 방전을 개시할 수 있는 전압까지 내린 다음, 어드레스 기간에서 선택하고자 하는 방전 셀의 어드레스 전극과 주사 전극에 인가되는 전압의 차이를 최대 방전 개시 전압보다 크게 한다. 또한, 보조 리셋 파형을 인가하기 전에 주사 전극의 전압을 리셋 방전이 일어나기 시작하는 전압까지 급격하게 낮춘다. 이와 같이 하면, 어드레스 방전에서 내부 벽 전압에 의한 영향이 없으므로 벽 전압 소멸에 의한 마진 악화를 방지할 수 있을 뿐만 아니라 보조 리셋 파형이 인가되는 서브필드의 리셋 기간을 단축할 수 있다. In the driving method of the plasma display panel, after applying a ramp voltage which rises gently in the reset period, the final voltage of the ramp lamp voltage is lowered to a voltage at which discharge can be started in all the discharge cells, and then selected in the address period. The difference between the voltage applied to the address electrode and the scan electrode of the discharge cell is made larger than the maximum discharge start voltage. In addition, before applying the auxiliary reset waveform, the voltage of the scan electrode is drastically lowered to the voltage at which the reset discharge starts to occur. In this way, since there is no influence of the internal wall voltage in the address discharge, the margin deterioration due to the wall voltage extinction can be prevented and the reset period of the subfield to which the auxiliary reset waveform is applied can be shortened.

벽 전하, 벽 전압, 리셋 기간, PDP, 방전 개시 전압Wall charge, wall voltage, reset period, PDP, discharge start voltage

Description

플라즈마 디스플레이 패널의 구동 방법 및 플라즈마 표시 장치{DRIVING METHOD OF PLASMA DISPLAY PANEL AND PLASMA DISPLAY DEVICE}Plasma display panel driving method and plasma display device {DRIVING METHOD OF PLASMA DISPLAY PANEL AND PLASMA DISPLAY DEVICE}

도 1은 일반적인 플라즈마 디스플레이 패널의 일부 사시도이다. 1 is a partial perspective view of a typical plasma display panel.

도 2는 일반적인 플라즈마 디스플레이 패널의 전극 배열도를 나타낸다. 2 shows an electrode arrangement diagram of a typical plasma display panel.

도 3은 종래 기술에 따른 플라즈마 디스플레이 패널의 구동 파형도이다. 3 is a driving waveform diagram of a plasma display panel according to the prior art.

도 4는 본 발명의 제1 실시예에 따른 플라즈마 디스플레이 패널의 구동 파형도이다. 4 is a driving waveform diagram of a plasma display panel according to a first embodiment of the present invention.

도 5는 방전 셀에 하강 램프 전압이 인가되는 경우의 하강 램프 전압과 벽 전압 사이의 관계를 나타내는 도면이다. 5 is a diagram illustrating a relationship between a falling ramp voltage and a wall voltage when a falling ramp voltage is applied to a discharge cell.

도 6은 본 발명의 제2 실시예에 따른 플라즈마 디스플레이 패널의 구동 파형도이다. 6 is a driving waveform diagram of a plasma display panel according to a second embodiment of the present invention.

본 발명은 플라즈마 디스플레이 패널(plasma display panel, PDP)의 구동 방법에 관한 것이다. The present invention relates to a method of driving a plasma display panel (PDP).

플라즈마 디스플레이 패널은 기체 방전에 의해 생성된 플라즈마를 이용하여 문자 또는 영상을 표시하는 평면 표시 장치로서, 그 크기에 따라 수십에서 수백 만개 이상의 화소가 매트릭스 형태로 배열되어 있다. 먼저 도 1 및 도 2를 참조하여 일반적인 플라즈마 디스플레이 패널의 구조에 대하여 설명한다. A plasma display panel is a flat panel display device that displays characters or images using plasma generated by gas discharge, and tens to millions or more of pixels are arranged in a matrix form according to their size. First, a structure of a general plasma display panel will be described with reference to FIGS. 1 and 2.

도 1은 플라즈마 디스플레이 패널의 일부 사시도이며, 도 2는 플라즈마 디스플레이 패널의 전극 배열도를 나타낸다. 1 is a partial perspective view of a plasma display panel, and FIG. 2 shows an electrode arrangement diagram of the plasma display panel.

도 1에 나타낸 바와 같이, 플라즈마 디스플레이 패널은 서로 마주보며 떨어져 있는 두 개의 유리 기판(1, 6)을 포함한다. 유리 기판(1) 위에는 주사 전극(4)과 유지 전극(5)이 쌍을 이루어 평행하게 형성되어 있으며, 주사 전극(4)과 유지 전극(5)은 유전체층(2) 및 보호막(3)으로 덮여 있다. 유리 기판(6) 위에는 복수의 어드레스 전극(8)이 형성되어 있으며, 어드레스 전극(8)은 절연체층(7)으로 덮여 있다. 어드레스 전극(8) 사이에 있는 절연체층(7) 위에는 어드레스 전극(8)과 격벽(9)이 형성되어 있다. 또한 절연체층(7)의 표면 및 격벽(9)의 양측면에 형광체(10)가 형성되어 있다. 유리 기판(1, 6)은 주사 전극(4)과 어드레스 전극(8) 및 유지 전극(5)과 어드레스 전극(8)이 직교하도록 방전 공간(11)을 사이에 두고 대향하여 배치되어 있다. 어드레스 전극(8)과, 쌍을 이루는 주사 전극(4)과 유지 전극(5)과의 교차부에 있는 방전 공간(11)이 방전 셀(12)을 형성한다. As shown in FIG. 1, the plasma display panel includes two glass substrates 1 and 6 facing each other apart. On the glass substrate 1, the scan electrode 4 and the sustain electrode 5 are formed in pairs and in parallel, and the scan electrode 4 and the sustain electrode 5 are covered with the dielectric layer 2 and the protective film 3. have. A plurality of address electrodes 8 are formed on the glass substrate 6, and the address electrodes 8 are covered with the insulator layer 7. The address electrode 8 and the partition 9 are formed on the insulator layer 7 between the address electrodes 8. In addition, the phosphor 10 is formed on the surface of the insulator layer 7 and on both sides of the partition wall 9. The glass substrates 1 and 6 are disposed to face each other with the discharge space 11 therebetween so that the scan electrode 4, the address electrode 8, the sustain electrode 5, and the address electrode 8 are orthogonal to each other. The discharge space 11 at the intersection of the address electrode 8 and the paired scan electrode 4 and the sustain electrode 5 forms a discharge cell 12.

그리고 도 2에 나타낸 바와 같이, 플라즈마 디스플레이 패널의 전극은 n×m의 매트릭스 구조를 가지고 있다. 열 방향으로는 어드레스 전극(A1-Am)이 배열되어 있고 행 방향으로는 n행의 주사 전극(Y1-Yn) 및 유지 전극(X1-Xn )이 쌍으로 배열되어 있다. As shown in FIG. 2, the electrode of the plasma display panel has a matrix structure of n × m. In the column direction, address electrodes A 1 -A m are arranged, and in the row direction, n rows of scan electrodes Y 1 -Y n and sustain electrodes X 1 -X n are arranged in pairs.

종래의 플라즈마 디스플레이 패널을 구동하는 방법으로는 Kurata 등의 미국특허 6,294,875호에 기재된 방법이 있다. '875호의 구동 방법은 1 필드를 8개의 서브필드로 나눈 후, 제1 서브필드와 제2 내지 제8 서브필드의 리셋 기간에서 인가되는 파형을 달리하는 방법이다. As a method of driving a conventional plasma display panel, there is a method described in US Pat. No. 6,294,875 to Kurata et al. The driving method of '875 is a method of dividing one waveform into eight subfields and then different waveforms applied in the reset period of the first subfield and the second to eighth subfields.

도 3에 나타낸 바와 같이, 각 서브필드는 리셋 기간, 어드레스 기간 및 유지 기간으로 이루어진다. 그리고 제1 서브필드의 리셋 기간에서는 먼저 주사 전극(Y1-Yn)에 방전 개시 전압보다 작은 Vp 전압에서 방전 개시 전압을 넘는 Vr 전압까지 완만하게 상승하는 램프 전압을 인가한다. 이 램프 전압이 상승하는 동안 주사 전극(Y1-Yn)으로부터 어드레스 전극(A1-Am) 및 유지 전극(X 1-Xn)으로 각각 미약한 방전이 일어난다. 그리고 이 방전에 의해 주사 전극(Y1-Yn)에는 음의 벽 전하가 축적되고 어드레스 전극(A1-Am) 및 유지 전극(X1-Xn)에는 양의 벽 전하가 축적된다. 도 1을 보면 벽 전하는 주사 전극(4)과 유지 전극(5)의 보호막(3) 표면에 형성되지만 아래에서는 설명의 편의상 주사 전극(4)과 유지 전극(5)에 형성되는 것으로 표현한다. As shown in Fig. 3, each subfield includes a reset period, an address period, and a sustain period. In the reset period of the first subfield, a ramp voltage gradually rising from the V p voltage smaller than the discharge start voltage to the V r voltage exceeding the discharge start voltage is first applied to the scan electrodes Y 1 -Y n . While this ramp voltage is rising, weak discharge occurs from the scan electrodes Y 1 -Y n to the address electrodes A 1 -A m and the sustain electrodes X 1 -X n , respectively. By this discharge, negative wall charges are accumulated on the scan electrodes Y 1 -Y n , and positive wall charges are accumulated on the address electrodes A 1 -A m and the sustain electrodes X 1 -X n . Referring to FIG. 1, wall charges are formed on the surface of the protective film 3 of the scan electrode 4 and the sustain electrode 5, but are described below as being formed on the scan electrode 4 and the sustain electrode 5 for convenience of description.

이어서 주사 전극(Y1-Yn)에 방전 개시 전압보다 낮은 Vq 전압에서 0V까지 완만하게 하강하는 램프 전압을 인가한다. 그러면 이 램프 전압이 하강하는 동안 방전 셀에 형성되어 있는 벽 전압에 의해 유지 전극(X1-Xn) 및 어드레스 전극(A 1-Am)에 서 주사 전극(Y1-Yn)으로 미약한 방전이 일어난다. 그리고 이 방전에 의해 유지 전극(X1-Xn), 주사 전극(Y1-Yn) 및 어드레스 전극(A1 -Am)에 형성되어 있는 벽 전하들이 일부 소거되어 어드레싱에 적절한 상태로 설정된다. 마찬가지로 도 1을 보면 벽 전하는 어드레스 전극(8)의 절연체층(7) 표면에 형성되지만 아래에서는 설명의 편의상 어드레스 전극(8)에 형성되는 것으로 표현한다. Subsequently, a ramp voltage gently falling to 0 V is applied to the scan electrodes Y 1 -Y n at a voltage V q lower than the discharge start voltage. Then, while the ramp voltage falls, the wall voltage formed in the discharge cell is weak from the sustain electrodes (X 1 -X n ) and the address electrodes (A 1 -A m ) to the scan electrodes (Y 1 -Y n ). One discharge occurs. This discharge partially erases wall charges formed in the sustain electrodes X 1 -X n , the scan electrodes Y 1 -Y n , and the address electrodes A 1 -A m , and sets them to a state suitable for addressing. do. Similarly, referring to FIG. 1, wall charges are formed on the surface of the insulator layer 7 of the address electrode 8, but are represented below as being formed on the address electrode 8 for convenience of description.

다음, 어드레스 기간에서는 선택할 방전 셀의 어드레스 전극(A1-Am)에 양의 전압(Vw)이 인가되고 주사 전극(Y1-Yn)에 0V가 인가된다. 그러면 리셋 기간에서 형성된 벽 전하에 의한 벽 전압과 양의 전압(Vw)에 의해 어드레스 전극(A1-Am )과 주사 전극(Y1-Yn) 사이 및 유지 전극(X1-Xn)과 주사 전극(Y 1-Yn) 사이에서 어드레스 방전이 일어난다. 이 방전에 의해 주사 전극(Y1-Yn)에 양의 벽 전하가 축적되고 유지 전극(X1-Xn)과 어드레스 전극(A1-Am)에 음의 벽 전하가 축적된다. 그리고 어드레스 방전에 의해 벽 전하가 축적된 방전 셀에서는 유지 기간에서 인가되는 유지 펄스에 의해 유지 방전이 일어난다. Next, in the address period, a positive voltage V w is applied to the address electrodes A 1 -A m of the discharge cells to be selected, and 0 V is applied to the scan electrodes Y 1 -Y n . Then, between the address electrodes A 1 -A m and the scan electrodes Y 1 -Y n and the sustain electrodes X 1 -X n by the wall voltage and the positive voltage V w caused by the wall charges formed in the reset period. ) And the address electrodes Y 1 -Y n occur. This discharge accumulates positive wall charges in the scan electrodes Y 1 -Y n and negative wall charges in the sustain electrodes X 1 -X n and the address electrodes A 1 -A m . In the discharge cells in which the wall charges are accumulated by the address discharge, sustain discharge occurs by a sustain pulse applied in the sustain period.

다음, 제1 서브필드의 유지 기간에서 주사 전극(Y1-Yn)에 인가되는 마지막 유지 펄스의 전압 레벨은 리셋 기간의 Vr 전압과 동일하고, 유지 전극(X1-Xn )에는 Vr 전압과 유지 전압(Vs)의 차이에 해당되는 전압(Vr-Vs)이 인가된다. 그러면 어드레스 기간에서 선택된 방전 셀에서는 어드레스 방전에 의해 형성된 벽 전압에 의해 주사 전극(Y1-Yn)으로부터 어드레스 전극(A1-Am)으로 방전이 일어나고, 또한 주사 전극(Y1-Yn)으로부터 유지 전극(X1-Xn)으로 유지 방전이 일어난다. 이 방전이 제1 서브필드의 리셋 기간에서 상승 램프 전압에 의해 발생한 방전에 해당한다. 그리고 선택되지 않은 방전 셀에서는 어드레스 방전이 없었으므로 방전이 일어나지 않는다. Next, the voltage level of the last sustain pulse applied to the scan electrodes Y 1- Y n in the sustain period of the first subfield is equal to the voltage of V r in the reset period, and V is applied to the sustain electrodes X 1 -X n . The voltage V r -V s corresponding to the difference between the r voltage and the sustain voltage V s is applied. Then, in the discharge cells selected in the address period, discharge occurs from the scan electrodes Y 1 -Y n to the address electrodes A 1 -A m by the wall voltage formed by the address discharge, and the scan electrodes Y 1 -Y n. Sustain discharge (X 1 -X n ) is generated from? This discharge corresponds to the discharge generated by the rising ramp voltage in the reset period of the first subfield. In the discharge cells that are not selected, there is no address discharge, so no discharge occurs.

이어지는 제2 서브필드의 리셋 기간에서는 유지 전극(X1-Xn)에 Vh 전압이 인가되고 주사 전극(Y1-Yn)에 Vq 전압에서 0V까지 완만하게 하강하는 램프 전압이 인가된다. 즉, 제1 서브필드의 리셋 기간에서 인가된 하강 램프 전압과 동일한 전압이 주사 전극(Y1-Yn)에 인가된다. 그러면 제1 서브필드에서 선택된 방전 셀에서는 미약한 방전이 일어나고 선택되지 않은 방전 셀에서는 방전이 일어나지 않는다.In the subsequent reset period of the second subfield, a voltage V h is applied to the sustain electrodes X 1- X n , and a ramp voltage gently falling from the voltage V q to 0 V is applied to the scan electrodes Y 1 -Y n . . That is, a voltage equal to the falling ramp voltage applied in the reset period of the first subfield is applied to the scan electrodes Y 1 -Y n . Then, a weak discharge occurs in the discharge cell selected in the first subfield, and no discharge occurs in the discharge cell that is not selected.

그리고 이어지는 나머지 서브필드의 리셋 기간에서도 제2 서브필드의 리셋 기간과 동일한 파형이 인가된다. 한편, 제8 서브필드에서는 유지 기간 이후에 소거 기간이 형성된다. 소거 기간에서는 유지 전극(X1-Xn)에 0V에서 Ve 전압까지 완만하게 상승하는 램프 전압이 인가된다. 이 램프 전압에 의해 방전 셀에 형성되어 있는 벽 전하들이 소거된다. In the subsequent reset period of the remaining subfields, the same waveform as the reset period of the second subfield is applied. Meanwhile, in the eighth subfield, an erase period is formed after the sustain period. In the erase period, a ramp voltage that rises slowly from 0 V to V e is applied to the sustain electrodes X 1- X n . The wall charges formed in the discharge cells are erased by this lamp voltage.

이러한 종래의 구동 파형에서, 내부 벽 전압을 이용하는 어드레스 기간에서의 어드레싱은 모든 주사 전극에 대해서 순차적으로 이루어지므로, 뒤늦게 선택되는 주사 전극에서는 내부 벽 전압이 소실된다는 문제점이 있다. 이러한 벽 전압의 소실은 결국 마진을 악화시킨다. In such a conventional drive waveform, since addressing in the address period using the internal wall voltage is performed sequentially for all the scan electrodes, there is a problem that the internal wall voltage is lost in the scan electrode which is selected later. This loss of wall voltage eventually worsens the margin.

본 발명이 이루고자 하는 기술적 과제는 내부 벽 전압 의존도를 줄이고 어드레싱 할 수 있는 플라즈마 디스플레이 패널의 구동 방법을 제공하는 것이다. SUMMARY OF THE INVENTION The present invention has been made in an effort to provide a method of driving a plasma display panel that can reduce and address an internal wall voltage dependency.

상기한 목적을 달성하기 위한 본 발명의 특징에 따른 플라즈마 디스플레이 패널의 구동 방법은 A driving method of a plasma display panel according to a feature of the present invention for achieving the above object is

제1 기판 위에 각각 나란히 형성되는 복수의 제1 전극 및 제2 전극, 그리고 상기 제1 및 제2 전극에 교차하며 제2 기판 위에 형성되는 복수의 어드레스 전극을 포함하며, 인접한 상기 제1 전극, 제2 전극 및 어드레스 전극에 의해 방전 셀이 형성되는 플라즈마 디스플레이 패널을 구동하는 방법으로서, A plurality of first electrodes and second electrodes formed on the first substrate, and a plurality of address electrodes formed on the second substrate and crossing the first and second electrodes, respectively; A method of driving a plasma display panel in which discharge cells are formed by two electrodes and an address electrode,

리셋 기간에서, 직전 서브필드의 유지 기간에 상기 제1 전극에 유지방전 전압이 인가된 후 상기 제1 전극의 전압을 0V 이하의 전압인 제1 전압에서 제2 전압까지 점진적으로 감소시키는 단계; 어드레스 기간 동안, 상기 방전 셀 중 선택하고자 하는 방전 셀을 방전시키는 단계; 및 유지 기간에서, 상기 어드레스 단계에서 선택된 방전 셀을 유지 방전시키는 단계를 포함하며, In the reset period, gradually decreasing the voltage of the first electrode from the first voltage to the second voltage, the voltage of which is equal to or less than 0V after the sustain discharge voltage is applied to the first electrode in the sustain period of the immediately preceding subfield; Discharging a discharge cell to be selected among the discharge cells during an address period; And sustain discharge in the sustain period, the discharge cell selected in the address step;

상기 제2 전압에서, 상기 제1 전극의 전압이 상기 제2 전압일 때 상기 어드레스 전극에 인가되는 전압을 뺀 전압이, 실질적으로 상기 유지 기간에서 상기 유지방전을 위해 상기 제1 전극과 상기 제2 전극에 인가되는 전압의 차이의 절반에 해당하는 전압의 음의 값 이하이거나, In the second voltage, a voltage obtained by subtracting a voltage applied to the address electrode when the voltage of the first electrode is the second voltage is substantially equal to the first electrode and the second electrode for the sustain discharge in the sustain period. Is equal to or less than the negative value of the voltage corresponding to half of the difference in voltage applied to the electrode,

상기 제2 전압에서, 상기 제1 전극의 전압이 상기 제2 전압일 때 상기 어드레스 전극에 인가되는 전압을 뺀 전압이, 실질적으로 상기 유지 기간에서 상기 유지방전을 위해 상기 제1 전극과 상기 제2 전극에 인가되는 전압의 차이에 해당하는 전압의 음의 값 이하인 것이 바람직하다.In the second voltage, a voltage obtained by subtracting a voltage applied to the address electrode when the voltage of the first electrode is the second voltage is substantially equal to the first electrode and the second electrode for the sustain discharge in the sustain period. It is preferable that it is below the negative value of the voltage corresponding to the difference of the voltage applied to an electrode.

또한, 상기 리셋 기간에, 상기 제1 전극의 전압이 상기 제1 전압에서 상기 제2 전압까지 감소할 때 상기 어드레스 전극의 전압은 제3 전압으로 일정하게 유지되며, 상기 제3 전압은 접지 전압인 것이 바람직하다.Further, in the reset period, when the voltage of the first electrode decreases from the first voltage to the second voltage, the voltage of the address electrode is kept constant as a third voltage, and the third voltage is a ground voltage. It is preferable.

또한, 상기 리셋 기간에 상기 제1 전극의 전압을 상기 유지방전 전압에서 상기 제1 전압까지 급격하게 감소시킨 후 상기 제1 전압에서 상기 제2 전압까지 점진적으로 감소시킬 수 있다.In addition, during the reset period, the voltage of the first electrode may be rapidly decreased from the sustain discharge voltage to the first voltage and then gradually decreased from the first voltage to the second voltage.

또한, 상기 리셋 기간에, 상기 제1 전극의 전압이 상기 제1 전압에서 상기 제2 전압까지 점진적으로 감소할 때 상기 제2 전극의 전압은 양의 제4 전압으로 일정하게 유지된다.In addition, during the reset period, when the voltage of the first electrode gradually decreases from the first voltage to the second voltage, the voltage of the second electrode is kept constant at a positive fourth voltage.

본 발명의 특징에 따른 플라즈마 표시 장치는 제1 기판, 상기 제1 기판 위에 각각 나란히 형성되는 복수의 제1 전극 및 제2 전극, 상기 제1 기판과 마주보며 떨어져 있는 제2 기판, 상기 제1 및 제2 전극에 교차하는 방향으로 제2 기판 위에 형성되는 복수의 제3 전극, 그리고 인접한 상기 제1 전극, 제2 전극 및 제3 전극에 의해 형성되는 방전 셀을 방전시키기 위해 상기 제1 전극, 제2 전극 및 제3 전극에 구동 전압을 공급하는 구동 회로를 포함하며, In accordance with an aspect of the present invention, a plasma display device includes a first substrate, a plurality of first and second electrodes formed on the first substrate, and a second substrate facing and spaced apart from the first substrate. A plurality of third electrodes formed on the second substrate in a direction crossing the second electrodes, and the first electrodes to discharge the discharge cells formed by the adjacent first, second and third electrodes; A driving circuit for supplying a driving voltage to the second electrode and the third electrode,

상기 구동 회로는, The drive circuit,

리셋 기간에서, 직전 서브필드의 유지 기간에 상기 제1 전극에 유지방전 전압이 인가된 후 상기 제1 전극의 전압을 0V 이하의 전압인 제1 전압에서 제2 전압까지 점진적으로 감소시키며, In the reset period, after the sustain discharge voltage is applied to the first electrode in the sustain period of the immediately preceding subfield, the voltage of the first electrode is gradually decreased from the first voltage to the second voltage, which is a voltage of 0 V or less,

상기 제2 전압은 실질적으로 상기 유지 기간 동안 상기 유지방전을 위해 상기 제1 전극과 상기 제2 전극에 인가되는 전압의 차이의 절반에 해당하는 전압의 음의 값 이하이거나,The second voltage is substantially equal to or less than a negative value of a voltage corresponding to half of a difference between a voltage applied to the first electrode and the second electrode for the sustain discharge during the sustain period;

상기 제2 전압은 실질적으로 상기 유지 기간 동안 상기 유지방전을 위해 상기 제1 전극과 상기 제2 전극에 인가되는 전압의 차이에 해당하는 전압의 음의 값 이하일 수 있다.The second voltage may be substantially equal to or less than a negative value of a voltage corresponding to a difference between a voltage applied to the first electrode and the second electrode for the sustain discharge during the sustain period.

또한, 상기 구동회로는,In addition, the driving circuit,

상기 리셋 기간에서 상기 제1 전극의 전압을 상기 제1 전압에서 상기 제2 전압까지 감소시키는 동안 상기 제2 전극 및 상기 제3 전극의 전압을 각각 제3 전압 및 제4 전압으로 일정하게 유지하며,While the voltage of the first electrode is reduced from the first voltage to the second voltage in the reset period, the voltages of the second electrode and the third electrode are kept constant at a third voltage and a fourth voltage, respectively,

상기 제3 전압은 양의 전압이고, 상기 제4 전압은 접지 전압인 것이 바람직하다.Preferably, the third voltage is a positive voltage and the fourth voltage is a ground voltage.

아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention. Like parts are designated by like reference numerals throughout the specification.

이제 본 발명의 실시예에 따른 플라즈마 디스플레이 패널의 구동 방법에 대하여 도면을 참고로 하여 상세하게 설명한다. A method of driving a plasma display panel according to an exemplary embodiment of the present invention will now be described in detail with reference to the accompanying drawings.

먼저 도 4를 참조하여 본 발명의 제1 실시예에 따른 플라즈마 디스플레이 패널의 구동 방법에 대하여 상세하게 설명한다. 그리고 아래 설명에서 어드레스 전극(A1-Am), 주사 전극(Y1-Yn) 및 유지 전극(X1-X n)으로 도면 부호를 표시하는 것은 모든 어드레스 전극, 주사 전극 및 유지 전극에 동일한 전압이 인가되는 것을 나타내며, 어드레스 전극(Ai) 및 주사 전극(Yj)으로 표시하는 것은 어드레스 전극 및 주사 전극 중에서 일부에만 해당 전압이 인가되는 것을 나타낸다. First, a method of driving a plasma display panel according to a first embodiment of the present invention will be described in detail with reference to FIG. 4. In the following description, reference numerals denoted by the address electrodes A 1 -A m , the scan electrodes Y 1 -Y n , and the sustain electrodes X 1 -X n denote the address electrodes, the scan electrodes, and the sustain electrodes. The same voltage is applied, and the display of the address electrode A i and the scan electrode Y j indicates that only a portion of the address electrode and the scan electrode are applied.

도 4는 본 발명의 제1 실시예에 따른 플라즈마 디스플레이 패널의 구동 파형도이다. 4 is a driving waveform diagram of a plasma display panel according to a first embodiment of the present invention.

도 4에 나타낸 바와 같이, 본 발명의 제1 실시예에 따른 구동 파형은 리셋 기간, 어드레스 기간 및 유지 기간을 포함한다. 그리고 플라즈마 디스플레이 패널에는 각 기간에서 주사 전극(Y1-Yn) 및 유지 전극(X1-Xn)에 구동 전압을 인가하는 주사/유지 구동 회로(도시하지 않음)와 어드레스 전극(A1-Am)에 구동 전압을 인가하는 어드레스 구동 회로(도시하지 않음)가 연결된다. 이러한 구동 회로와 플라즈마 디스플레이 패널이 연결되어 하나의 플라즈마 표시 장치를 이룬다. As shown in Fig. 4, the drive waveform according to the first embodiment of the present invention includes a reset period, an address period, and a sustain period. In the plasma display panel, a scan / hold driving circuit (not shown) and an address electrode A 1 -which apply driving voltages to the scan electrodes Y 1 -Y n and the sustain electrodes X 1 -X n in each period. An address driving circuit (not shown) for applying a driving voltage to A m ) is connected. The driving circuit and the plasma display panel are connected to form one plasma display device.

리셋 기간은 유지 기간에 형성된 벽 전하를 제거하는 기간으로, 제1 서브필드의 리셋 기간에는 모든 방전셀에 벽전하를 쌓은 후 제거하는 메인 리셋 파형을 인가하고 제2 서브필드 이후의 서브필드의 리셋 기간에는 방전셀에 벽전하를 쌓는 과정 없이 벽 전하를 제거하여 이전 서브필드에서 방전이 일어난 방전셀의 벽전하만을 제거하는 보조 리셋 파형을 인가한다. 어드레스 기간은 방전 셀 중에서 표시하고자 하는 방전 셀을 선택하는 기간이며, 유지 기간은 어드레스 기간에서 선택된 방전 셀을 방전시키는 기간이다. The reset period is a period in which the wall charges formed in the sustain period are removed, and in the reset period of the first subfield, a main reset waveform is applied to remove and accumulate wall charges in all discharge cells and reset the subfield after the second subfield. In the period, an auxiliary reset waveform is applied to remove only wall charges of the discharge cells in which the discharge occurred in the previous subfield by removing the wall charges without accumulating the wall charges in the discharge cells. The address period is a period for selecting a discharge cell to be displayed among the discharge cells, and the sustain period is a period for discharging the discharge cell selected in the address period.

먼저, 제1 서브필드의 리셋 기간에서는 메인 리셋이 인가되는 구간으로 주사 전극(Y)에 Vs 전압에서 방전 개시 전압을 넘는 Vset 전압까지 점진적으로 상승하는 램프 전압을 인가한다. 이 램프 전압이 인가되는 동안에 주사 전극(Y)에서 어드레스 전극(A) 및 유지 전극(X)으로 각각 미약한 방전이 일어난다. 이러한 방전에 의해 주사 전극(Y)에 음(-)의 벽 전하가 축적되고 어드레스 전극(A) 및 유지 전극(X)에는 양(+)의 벽 전하가 축적된다. First, in the reset period of the first subfield, a ramp voltage that gradually rises from the Vs voltage to the Vset voltage exceeding the discharge start voltage is applied to the scan electrode Y in the period where the main reset is applied. While this lamp voltage is applied, weak discharge occurs from the scan electrode Y to the address electrode A and the sustain electrode X, respectively. By this discharge, negative wall charges are accumulated on the scan electrode Y, and positive wall charges are accumulated on the address electrode A and the sustain electrode X.

다음으로, 주사 전극(Y)에 Vs 전압에서 Vnf 전압까지 점진적으로 하강하는 램프 전압이 인가된다. 이때 어드레스 전극(A)에는 기준 전압(도 4에서는 0V라 가정함)이 인가되고, 유지 전극(X)은 Ve 전압으로 바이어스 된다. 그리고 방전 셀에서 어드레스 전극과 주사 전극 사이의 방전 개시 전압을 Vfay 전압이라고 했을 때, 하강 램프 전압의 마지막 전압(Vnf)은 -Vfay에 해당하는 전압이다. Next, a ramp voltage gradually decreasing from the Vs voltage to the Vnf voltage is applied to the scan electrode Y. At this time, a reference voltage (assuming 0 V in FIG. 4) is applied to the address electrode A, and the sustain electrode X is biased to the Ve voltage. When the discharge start voltage between the address electrode and the scan electrode in the discharge cell is referred to as Vfay voltage, the last voltage Vnf of the falling ramp voltage is a voltage corresponding to -Vfay.

그리고, 어드레스 기간에서 어드레싱 되지 않은 방전 셀이 유지 기간에서 오방전되는 것을 방지하기 위하여 리셋 기간에 유지 전극과 주사 전극에 인가되는 전압차(Ve-Vnf)는 유지 전극과 주사 전극간의 방전 개시 전압(Vfxy)과 비슷한 값으로 설정한다. 즉,

Figure 112004022120038-pat00001
이다.In order to prevent discharge cells not addressed in the sustain period from being discharged in the sustain period, the voltage difference Ve-Vnf applied to the sustain electrode and the scan electrode in the reset period is determined by the discharge start voltage between the sustain electrode and the scan electrode. Vfxy). In other words,
Figure 112004022120038-pat00001
to be.

일반적으로 방전 셀에서 주사 전극과 어드레스 전극 사이 또는 주사 전극과 유지 전극 사이의 전압이 방전 개시 전압 이상이 되면 주사 전극과 어드레스 전극 사이 또는 주사 전극과 유지 전극 사이에서 방전이 일어난다. 특히, 본 발명의 제1 실시예에서와 같이 완만하게 하강하는 램프 전압이 인가되어 방전이 일어나는 경우에는 방전 셀 내부의 벽 전압도 하강 램프 전압과 같은 속도로 감소하게 된다. 이러한 원리에 대해서는 미국특허공보 제5,745,086호에 상세하게 기재되어 있으므로, 이에 대한 자세한 설명은 생략한다. In general, when the voltage between the scan electrode and the address electrode or between the scan electrode and the sustain electrode is higher than the discharge start voltage in the discharge cell, discharge occurs between the scan electrode and the address electrode or between the scan electrode and the sustain electrode. In particular, when the ramp voltage is gently applied as in the first embodiment of the present invention and discharge occurs, the wall voltage inside the discharge cell is also reduced at the same rate as the ramp lamp voltage. Since this principle is described in detail in US Patent No. 5,745,086, detailed description thereof will be omitted.

아래에서는 도 5를 참조하여 -Vfay 전압까지 하강하는 램프 전압이 인가되는 경우의 방전 특성에 대해서 설명한다. Hereinafter , with reference to FIG. 5, the discharge characteristics when the ramp voltage falling down to the -V fay voltage is applied will be described.

도 5는 방전 셀에 하강 램프 전압이 인가되는 경우의 하강 램프 전압과 벽 전압 사이의 관계를 나타내는 도면이다. 도 5에서는 주사 전극과 어드레스 전극을 중심으로 설명하고, 하강 램프 전압이 인가되기 전에 주사 전극과 어드레스 전극에 각각 음의 전하와 양의 전하가 쌓여 있어서 일정량의 벽 전압(V0)이 형성되어 있는 것으로 가정한다. 5 is a diagram illustrating a relationship between a falling ramp voltage and a wall voltage when a falling ramp voltage is applied to a discharge cell. In FIG. 5, the scan electrode and the address electrode will be described, and a negative charge and a positive charge are accumulated on the scan electrode and the address electrode, respectively, before the falling ramp voltage is applied, so that a certain amount of wall voltage V 0 is formed. Assume that

도 5에 나타낸 바와 같이, 주사 전극에 인가되는 전압이 완만하게 감소하는 중에 벽 전압(Vwall)과 주사 전극에 인가된 전압(Vy)의 차이가 방전 개시 전압(V fay)을 넘는 경우에는 방전이 일어난다. 그리고 앞에서 설명한 것처럼 방전이 일어나 면 방전 셀 내부의 벽 전압(Vwall)은 하강 램프 전압(Vy)과 동일한 속도로 감소하게 된다. 이때, 하강 램프 전압(Vy)과 벽 전압(Vwall)의 차이는 방전 개시 전압(V fay)을 유지하게 된다. 따라서 도 5에 나타낸 바와 같이, 주사 전극에 인가되는 전압(Vy)이 -Vfay 전압까지 감소하면 방전 셀 내부에서 어드레스 전극과 주사 전극 사이의 벽 전압(Vwall)은 0V가 된다. As shown in FIG. 5, when the difference between the wall voltage V wall and the voltage V y applied to the scan electrode exceeds the discharge start voltage V fay while the voltage applied to the scan electrode is slowly decreased. Discharge occurs. As described above, when the discharge occurs, the wall voltage V wall inside the discharge cell decreases at the same speed as the falling ramp voltage V y . In this case, the difference between the falling ramp voltage V y and the wall voltage V wall maintains the discharge start voltage V fay . Therefore, as shown in FIG. 5, when the voltage V y applied to the scan electrode decreases to the -V fay voltage, the wall voltage V wall between the address electrode and the scan electrode in the discharge cell becomes 0V.

그런데, 방전 셀마다 특성에 따라 방전 개시 전압에 차이가 있으므로 본 발명의 제1 실시예에서는 주사 전극에 인가되는 전압(Vy)이 모든 방전 셀에서 어드레스 전극(A1-Am)으로부터 주사 전극(Y1-Yn)으로 방전이 일어날 수 있을 정도의 크기로 할 수 있다. 이때, 모든 방전 셀은 플라즈마 디스플레이 패널에서 화면을 표시할 때 영향을 줄 수 있는 영역(유효 표시 영역)에 있는 방전 셀을 포함한다. However, since the discharge start voltage is different depending on the characteristics of each discharge cell, in the first embodiment of the present invention, the voltage V y applied to the scan electrodes is determined from the scan electrodes from the address electrodes A 1 -A m in all the discharge cells. (Y 1 -Y n ) can be made large enough to cause a discharge. In this case, all of the discharge cells include discharge cells in an area (effective display area) that may affect when displaying a screen on the plasma display panel.

즉, 수학식 1에 나타낸 것처럼 어드레스 전극(A1-Am)에 인가되는 전압(0V)과 주사 전극(Y1-Yn)에 인가되는 전압(Vnf)의 차이(VA-Y,reset )가 방전 셀 중에서 방전 개시 전압(Vfay)이 가장 높은 것의 방전 개시 전압(Vf,MAX, 이하 '최대 방전 개시 전압'이라 함)보다 크게 한다. 이때, Vnf 전압의 크기(|Vnf|)가 최대 방전 개시 전압(Vf,MAX)보다 너무 크면 음의 벽 전압이 형성되므로, Vnf 전압의 크기(|V nf|)는 최대 방전 개시 전압(Vf,MAX)과 동일한 것이 바람직하다. That is, as shown in Equation 1, the difference between the voltage 0V applied to the address electrodes A 1 -A m and the voltage V nf applied to the scan electrodes Y 1 -Y n (V AY, reset ) Among the discharge cells, the discharge start voltage V fay is greater than the discharge start voltage (V f, MAX , hereinafter referred to as 'maximum discharge start voltage') of the highest. At this time, if the magnitude of the voltage V nf (| V nf |) is too large than the maximum discharge initiation voltage (V f, MAX ) , a negative wall voltage is formed. Therefore, the magnitude of the voltage V nf (| V nf |) is the maximum discharge initiation. It is preferable that the voltage V f and MAX be the same.

Figure 112004022120038-pat00002
Figure 112004022120038-pat00002

이와 같이, 주사 전극(Y1-Yn)에 Vnf 전압까지 하강하는 램프 전압이 인가되면, 모든 방전 셀에서 벽 전압이 제거된다. 그리고 Vnf 전압의 크기(|Vnf|)를 최대 방전 개시 전압(Vf,MAX)으로 하면, 방전 개시 전압(Vf)이 최대 방전 개시 전압(Vf,MAX)보다 작은 방전 셀에서는 반대로 음의 벽 전압이 생성될 수 있다. 즉, 어드레스 전극(A1-Am)에 음의 벽 전하가 형성되고 주사 전극(Y1-Y n)에 음의 벽 전하가 형성될 수 있다. 이때, 생성된 벽 전압은 어드레스 기간에서 방전 셀 간의 불균일을 해소할 수 있는 전압이 된다. As such, when a ramp voltage that drops to the Vnf voltage is applied to the scan electrodes Y 1 -Y n , the wall voltage is removed from all the discharge cells. If the magnitude of the Vnf voltage (| Vnf |) is set to the maximum discharge start voltage (V f, MAX ), the discharge start voltage (V f ) is negative in the discharge cell smaller than the maximum discharge start voltage (V f, MAX ). Wall voltage can be generated. That is, negative wall charges may be formed on the address electrodes A 1 -A m and negative wall charges may be formed on the scan electrodes Y 1 -Y n . At this time, the generated wall voltage becomes a voltage capable of solving the nonuniformity between the discharge cells in the address period.

이어서, 어드레스 기간에서는 먼저 주사 전극(Y1-Yn)과 유지 전극(X1-X n)을 각각 기준 전압(0V) 및 Ve 전압으로 유지한 다음 표시하고자 하는 방전 셀을 선택하기 위해 주사 전극(Y1-Yn)과 어드레스 전극(A1-Am)에 전압을 인가한다. 즉, 먼저 첫 번째 행의 주사 전극(Y1)에 음의 전압인 VscL 전압을 인가하는 동시에 첫 번째 행 중 표시하고자 하는 방전 셀에 위치하는 어드레스 전극(Ai)에 양의 전압인 VscH 전압을 인가한다. 도 4에서는 VscL 전압을 리셋 기간에서의 Vnf 전압과 동일한 레벨로 하였다. Subsequently, in the address period, the scan electrodes Y 1 -Y n and the sustain electrodes X 1 -X n are first maintained at the reference voltage (0 V) and the V e voltage, respectively, and then scanned to select the discharge cells to be displayed. Voltages are applied to the electrodes Y 1 -Y n and the address electrodes A 1 -A m . That is, first, the negative voltage VscL is applied to the scan electrode Y 1 of the first row, and the positive voltage VscH is applied to the address electrode A i located in the discharge cell to be displayed in the first row. Is authorized. In Fig. 4, the VscL voltage is set at the same level as the Vnf voltage in the reset period.

그러면 수학식 2에 나타낸 것처럼 어드레스 기간에서 선택된 방전 셀에서의 어드레스 전극(Ai)과 주사 전극(Y1)의 전압의 차이(VA-Y,address)가 항상 최대 방전 개시 전압(Vf,MAX)보다 커지게 된다. Then, as shown in Equation 2, the difference between the voltage V AY and address of the address electrode A i and the scan electrode Y 1 in the selected discharge cell in the address period is always the maximum discharge start voltage V f , MAX . It becomes bigger.

Figure 112004022120038-pat00003
Figure 112004022120038-pat00003

따라서, VscH 전압이 인가된 어드레스 전극(Ai)과 VscL 전압이 인가된 주사 전극(Y1)에 의해 형성되는 방전 셀에서는 어드레스 전극(Ai)과 주사 전극(Y1 ) 사이 및 유지 전극(X1)과 주사 전극(Y1) 사이에서 어드레스 방전이 일어난다. 그 결과 주사 전극(Y1)에는 양의 벽 전하가 형성되고 유지 전극(X1)에는 음의 벽 전하가 형성된다. 또한 어드레스 전극(Ai)에도 음의 벽 전하가 형성된다. Therefore, in the discharge cell formed by the address electrode A i to which the VscH voltage is applied and the scan electrode Y 1 to which the VscL voltage is applied, between the address electrode A i and the scan electrode Y 1 and the sustain electrode ( An address discharge occurs between X 1 ) and the scan electrode Y 1 . As a result, positive wall charges are formed on the scan electrode Y 1 and negative wall charges are formed on the sustain electrode X 1 . A negative wall charge is also formed on the address electrode A i .

다음, 두 번째 행의 주사 전극(Y2)에 VscL 전압을 인가하면서 두 번째 행 중 표시하고자 하는 방전 셀에 위치하는 어드레스 전극(Ai)에 VscH 전압을 인가한다. 그러면 앞에서 설명한 것처럼 VscH 전압이 인가된 어드레스 전극(Ai)과 VscL 전압이 인가된 주사 전극(Y2)에 의해 형성되는 방전 셀에서 어드레스 방전이 일어나서 방전 셀에 벽 전하가 형성된다. 마찬가지로 나머지 행의 주사 전극(Y3-Yn)에 대해서는 순차적으로 VscL 전압을 인가하면서 표시하고자 하는 방전 셀에 위치하는 어드레스 전극에 VscH 전압을 인가하여, 벽 전하를 형성한다. Next, while applying the VscL voltage to the scan electrode Y 2 of the second row, the VscH voltage is applied to the address electrode A i located in the discharge cell to be displayed in the second row. Then, as described above, the address discharge occurs in the discharge cell formed by the address electrode A i to which the VscH voltage is applied and the scan electrode Y 2 to which the VscL voltage is applied, thereby forming wall charges in the discharge cell. Similarly, the VscH voltage is applied to the address electrodes positioned in the discharge cells to be displayed while sequentially applying the VscL voltage to the scan electrodes Y 3 -Y n in the remaining rows, thereby forming wall charges.

유지 기간에서는 먼저 주사 전극(Y1-Yn)에 Vs 전압을 인가하면서 유지 전극(X1-Xn)에 기준 전압(0V)을 인가한다. 그러면 어드레스 기간에서 선택된 방전 셀에서는, 주사 전극(Yj)과 유지 전극(Xj) 사이의 전압이 Vs 전압에 어드레스 기간에서 형성된 주사 전극(Yj)의 양의 벽 전하와 유지 전극(Xj)의 음의 벽 전하에 의한 벽 전압이 더해진 것으로 되므로 주사 전극과 유지 전극 사이의 방전 개시 전압(Vfxy)을 넘게 된다. 따라서 주사 전극(Yj)과 유지 전극(Xj) 사이에서 유지 방전이 일어난다. 그리고 이 유지 방전이 일어난 방전 셀의 주사 전극(Yj)과 유지 전극(Xj)에는 각각 음의 벽 전하와 양의 벽 전하가 형성된다. In the sustain period, first, the reference voltage (0V) is applied to the sustain electrodes (X 1 -X n ) while applying the V s voltage to the scan electrodes (Y 1 -Y n ). Then, in the discharge cell selected in the address period, the positive wall charge and the sustain electrode X of the scan electrode Y j formed in the address period at the voltage between the scan electrode Y j and the sustain electrode X j are at the voltage V s. Since the wall voltage due to the negative wall charge of j ) is added, the discharge start voltage V fxy between the scan electrode and the sustain electrode is exceeded . Therefore, sustain discharge occurs between scan electrode Y j and sustain electrode X j . A negative wall charge and a positive wall charge are formed in the scan electrode Y j and the sustain electrode X j of the discharge cell in which the sustain discharge has occurred.

다음, 주사 전극(Y1-Yn)에 0V가 인가되고 유지 전극(X1-Xn)에 Vs 전압이 인가된다. 앞에서 유지 방전이 일어난 방전 셀에서는, 유지 전극(Xj)과 주사 전극(Yj) 사이의 전압이 Vs 전압에 앞의 유지 방전에서 형성된 유지 전극(Xj)의 양의 벽 전하와 주사 전극(Yj)의 음의 벽 전하에 의한 벽 전압이 더해진 것으로 되므로 주사 전극과 유지 전극 사이의 방전 개시 전압(Vfxy)을 넘게 된다. 따라서 주사 전극(Yj)과 유지 전극(Xj) 사이에서 유지 방전이 일어나고, 유지 방전이 일어난 방전 셀의 주사 전극(Yj)과 유지 전극(Xj)에는 각각 양의 벽 전하와 음의 벽 전하가 형성된다. The next scanning electrode (Y 1 -Y n) 0V is applied is applied with a voltage V s to the sustain electrodes (X 1 -X n). In the discharge cell in which the sustain discharge has occurred previously, the positive wall charge and the scan electrode of the sustain electrode X j formed at the sustain discharge before the voltage between the sustain electrode X j and the scan electrode Y j are equal to the voltage V s. Since the wall voltage due to the negative wall charge of (Y j ) is added, the discharge start voltage V fxy between the scan electrode and the sustain electrode is exceeded . Therefore, the scan electrode occurs and the sustain discharge between (Y j) and the sustain electrode (X j), maintaining the scan electrode of the discharge cell the discharge takes place (Y j) and the sustain electrode (X j), the respective amounts of the wall charges and the negative Wall charges are formed.

이후, 동일한 방법으로 Vs 전압과 0V가 주사 전극(Y1-Yn)과 유지 전극(X 1-Xn) 에 교대로 인가되어 유지 방전이 계속 행해진다. 그리고 마지막 유지 방전은 주사 전극(Y1-Yn)에 Vs 전압이 인가되고 유지 전극(X1-Xn )에 0V가 인가된 상태에서 일어난다. 마지막 유지 방전 이후에는 앞에서 설명한 리셋 기간부터 시작하는 서브필드가 이어진다. Thereafter, in the same manner, the voltage V s and 0 V are alternately applied to the scan electrodes Y 1 -Y n and the sustain electrodes X 1 -X n to continue sustain discharge. The last sustain discharge occurs in a state where a voltage V s is applied to the scan electrodes Y 1 -Y n and 0 V is applied to the sustain electrodes X 1 -X n . After the last sustain discharge, subfields starting from the reset period described above are continued.

다음으로, 제2 서브필드의 리셋 기간에서는 보조 리셋이 인가되는 구간으로 제1 서브필드의 유지 기간에서 인가된 마지막 유지 펄스 이후에 주사 전극(Y)에 Vs 전압에서 Vnf 전압까지 완만하게 하강하는 램프 전압이 인가된다. 이때 제1 서브필드의 리셋 기간에서와 같이 어드레스 전극(A)에는 기준 전압(0V)이 인가되고, 유지 전극(X)은 Ve 전압으로 바이어스된다. 즉, 제 1 서브필드의 리셋 기간에서 인가된 하강 램프 전압과 동일한 전압이 주사 전극(Y)에 인가된다. 그러면, 제1 서브필드에서 선택된 방전 셀에서는 미약한 방전이 일어나고 선택되지 않은 방전 셀에서는 방전이 일어나지 않는다. 이때, 제1 서브필드의 리셋 기간에서와 같이 제2 서브필드의 리셋 기간에서는 주사 전극(Y)과 어드레스 전극(A)사이에 존재하던 벽 전하가 완전히 소거된다. 다시 말하면, 제1 서브필드에서 선택된 셀에 대해서만 제2 서브필드의 리셋 기간에 의해 약한 방전이 발생하여 주사 전극과 어드레스 전극 사이에 존재하던 벽전하가 완전히 소거된다. Next, in the reset period of the second subfield, the ramp is gradually lowered from the voltage Vs to the voltage Vnf to the scan electrode Y after the last sustain pulse applied in the sustain period of the first subfield in the period in which the auxiliary reset is applied. Voltage is applied. At this time, as in the reset period of the first subfield, the reference voltage 0V is applied to the address electrode A, and the sustain electrode X is biased to the Ve voltage. That is, the same voltage as the falling ramp voltage applied in the reset period of the first subfield is applied to the scan electrode (Y). Then, weak discharge occurs in the discharge cell selected in the first subfield, and no discharge occurs in the discharge cell that is not selected. At this time, in the reset period of the second subfield, as in the reset period of the first subfield, the wall charge existing between the scan electrode Y and the address electrode A is completely erased. In other words, weak discharge occurs only in the cell selected in the first subfield by the reset period of the second subfield, and the wall charge existing between the scan electrode and the address electrode is completely erased.

제2 서브필드의 어드레스 기간과 유지 기간에 인가되는 파형은 제1 서브필드와 동일하므로 이하에서는 설명을 생략한다. 여기서, 제3 서브필드 내지 제8 서브필드는 제2 서브필드와 동일한 파형이 인가될 수 있을 뿐만 아니라 제3 서브필드 내지 제8 서브필드 중 임의의 서브필드에서 제1 서브필드와 같은 파형이 인가될 수 있다. Since the waveforms applied to the address period and the sustain period of the second subfield are the same as the first subfield, the description thereof will be omitted below. Here, the same waveform as the second subfield may be applied to the third subfield to the eighth subfield, and the same waveform as the first subfield is applied to any subfield among the third subfield to the eighth subfield. Can be.

이와 같이 본 발명의 제1 실시예에 의하면, 어드레스 기간에서 표시하고자 하는 방전 셀의 어드레스 전극과 주사 전극의 전압 차이를 최대 방전 개시 전압보다 크게 함으로써, 리셋 기간에서 벽 전하가 형성되지 않아도 어드레스 방전이 일어난다. 따라서 어드레스 방전이 리셋 기간에서 형성된 벽 전하의 영향을 받지 않으므로 벽 전하 소실로 인한 마진 악화의 문제점이 없어진다. As described above, according to the first embodiment of the present invention, by making the voltage difference between the address electrode and the scan electrode of the discharge cell to be displayed in the address period larger than the maximum discharge start voltage, the address discharge is not generated even in the reset period. Happens. Therefore, since the address discharge is not affected by the wall charges formed in the reset period, the problem of margin deterioration due to the wall charges disappears.

그리고 본 발명의 제1 실시예에서는 VscL 전압을 Vnf 전압과 동일하게 함으로써, VscL 전압과 Vnf 전압을 동일한 전원에서 공급할 수 있으므로 주사 전극을 구동하기 위한 회로가 간단해진다. In the first embodiment of the present invention, the VscL voltage and the Vnf voltage can be supplied from the same power supply, so that the circuit for driving the scan electrode is simplified.

이상, 본 발명의 제1 실시예에서는 기준 전압을 0V로 가정하여 설명하였지만, 이와는 달리 기준 전압을 다른 전압으로 할 수도 있다. 그리고 Va 전압과 VscL 전압의 차이가 최대 방전 개시 전압보다 크게 할 수 있다면 VscL 전압을 Vnf 전압과 다르게 할 수도 있다. In the first embodiment of the present invention, the reference voltage is assumed to be 0 V. However, the reference voltage may be another voltage. And Va voltage and VscL If the voltage difference can be made larger than the maximum discharge start voltage, the VscL voltage may be different from the Vnf voltage.

다음, 본 발명의 제1 실시예에서 설명한 어드레스 전극과 주사 전극 사이의 방전 개시 전압(Vfay), 유지 전극과 주사 전극 사이의 방전 개시 전압(Vfxy) 및 V s 전압 사이의 관계에 대해서 설명한다.Next, the relationship between the discharge start voltage V fay between the address electrode and the scan electrode, the discharge start voltage V fxy and the V s voltage between the sustain electrode and the scan electrode described in the first embodiment of the present invention will be described. do.

플라즈마 디스플레이 패널에 방전은 양이온이 음극에 충돌될 때 방출되는 2차 전자의 양에 의해 결정되며, 이를 γ 프로세스라 한다. 따라서 2차 전자 방출 계수(γ)가 낮은 물질로 덮여 있는 전극이 음극으로 작용하는 경우보다 2차 전자 방출 계수(γ)가 낮은 물질로 덮여 있는 전극이 음극으로 작용하는 경우의 방전 개시 전압이 더 낮다. 그런데, 3전극 플라즈마 디스플레이 패널에서, 배면 기판에 형성되는 어드레스 전극은 색상 표현을 위해 형광체로 덮여 있고, 전면 기판에 형성되는 주사 전극과 유지 전극은 MgO 성분의 보호막으로 덮여 있다. 여기서 MgO 보호막은 2차 전자 방출 계수가 높은 반면 형광체층은 2차 전자 방출 계수가 낮다. 그리고 주사 전극과 유지 전극은 대칭으로 형성되어 있는 반면, 어드레스 전극과 주사 전극은 비대칭으로 형성되어 있으므로, 어드레스 전극과 주사 전극 사이의 방전 개시 전압은 어드레스 전극이 양극으로 작용하는 경우와 음극으로 작용하는 경우에 달라질 수 있다. The discharge in a plasma display panel is determined by the amount of secondary electrons released when a cation strikes the cathode, which is called a γ process. Therefore, the discharge initiation voltage is higher when an electrode covered with a material having a lower secondary electron emission coefficient (γ) acts as a cathode than when an electrode covered with a material having a lower secondary electron emission coefficient (γ) acts as a cathode. low. By the way, in the three-electrode plasma display panel, the address electrode formed on the rear substrate is covered with phosphor for color expression, and the scan electrode and sustain electrode formed on the front substrate are covered with a protective film of MgO component. The MgO passivation layer has a high secondary electron emission coefficient while the phosphor layer has a low secondary electron emission coefficient. In addition, since the scan electrode and the sustain electrode are formed symmetrically, the address electrode and the scan electrode are formed asymmetrically, so that the discharge start voltage between the address electrode and the scan electrode acts as the anode and the cathode. May vary.

즉, 형광체로 덮여 있는 어드레스 전극이 양극으로 작용하고 유전체층으로 덮여 있는 주사 전극이 음극으로 작용하는 경우의 방전 개시 전압(Vfay)이 어드레스 전극이 음극으로 작용하고 주사 전극이 양극으로 작용하는 경우의 방전 개시 전압(Vfya)보다 낮다. 그리고 통상적으로 어드레스 전극이 양극일 때의 방전 개시 전압(Vfay), 어드레스 전극이 음극일 때의 방전 개시 전압(Vfya) 및 주사 전극과 유지 전극 사이의 방전 개시 전압(Vfxy) 사이에는 수학식 3의 관계가 성립한다. 물론 이러한 관계는 방전 셀의 상태에 따라서 달라질 수도 있다.That is, the discharge start voltage V fay when the address electrode covered with the phosphor acts as the anode and the scan electrode covered with the dielectric layer acts as the cathode is used when the address electrode acts as the cathode and the scan electrode acts as the anode. It is lower than the discharge start voltage V fya . And generally between the address electrodes, the discharge initiation voltage (V fay) when the positive electrode, the starting discharge when the address electrode is the cathode voltage (V fya) and the scan electrodes and the sustain start discharge between the electrode voltage (V fxy) mathematics Equation 3 holds. Of course, this relationship may vary depending on the state of the discharge cell.

Figure 112004022120038-pat00004
Figure 112004022120038-pat00004

리셋 기간 및 어드레스 기간에서는 주사 전극이 음극으로 작용하므로, 어드레스 전극과 주사 전극 사이의 방전 개시 전압(Vfay)은 수학식 3의 관계로부터 수학식 4의 관계가 성립한다. 그리고 어드레스 기간에서 어드레스가 안된 방전 셀에서는 유지 방전이 일어나지 않아야 하므로, Vs 전압도 수학식 5과 같이 주사 전극과 유지 전극 사이의 방전 개시 전압(Vfxy)보다 낮은 전압이다.In the reset period and the address period, since the scan electrode acts as the cathode, the discharge start voltage V fay between the address electrode and the scan electrode is represented by the equation (4) from the relationship in the equation (3). Since the sustain discharge should not occur in the discharge cells not addressed in the address period, the V s voltage is also lower than the discharge start voltage V fxy between the scan electrode and the sustain electrode as shown in Equation 5 below.

Figure 112004022120038-pat00005
Figure 112004022120038-pat00005

Figure 112004022120038-pat00006
Figure 112004022120038-pat00006

그리고 본 발명의 제1 실시예에서는 리셋 기간에서 어드레스 전극과 주사 전극 사이의 벽 전압을 0V에 가깝도록 하였으므로, 어드레스 기간에서 어드레스가 안된 방전 셀에서는 유지 기간에서 주사 전극과 어드레스 전극 사이 및 유지 전극과 어드레스 전극 사이에서도 연속적으로 방전이 일어나지 않아야 한다. 바꾸어 말하면, 연속적으로 방전이 일어나는 경우는 주사 전극에 Vs 전압이 인가되어 주사 전극과 어드레스 전극 사이에서 방전이 일어나고, 이 방전에 의해 어드레스 전극에 양의 벽 전하가 형성된 경우에 유지 전극에 Vs 전압이 인가될 때도 유지 전극과 어드레스 전극 사이에서 방전이 일어나는 경우이다. 그런데, 유지 전극과 주사 전극은 대칭 전극이므로 유지 전극과 어드레스 전극 사이의 방전개시전압은 Vfay 전압과 동 일하고, 주사 전극과 어드레스 전극의 방전에 의해 유지 전극에 양의 벽 전하가 쌓이는 경우에 유지 전극과 어드레스 전극에 형성되는 벽 전압은 Vfay 전압을 넘을 수 없다. 따라서 주사 전극과 어드레스 전극 사이의 방전에 의해 유지 전극에 양의 벽 전하가 형성된 후 유지 전극에 Vs 전압이 인가될 때 방전이 일어나지 않기 위해서는 수학식 6의 관계, 즉 Vfay 전압이 Vs/2 전압보다 클 필요가 있다. In the first embodiment of the present invention, since the wall voltage between the address electrode and the scan electrode is close to 0 V in the reset period, in the discharge cells that are not addressed in the address period, between the scan electrode and the address electrode and the sustain electrode in the sustain period. Discharge should not occur continuously even between address electrodes. In other words, when discharge occurs continuously, V s voltage is applied to the scan electrode to cause discharge between the scan electrode and the address electrode, and when the positive wall charge is formed on the address electrode, V s is applied to the sustain electrode. The discharge occurs between the sustain electrode and the address electrode even when a voltage is applied. However, since the sustain electrode and the scan electrode are symmetric electrodes, the discharge start voltage between the sustain electrode and the address electrode is the same as the V fay voltage, and is maintained when positive wall charges are accumulated on the sustain electrode due to the discharge of the scan electrode and the address electrode. The wall voltage formed on the electrode and the address electrode cannot exceed the V fay voltage. Therefore, in order that no discharge occurs when the voltage V s is applied to the sustain electrode after the positive wall charge is formed on the sustain electrode by the discharge between the scan electrode and the address electrode, the relationship of Equation 6, that is, the V fay voltage is V s / Need to be greater than 2 voltages.

Figure 112004022120038-pat00007
Figure 112004022120038-pat00007

수학식 4 내지 6의 관계를 종합하여 보면, Vfay 전압은 Vs/2보다 높은 전압으로 설정할 필요가 있고, 또한 Vfay 전압과 Vs 전압 모두 Vfxy 전압보다 일정 전압 이상 낮아야 하므로 Vfay 전압은 Vs 전압 근방에서 결정될 수 있다. 즉, 수학식 7과 같은 관계가 성립한다. 실험으로 측정하였을 때 ΔV는 0에서 30V 사이의 전압을 가진다.Based on these relations given by the expressions 4 to 6, V fay voltage V s / 2, and more needs to be set to a high voltage, and therefore lower than the constant voltage than V fxy voltage both V fay voltage and V s the voltage V fay voltage Can be determined near the V s voltage. In other words, the relationship as shown in equation (7) holds. As measured experimentally, ΔV has a voltage between 0 and 30V.

Figure 112004022120038-pat00008
Figure 112004022120038-pat00008

도 4에서는 리셋 기간 및 어드레스 기간에서 유지 전극(X1-Xn)에 인가되는 V e 전압을 양의 전압으로 표현하였다. 어드레스 기간에서 주사 전극(Yj)과 어드레스 전극(Ai) 사이의 방전에 의해 주사 전극(Yj)과 유지 전극(Xj) 사이에서 방전이 일어날 수 있다면 Ve 전압은 다른 전압일 수도 있다. 예를 들어 Ve 전압은 0V 또는 음의 전압일 수도 있다. In FIG. 4, the voltage V e applied to the sustain electrodes X 1- X n in the reset period and the address period is expressed as a positive voltage. If the discharge can occur between scan electrode Y j and sustain electrode X j by the discharge between scan electrode Y j and address electrode A i in the address period, the voltage V e may be another voltage. . For example, the V e voltage may be 0 V or a negative voltage.

이상, 본 발명의 제1 실시예에서는 리셋 기간에서 어드레스 전극에 인가되는 전압을 0V로 하여 설명하였지만, 어드레스 전극과 주사 전극 사이의 벽 전압은 어드레스 전극과 주사 전극에 인가되는 전압의 차에 의해 결정이 되므로 어드레스 전극과 주사 전극에 인가되는 전압의 차가 본 발명의 실시예와 동일한 관계를 만족한다면 어드레스 전극과 주사 전극에 인가되는 전압을 다르게 설정할 수 있다. In the first embodiment of the present invention, the voltage applied to the address electrode in the reset period is described as 0 V. However, the wall voltage between the address electrode and the scan electrode is determined by the difference between the voltages applied to the address electrode and the scan electrode. Therefore, if the difference between the voltage applied to the address electrode and the scan electrode satisfies the same relationship as in the embodiment of the present invention, the voltage applied to the address electrode and the scan electrode can be set differently.

그리고 본 발명의 제1 실시예에서는 리셋 기간에서 램프 형태의 전압이 주사 전극에 인가되는 것으로 하여 설명하였지만, 램프 형태 이외에 약방전을 일으키면서 벽 전하를 제어할 수 있는 다른 형태의 전압을 주사 전극에 인가할 수도 있다. 이러한 형태의 전압은 시간 변화에 따라 점진적으로 전압 레벨이 변화하는 전압이다. In the first embodiment of the present invention, a voltage in the form of a lamp is applied to the scan electrode in the reset period. However, in addition to the lamp, another type of voltage capable of controlling wall charge while generating a weak discharge is applied to the scan electrode. May be authorized. This type of voltage is a voltage whose voltage level changes gradually over time.

이와 같이 본 발명에 의하면, 어드레스 방전이 리셋 기간에서 형성된 벽 전하의 영향을 받지 않으므로 벽 전하 소실로 인한 마진 악화의 문제점이 없어진다. 그리고 발광하지 않는 방전 셀에서 리셋 기간에서의 방전의 양이 줄어들므로 명암비가 좋아진다. 또한 플라즈마 디스플레이 패널에 인가되는 최대 전압을 낮출 수 있다. Thus, according to the present invention, since the address discharge is not affected by the wall charges formed in the reset period, the problem of margin deterioration due to the wall charges disappears. Since the amount of discharge in the reset period is reduced in the discharge cells that do not emit light, the contrast ratio is improved. In addition, the maximum voltage applied to the plasma display panel may be lowered.

한편, 본 발명의 제1 실시예에서는 보조 리셋이 인가되는 서브필드의 리셋 기간에 이전 서브필드의 마지막 방전 전압(VS)에서부터 전압(Vnf)까지 서서히 하강하는 램프 파형을 인가하되, 하강 램프의 기울기는 메인 리셋이 인가되는 서브필드의 리셋 기간에 인가되는 하강 램프 파형의 기울기와 동일하게 유지한 상태에서 리셋 최종 전압(Vnf)을 낮추었다. On the other hand, in the first embodiment of the present invention, but applying a ramp waveform that gradually falls to from the final discharge voltage (V S) of the previous sub-field voltage (Vnf) in a reset period of a subfield that is a sub-reset, the ramp-down The slope lowered the reset final voltage Vnf while maintaining the same slope as the slope of the falling ramp waveform applied in the reset period of the subfield to which the main reset is applied.

또한, 앞서 설명한 바와 같이 리셋 기간에서

Figure 112004022120038-pat00009
조건을 만족하기 때문에 Vnf 전압을 낮추면 Ve 전압을 낮출 수 있다. 또한 하강 리셋 기간에 유지 전극에 Ve 전압이 인가될 때의 벽전압은 주사 전극에 Vs 전압이 인가될 때 방전이 일어나도록 설정되어 있으므로 유지 전극에 Ve 전압이 인가된 상태에서 주사 전극의 전압을 Vs 전압 이하로 낮추더라도 리셋 방전이 일어나지 않는다. In addition, in the reset period as described above
Figure 112004022120038-pat00009
Since the condition is satisfied, lowering the Vnf voltage can lower the Ve voltage. In addition, since the wall voltage when the Ve voltage is applied to the sustain electrode in the falling reset period is set to cause a discharge when the Vs voltage is applied to the scan electrode, the voltage of the scan electrode is changed to Vs while the Ve voltage is applied to the sustain electrode. The reset discharge does not occur even if the voltage is lowered below.

그러므로, 보조 리셋 파형을 인가하기 전에 주사 전극의 전압을 리셋 방전이 일어나기 시작하는 전압까지 급격하게 낮춘 후 주사 전극에 점진적으로 하강하는 램프 전압을 인가하면 리셋 기간을 단축할 수 있다. Therefore, if the voltage of the scan electrode is drastically lowered to the voltage at which the reset discharge starts to occur before the auxiliary reset waveform is applied, the reset period can be shortened by applying a ramp voltage gradually decreasing to the scan electrode.

도 6은 이러한 본 발명의 제2 실시예에 따른 플라즈마 디스플레이 패널의 구동 파형도이다. 6 is a driving waveform diagram of the plasma display panel according to the second embodiment of the present invention.

도 6에 도시된 바와 같이, 본 발명의 제2 실시예에서는 유지 기간에 주사 전극에 마지막 유지방전 전압이 인가된 후, 주사 전극의 전압을 0V까지 일시적으로 낮춘 후 리셋 기간에 0V부터 Vnf 전압까지 서서히 하강하는 보조 리셋 파형을 인가하였다.As shown in FIG. 6, in the second embodiment of the present invention, after the last sustain discharge voltage is applied to the scan electrode in the sustain period, the voltage of the scan electrode is temporarily lowered to 0V and then from 0V to Vnf in the reset period. A slowly descending auxiliary reset waveform was applied.

따라서, 도 5에 도시된 본 발명의 제1 실시예에서 보조 리셋 파형이 인가되 는 리셋 기간에 비해 리셋 기간이 단축되었다. Therefore, in the first embodiment of the present invention shown in FIG. 5, the reset period is shortened compared to the reset period in which the auxiliary reset waveform is applied.

이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

이상에서 살펴본 바와 같이, 본 발명에 따르면 리셋 기간에서 형성된 벽 전하의 영향을 받지 않으므로 벽 전하 소실로 인한 마진의 악화의 문제점이 없어진다. As described above, according to the present invention, since it is not affected by the wall charges formed in the reset period, the problem of deterioration of the margin due to the loss of the wall charges is eliminated.

또한, 보조 리셋 파형을 인가하기 전에 주사 전극의 전압을 리셋 방전이 일어나기 시작하는 전압까지 급격하게 낮춤으로써 보조 리셋 파형이 인가되는 서브필드의 리셋 기간을 단축할 수 있다. In addition, the reset period of the subfield to which the auxiliary reset waveform is applied can be shortened by rapidly decreasing the voltage of the scan electrode to the voltage at which the reset discharge starts to occur before applying the auxiliary reset waveform.

Claims (10)

복수의 제1 전극 및 복수의 제2 전극, 그리고 상기 복수의 제1 및 제2 전극에 교차하는 방향으로 형성되어 있는 복수의 어드레스 전극을 포함하며, 인접한 상기 제1 전극, 제2 전극 및 어드레스 전극에 의해 방전 셀이 형성되는 플라즈마 디스플레이 패널을 구동하는 방법에 있어서, A plurality of first electrodes, a plurality of second electrodes, and a plurality of address electrodes formed in a direction crossing the plurality of first and second electrodes, wherein the adjacent first, second, and address electrodes A method for driving a plasma display panel in which discharge cells are formed by 리셋 기간 동안, 상기 제1 전극의 전압을 접지 전압보다 같거나 낮은 제1 전압에서 제2 전압까지 점진적으로 감소시키는 단계,During the reset period, gradually decreasing the voltage of the first electrode from the first voltage to the second voltage which is equal to or lower than the ground voltage, 어드레스 기간 동안, 상기 방전 셀 중 선택하고자 하는 방전 셀을 방전시키는 단계, 그리고Discharging a discharge cell to be selected among the discharge cells during an address period, and 유지 기간 동안, 상기 어드레스 단계에서 선택된 방전 셀을 유지 방전시키는 단계를 포함하며, During the sustain period, sustain discharge of the discharge cells selected in the address step; 상기 제2 전압에서 상기 제1 전극에 상기 제2 전압인 인가될 때 상기 어드레스 전극에 인가되는 전압을 뺀 제3 전압이 제4 전압보다 같거나 낮으며,When the second voltage is applied to the first electrode as the second voltage, a third voltage obtained by subtracting a voltage applied to the address electrode is equal to or lower than a fourth voltage, 상기 제4 전압은 상기 유지 기간 동안 상기 유지방전을 위해 상기 제1 전극과 상기 제2 전극에 인가되는 전압의 차이에 해당하는 제5 전압의 절반에 해당하는 전압의 음의 값인 플라즈마 디스플레이 패널의 구동 방법. The fourth voltage is a negative value of a voltage corresponding to half of a fifth voltage corresponding to a difference between voltages applied to the first electrode and the second electrode for the sustain discharge during the sustain period. Way. 제1항에 있어서, The method of claim 1, 상기 제3 전압이 상기 제5 전압의 음의 값보다 같거나 낮은 플라즈마 디스플레이 패널의 구동 방법. And the third voltage is equal to or lower than a negative value of the fifth voltage. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2, 상기 제1 전극의 전압이 상기 제1 전압에서 상기 제2 전압까지 점진적으로 감소하는 동안, 상기 어드레스 전극에 제6 전압을 인가하는 단계를 더 포함하는 플라즈마 디스플레이 패널의 구동 방법. And applying a sixth voltage to the address electrode while the voltage of the first electrode gradually decreases from the first voltage to the second voltage. 제3항에 있어서, The method of claim 3, 상기 제6 전압은 접지 전압인 플라즈마 디스플레이 패널의 구동 방법. And the sixth voltage is a ground voltage. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2, 상기 리셋 기간 동안, 상기 제1 전극의 전압을 직전 서브필드의 유지 기간 동안 상기 제1 전극에 인가된 유지방전 전압에서 상기 제1 전압까지 감소시키는 단계를 더 포함하는 플라즈마 디스플레이 패널의 구동 방법. Reducing the voltage of the first electrode from the sustain discharge voltage applied to the first electrode to the first voltage during the sustain period of the immediately preceding subfield during the reset period. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2, 상기 제1 전극의 전압이 상기 제1 전압에서 상기 제2 전압까지 점진적으로 감소하는 동안, 상기 제2 전극에 양의 제7 전압을 인가하는 단계를 더 포함하는 플라즈마 디스플레이 패널의 구동 방법. And applying a seventh positive voltage to the second electrode while the voltage of the first electrode is gradually decreased from the first voltage to the second voltage. 복수의 제1 전극,A plurality of first electrodes, 복수의 제2 전극, A plurality of second electrodes, 상기 복수의 제1 및 제2 전극에 교차하는 방향으로 형성되어 있는 복수의 제3 전극, 그리고 A plurality of third electrodes formed in a direction crossing the plurality of first and second electrodes, and 인접한 상기 제1 전극, 제2 전극 및 제3 전극에 의해 형성되는 방전 셀을 방전시키기 위해 상기 제1 전극, 제2 전극 및 제3 전극에 구동 전압을 공급하는 구동 회로를 포함하며, A driving circuit for supplying a driving voltage to the first electrode, the second electrode, and the third electrode to discharge the discharge cells formed by the adjacent first, second, and third electrodes; 상기 구동 회로는, The drive circuit, 리셋 기간 동안, 상기 제1 전극의 전압을 접지 전압보다 같거나 낮은 제1 전압에서 제2 전압까지 점진적으로 감소시키며,During the reset period, the voltage of the first electrode is gradually decreased from the first voltage to the second voltage which is equal to or lower than the ground voltage, 상기 제2 전압은 제3 전압의 절반에 해당하는 전압보다 같거나 낮으며,The second voltage is equal to or lower than a voltage corresponding to half of the third voltage, 상기 제3 전압은 유지 기간 동안 유지방전을 위해 상기 제1 전극과 상기 제2 전극에 인가되는 전압의 차이에 해당하는 플라즈마 표시 장치. And the third voltage corresponds to a difference between voltages applied to the first electrode and the second electrode for sustain discharge during the sustain period. 제7항에 있어서,The method of claim 7, wherein 상기 제2 전압은 상기 제3 전압의 음의 값보다 같거나 낮은 플라즈마 표시 장치.And the second voltage is equal to or lower than a negative value of the third voltage. 제7항에 있어서, The method of claim 7, wherein 상기 구동회로는,The drive circuit, 상기 제1 전극의 전압을 상기 제1 전압에서 상기 제2 전압까지 점진적으로 감소시키는 동안, 상기 제2 전극 및 상기 제3 전극에 각각 제4 전압 및 제5 전압을 인가하는 플라즈마 표시 장치. And applying a fourth voltage and a fifth voltage to the second electrode and the third electrode, respectively, while gradually decreasing the voltage of the first electrode from the first voltage to the second voltage. 제9항에 있어서, The method of claim 9, 상기 제4 전압은 양의 전압이고, 상기 제5 전압은 접지 전압인 플라즈마 표시 장치. And the fourth voltage is a positive voltage and the fifth voltage is a ground voltage.
KR1020040037283A 2004-05-25 2004-05-25 Driving method of plasma display panel and plasma display device KR100550993B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040037283A KR100550993B1 (en) 2004-05-25 2004-05-25 Driving method of plasma display panel and plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040037283A KR100550993B1 (en) 2004-05-25 2004-05-25 Driving method of plasma display panel and plasma display device

Publications (2)

Publication Number Publication Date
KR20050113699A KR20050113699A (en) 2005-12-05
KR100550993B1 true KR100550993B1 (en) 2006-02-13

Family

ID=37288181

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040037283A KR100550993B1 (en) 2004-05-25 2004-05-25 Driving method of plasma display panel and plasma display device

Country Status (1)

Country Link
KR (1) KR100550993B1 (en)

Also Published As

Publication number Publication date
KR20050113699A (en) 2005-12-05

Similar Documents

Publication Publication Date Title
KR100739070B1 (en) Drving method of plasma display panel and plasma display device
KR100612309B1 (en) Plasma display device and driving method of the same
KR100515304B1 (en) Driving method of plasma display panel and plasma display device
KR100515335B1 (en) Driving method of plasma display panel and plasma display device
KR100733401B1 (en) Driving method of plasma display panel and plasma display device
KR100551014B1 (en) Plasma display device and driving method thereof
KR100502928B1 (en) Driving method of plasma display panel and plasma display device
KR100570694B1 (en) Driving method of plasma display panel and plasma display device
KR100551038B1 (en) Driving method of plasma display panel and plasma display device
KR100550993B1 (en) Driving method of plasma display panel and plasma display device
KR100551018B1 (en) Driving method of plasma display panel and plasma display device
KR100578849B1 (en) Driving method of plasma display panel and plasma display device
KR100521481B1 (en) Driving method of plasma display panel and plasma display device
KR100550992B1 (en) Driving method of plasma display panel and plasma display device
KR100521498B1 (en) Driving method of plasma display panel and plasma display device
KR100551057B1 (en) Driving method of plasma display panel and plasma display device
KR100521472B1 (en) Driving method of plasma display panel and plasma display device
KR100612282B1 (en) Plasma display device and driving method thereof
KR100627273B1 (en) Plasma display device and driving method of the same
KR100551013B1 (en) Drving method of plasma display panel and plasma display device
KR100521495B1 (en) Drving method of plasma display panel and plasma display device
KR100508926B1 (en) Driving method of plasma display panel and plasma display device
KR100599738B1 (en) Plasma display divice and driving method thereof
KR100551011B1 (en) Driving method of plasma display panel and plasma display device
KR100578848B1 (en) Drving method of plasma display panel and plasma display device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120126

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130122

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee