KR100546112B1 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
KR100546112B1
KR100546112B1 KR1019990063571A KR19990063571A KR100546112B1 KR 100546112 B1 KR100546112 B1 KR 100546112B1 KR 1019990063571 A KR1019990063571 A KR 1019990063571A KR 19990063571 A KR19990063571 A KR 19990063571A KR 100546112 B1 KR100546112 B1 KR 100546112B1
Authority
KR
South Korea
Prior art keywords
charge storage
storage electrode
polysilicon layer
oxide film
contact plug
Prior art date
Application number
KR1019990063571A
Other languages
Korean (ko)
Other versions
KR20010061087A (en
Inventor
김대영
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1019990063571A priority Critical patent/KR100546112B1/en
Publication of KR20010061087A publication Critical patent/KR20010061087A/en
Application granted granted Critical
Publication of KR100546112B1 publication Critical patent/KR100546112B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명은 반도체소자의 제조방법에 관한 것으로서, 질화막을 하드마스크로하여 비트라인들을 형성하고, 그 측벽에 스페이서를 형성한 후에 전하저장전극 콘택 플러그를 비트라인 사이에 형성하고, 전면에 산화막-질화막-전하저장전극 산화막-다결정실리콘층을 도포하고 전하저장전극 마스크로 상기 적층막들을 패턴닝하여 전하저장전극 콘택 플러그를 노출시키는 홈을 형성하고, 다시 다결정실리콘층을 도포하고 여분의 다결정실리콘층을 CMP 방법으로 식각하여 전하저장전극을 정의하였으므로, 전하저장전극 형성 공정이 간단하고 공정여유도가 증가되어 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, wherein bit lines are formed using a nitride film as a hard mask, spacers are formed on the sidewalls, and a charge storage electrode contact plug is formed between the bit lines, and an oxide film-nitride film is formed on the entire surface. Applying a charge storage electrode oxide film-polycrystalline silicon layer and patterning the laminated films with a charge storage electrode mask to form a groove exposing the charge storage electrode contact plug, and then apply a polysilicon layer and replace the extra polysilicon layer Since the charge storage electrode is defined by etching by the CMP method, the charge storage electrode forming process is simple and the process margin is increased to improve the process yield and the reliability of device operation.

Description

반도체소자의 제조방법{Manufacturing method of semiconductor device}Manufacturing method of semiconductor device

도 1a 내지 도 1g는 본 발명에 따른 반도체소자의 제조공정도.1A to 1G are manufacturing process diagrams of a semiconductor device according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

10 : 층간절연막 12 : 비트라인10: interlayer insulating film 12: bit line

13 : 마스크 절연막 패턴 14 : 스페이서 13 mask insulating film pattern 14 spacer

15 : 전하저장전극 콘택 플러그 20 : 산화막15: charge storage electrode contact plug 20: oxide film

21 : 질화막 22 : 전하저장전극 산화막21 nitride film 22 charge storage electrode oxide film

23,25 : 다결정실리콘층 24 : 감광막 패턴 23,25 polysilicon layer 24 photosensitive film pattern

본 발명은 반도체소자의 제조방법에 관한 것으로서, 특히 비트라인 형성후에 콘택 플러그를 형성하고, 산화막-질화막-전하저장전극 산화막-다결정실리콘층의 적층 상태에서 전하저장전극 콘택을 형성하여 자기정렬 방법으로 용이하게 전하저장전극을 형성할 수 있어 공정이 간단하고 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있는 반도체소자의 제조방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and in particular, a contact plug is formed after a bit line is formed, and a charge storage electrode contact is formed in a stacked state of an oxide film-nitride-charge storage electrode oxide film-polycrystalline silicon layer. The present invention relates to a method for manufacturing a semiconductor device, which can easily form a charge storage electrode, thereby simplifying a process and improving process yield and device operation reliability.

최근 반도체 소자의 고집적화 추세에 따라 셀 크기가 감소되어 충분한 정전 용량을 갖는 캐패시터를 형성하기가 어려워지고 있으며, 특히, 하나의 모스 트랜지스터와 캐패시터로 구성되는 디램 소자는 칩에서 많은 면적을 차지하는 캐패시터의 정전용량을 크게 하면서, 면적을 줄이는 것이 디램 소자의 고집적화에 중요한 요인이 된다.Recently, due to the trend toward higher integration of semiconductor devices, it is difficult to form capacitors with sufficient capacitance due to a decrease in cell size. In particular, a DRAM device including one MOS transistor and a capacitor has a large area in the chip. Reducing the area while increasing the capacity is an important factor for high integration of the DRAM device.

이때 상기 캐패시터는 주로 다결정 실리콘을 도전체로 하여 산화막, 질화막 또는 그 적층막인 오.엔.오(oxide-nitride-oxide)막을 유전체로 사용하고 있다. At this time, the capacitor mainly uses an oxide film, a nitride film, or an O-oxide film (oxide-nitride-oxide) film as a dielectric, using polycrystalline silicon as a conductor.

따라서 캐패시터의 정전용량(C)은 C=(ε0×εr×A)/T (여기서 ε0 은 진공 유전율(permitivity of vacuum), εr 은 유전막의 유전상수(dielectric constant), A는 캐패시터의 표면적, T는 유전막의 두께)로 표시되는 캐패시터의 정전용량(C)을 증가시키기 위하여 유전상수가 높은 물질을 유전체로 사용하거나, 유전막을 얇게 형성하거나 또는 캐패시터의 표면적을 증가시키는 등의 방법이 있다.Therefore, the capacitance C of the capacitor is C = (ε 0 × ε r × A) / T, where ε 0 is the permittivity of vacuum, ε r is the dielectric constant of the dielectric film, and A is the capacitor. In order to increase the capacitance (C) of the capacitor represented by the surface area of the film, T is the thickness of the dielectric film, a material having a high dielectric constant is used as the dielectric, a thin dielectric film is formed, or the surface area of the capacitor is increased. have.

그러나 이러한 방법들은 모두 각각의 문제점을 가지고 있다.However, all these methods have their own problems.

즉, 높은 유전상수를 갖는 유전물질, 예를 들어 Ta2O5, TiO2 또는 SrTiO3등이 연구되고 있으나, 이러한 물질들의 접합 파괴전압등과 같은 신뢰도 및 박막특성등이 확실하게 확인되어 있지 않아 실제 소자에 적용하기가 어렵고, 식각이나 공정재현성등이 떨어지며, 제조단가가 높은 단점이 있고, 유전막 두께를 감소시키는 것은 소자 동작시 유전막이 파괴되어 캐패시터의 신뢰도에 심각한 영향을 준다.That is, dielectric materials having high dielectric constants , such as Ta 2 O 5 , TiO 2 or SrTiO 3 , have been studied, but reliability and thin film characteristics such as junction breakdown voltage of these materials have not been confirmed. It is difficult to apply to the actual device, the etching or process reproducibility, etc. are disadvantageous, the manufacturing cost is high, and reducing the thickness of the dielectric film has a serious impact on the reliability of the capacitor because the dielectric film is destroyed during operation of the device.

더욱이 캐패시터의 전하저장전극의 표면적을 증가시키기 위하여 다결정 실리콘층을 다층으로 형성한 후, 이들을 관통하여 서로 연결시키는 핀(Fin) 구조로 형 성하거나, 콘택의 상부에 실린더 형상의 전하저장전극을 형성하는 등의 방법을 사용하기도 한다. Furthermore, in order to increase the surface area of the capacitor's charge storage electrode, a polycrystalline silicon layer is formed in multiple layers and then formed into a fin structure through which they are connected to each other, or a cylindrical charge storage electrode is formed on the contact. Other methods may be used.

그러나 상기와 같은 종래 기술에 따른 반도체 소자의 캐패시터 제조방법에서 핀형이나 실린더형 캐패시터는 캐패시터간의 미세브릿지 불량으로 인하여 공정수율을 저하시키고, 복잡한 공정에 비하여 정전용량의 증가가 작으며, 실린더형 캐패시터의 는 주안정 다결정실리콘층(meta-stable poly silicon)을 성장시켜 면적을 증가시키고 있으나 미세 브릿지 현상이 더욱 증가되고 미세화가 어려운 문제점이 있다. However, in the capacitor manufacturing method of the semiconductor device according to the prior art as described above, the pin-type or cylindrical-type capacitors decrease the process yield due to the poor microbridges between the capacitors, and the increase in capacitance is small compared to the complicated process, and the capacitance of the cylindrical capacitors The main stable polysilicon layer (meta-stable poly silicon) is grown to increase the area, but there is a problem that the fine bridge phenomenon is further increased and difficult to refine.

또한 상기의 미세 브릿지를 해결하기 위하여 적층형 캐패시터가 다시 주목받고 있으나, 적층막들의 높이가 증가됨에 따라 두꺼운 막을 식각하는 공정이 용이하지 않고, 토폴로지에 의한 문제가 발생되는 등의 문제점이 있다. In addition, in order to solve the fine bridge, the stacked capacitor has been attracting attention again, but as the height of the laminated films is increased, the process of etching a thick film is not easy, and there are problems such as problems due to topology.

또한 셀 효율을 증가시키기 위하여 비트라인당 셀수를 기존에 비해 2배 이상으로 설계를 가져가고 있어 셀 캐패시터의 정전용량은 더욱 증가되어야 하는데, 캐패시터의 사용 가능한 표면적은 감소되고 있어, 현재 사용되는 핀형이나 실린더형 캐패시터에서는 캐패시터의 높이를 증가시키고, 전하저장전극 사이의 간격을 감소시키며, 반구형실리콘(hemi spherical silicon grain; 이하 HSG라 칭함)을 사용하는 등의 방법으로 유효표면적을 증가시키고 있다. Also, in order to increase cell efficiency, the number of cells per bitline has been designed more than twice as much as before, so the capacitance of the cell capacitor should be further increased, and the usable surface area of the capacitor is decreasing. In the cylindrical capacitor, the effective surface area is increased by increasing the height of the capacitor, decreasing the gap between the charge storage electrodes, and using a hemi-spherical silicon grain (hereinafter referred to as HSG).

상기와 같은 종래 기술에 따른 반도체 소자의 캐패시터는 전하저장전극 사이의 간격 감소로 인하여 이 부분에서의 디자인 룰이 여유가 없어져 인접한 전하저장전극 사이의 브릿지 불량 발생이 증가되고 있으며, 이러한 현상은 HSG를 사용하는 경우 더욱 증가되는 것으로 보고되고 있어 수율이 더욱 떨어진다. In the capacitor of the semiconductor device according to the prior art as described above, due to the reduction in the distance between the charge storage electrodes, the design rules in this part cannot be afforded, resulting in an increase in the failure of bridges between adjacent charge storage electrodes. It is reported to increase even more when used, the yield is even lower.

또한 종래 기술의 다른 실시 예로서, 전하저장전극 산화막을 전하저장전극 마스크로 패턴닝하여 콘택 플러그가 노출되는 홈을 형성하고, 전면에 다결정실리콘층을 도포하여 전하저장전극으로 사용하는 방법이 있다. In another embodiment of the prior art, there is a method of patterning a charge storage electrode oxide film with a charge storage electrode mask to form a groove exposing a contact plug, and using a polysilicon layer on the entire surface to use the charge storage electrode.

종래 기술에 따른 반도체소자의 제조방법을 살펴보면 다음과 같다. Looking at the method of manufacturing a semiconductor device according to the prior art as follows.

먼저, 반도체기판상에 소정의 하부 구조물, 예를들어 소자분리 산화막과 모스 전계효과 트랜지스터(Metal Oxide Semiconductor Field Effect Transistor; 이하 MOS FET라 칭함) 를 형성한 후, 상기 구조의 전표면에 제1층간절연막을 형성한다. First, a predetermined substructure, for example, an element isolation oxide film and a metal oxide semiconductor field effect transistor (hereinafter referred to as a MOS FET) is formed on a semiconductor substrate, and then a first interlayer is formed on the entire surface of the structure. An insulating film is formed.

그다음 상기 반도체기판에서 비트라인 콘택과 전하저장전극 콘택으로 예정되어있는 부분상의 제1층간절연막을 제거하여 콘택홀들을 형성하고, 상기 콘택홀을 통하여 반도체기판과 접촉되는 콘택 플러그들을 형성한 후 비트라인을 형성한다. Then, contact holes are formed by removing the first interlayer insulating layer on the portion of the semiconductor substrate, which is intended as a bit line contact and a charge storage electrode contact, and forming contact plugs contacting the semiconductor substrate through the contact hole. To form.

그후 상기 구조의 전표면에 제2층간절연막과 전하저장전극 산화막을 형성하고, 전하저장전극 마스크를 사용하여 상기 산화막과 제2층간절연막을 식각하여 콘택 플러그를 노출시킨 후, 전하저장전극을 형성한다. Thereafter, a second interlayer insulating film and a charge storage electrode oxide film are formed on the entire surface of the structure, and the contact plug is exposed by etching the oxide film and the second interlayer insulating film using a charge storage electrode mask to form a charge storage electrode. .

상기와 같은 종래 기술에 따른 반도체소자의 제조방법은 공정이 복잡하고 자기정렬에 의한 공정이면서도 공정 난이도가 높아 공정수율 및 소자동작의 신뢰성이 떨어지는 문제점이 있다. The method of manufacturing a semiconductor device according to the prior art as described above has a problem in that the process is complicated and the process difficulty due to self-alignment is high, but the process yield and device operation reliability are low.

본 발명은 상기와 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 비트 라인 형성후 산화막-질화막-전하저장전극 산화막-다결정실리콘층을 적층하고 이를 전하저장전극 마스크로 패턴닝하여 홈을 형성한 후에 전하저장전극을 형성하여 공정이 용이하며 간단해져 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있는 반도체소자의 제조방법을 제공함에 있다. SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and an object of the present invention is to form an oxide-nitride-charge storage electrode oxide film-polycrystalline silicon layer after forming a bit line and pattern it with a charge storage electrode mask to form a groove. The present invention provides a method of manufacturing a semiconductor device that can form a charge storage electrode, thereby making the process easy and simple, thereby improving process yield and reliability of device operation.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 반도체소자 제조방법의 특징은, Features of the semiconductor device manufacturing method according to the present invention for achieving the above object,

반도체기판 상에 형성된 층간절연막상에 마스크 절연막 패턴을 하드 마스크로 하여 비트라인을 형성하는 공정과, Forming a bit line on the interlayer insulating film formed on the semiconductor substrate using the mask insulating film pattern as a hard mask;

상기 비트라인과 마스크 절연막 패턴의 측벽에 절연 스페이서를 형성하는 공정과, Forming an insulating spacer on sidewalls of the bit line and the mask insulating film pattern;

상기 비트라인들의 사이에 전하저장전극 콘택 플러그를 형성하는 공정과, Forming a charge storage electrode contact plug between the bit lines;

상기 구조의 전표면에 산화막-질화막-전하저장전극 산화막-다결정실리콘층을 순차적으로 도포하는 공정과, Sequentially applying an oxide film-nitride film-charge storage electrode oxide film-polycrystalline silicon layer to the entire surface of the structure;

상기 다결정실리콘층상에 전하저장전극 마스크인 감광막 패턴을 형성하는 공정과, Forming a photoresist pattern as a charge storage electrode mask on the polysilicon layer;

상기 감광막 패턴에 의해 노출되어있는 다결정실리콘층에서 산화막까지 제거하여 상기 전하저장전극 콘택 플러그를 노출시킨 후, 상기 감광막 패턴을 제거하는 공정과, Removing the photoresist pattern after exposing the charge storage electrode contact plug by removing the oxide film from the polysilicon layer exposed by the photoresist pattern;

상기 구조의 전표면에 다결정실리콘층을 도포하는 공정과, Applying a polysilicon layer to the entire surface of the structure;

상기 전하저장전극 산화막 상부의 다결정실리콘층을 제거하여 다결정실리콘층 패턴으로된 전하저장전극을 형성하는 공정을 구비함에 있다. And removing the polysilicon layer on the charge storage electrode oxide layer to form a charge storage electrode having a polysilicon layer pattern.

이하, 첨부된 도면을 참조하여 본 발명에 따른 반도체소자의 제조방법에 대하여 상세히 설명을 하기로 한다. Hereinafter, a method of manufacturing a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

도 1a 내지 도 1g는 본 발명에 따른 반도체소자의 제조 공정도이다. 1A to 1G are manufacturing process diagrams of a semiconductor device according to the present invention.

먼저, 도시되어있지는 않으나, 반도체기판 상에 소자분리산화막을 형성하여 활성영역을 정의하고, MOSFET를 형성한 후, 비트라인 콘택 플러그와 하부 전하저장전극 콘택 플러그를 구비하는 층간절연막(10)을 형성한다. Although not shown, first, an isolation region is formed on a semiconductor substrate to define an active region, a MOSFET is formed, and an interlayer insulating layer 10 having a bit line contact plug and a lower charge storage electrode contact plug is formed. do.

그다음 상기 층간절연막(10)상에 질화막 재질의 하드 마스크인 마스크 절연막 패턴(13)과 중첩되어있는 비트라인(12)을 W 등의 재질로 형성하고, 상기 패턴들의 측벽에 질화막 스페이서(14)를 형성한 후, 상기 비트라인(12)들의 사이에 상부전하저장전극 콘택 플러그(15)를 다결정실리콘재질로 구비하도록 형성한다. Next, a bit line 12 overlapping the mask insulating layer pattern 13, which is a hard mask made of nitride, is formed on the interlayer insulating layer 10, and a bit spacer 12 is formed of a material such as W, and the nitride layer spacer 14 is formed on the sidewalls of the patterns. After the formation, the upper charge storage electrode contact plug 15 is formed between the bit lines 12 to be formed of polycrystalline silicon material.

상기 콘택 플러그(15) 형성 공정은 질화막 스페이서(14) 형성 후에 전면에 다결정실리콘층을 도포하고, 마스크 절연막 패턴(13)을 식각 정지층으로하여 화학-기계적 연마(CMP) 방법으로 다결정실리콘층의 상부를 제거하여 분리시키고, 사진식각 방법으로 전하저장전극과 접촉되는 부분만 남도록 한다. The contact plug 15 may be formed by coating a polysilicon layer on the entire surface of the nitride spacer 14 after forming the nitride film spacer 14, and using the mask insulating layer pattern 13 as an etch stop layer to form a polysilicon layer by chemical-mechanical polishing (CMP). The upper part is removed and separated, and only the part which contacts the charge storage electrode is left by the photolithography method.

다른 방법으로는 질화막 스페이서(14) 형성 후에 전면에 산화막을 형성하고, 전하저장전극 콘택 플러그를 형성할 부분을 패턴닝하여 제거한 후에, 전면에 다결정실리콘층을 도포하고, CMP 방법으로 연마하여 비트라인을 경계로 고립시켜 산화막에 둘러싸인 전하저장전극 콘택 플러그를 형성할 수도 있다. (도 1a 참조). Alternatively, after forming the nitride spacer 14, an oxide film is formed on the entire surface, and after patterning and removing a portion to form the charge storage electrode contact plug, a polysilicon layer is applied on the entire surface and polished by a CMP method to form a bit line. The charge storage electrode contact plug surrounded by the oxide film may be formed by isolating at the boundary. (See FIG. 1A).

그후, 상기 구조의 전표면에 산화막(20)과 질화막(21)을 순차적으로 형성한 후, (도 1b 참조), 다시 상대적으로 두꺼운 희생산화막인 전하저장전극 산화막(22)과 다결정실리콘층(23)을 순차적으로 형성하고, 상기 다결정실리콘층(23)상에 전하저장전극 마스크용 감광막 패턴(24)을 형성한다. 여기서 상기 전하저장전극 산화막(22)은 PSG 나 PE-TEOS막으로 형성한다. (도 1c 참조). Thereafter, after the oxide film 20 and the nitride film 21 are sequentially formed on the entire surface of the structure (see FIG. 1B), the charge storage electrode oxide film 22 and the polysilicon layer 23 which are relatively thick sacrificial oxide films are again formed. ) Is sequentially formed, and a photoresist pattern 24 for a charge storage electrode mask is formed on the polysilicon layer 23. The charge storage electrode oxide layer 22 is formed of a PSG or PE-TEOS layer. (See FIG. 1C).

그다음 상기 감광막 패턴(24)에 의해 노출되어있는 다결정실리콘층(24)에서 질화막(21)까지 식각하여 산화막(20)을 노출시킨 후, 상기 감광막 패턴(24)의 남아 있는 부분을 제거한다. 그러나 상기 남아 있는 감광막 패턴(24)은 후에 산화막(20) 제거 후에 제거할 수도 있다. (도 1d 참조). Next, the oxide film 20 is exposed by etching from the polysilicon layer 24 exposed by the photoresist pattern 24 to the nitride layer 21 to expose the oxide layer 20, and then the remaining portion of the photoresist pattern 24 is removed. However, the remaining photoresist pattern 24 may be removed after the oxide film 20 is removed. (See FIG. 1D).

그후, 상기 다결정실리콘층(24)을 마스크로 노출된 산화막(20)을 제거하여 전하저장전극 콘택 플러그(15)를 노출시키고, (도 1e 참조), 상기 구조의 전표면에 다결정실리콘층(25)을 형성한다. (도 1f 참조). Thereafter, the oxide film 20 exposed as the mask of the polysilicon layer 24 is removed to expose the charge storage electrode contact plug 15 (see FIG. 1E), and the polysilicon layer 25 is formed on the entire surface of the structure. ). (See FIG. 1F).

그다음 상기 전하저장전극 산화막(22) 상의 다결정실리콘층(25),(24)을 CMP 방법으로 제거하여 다결정실리콘층(25) 패턴으로된 전하저장전극을 형성한다. (도 1g 참조). Then, the polysilicon layers 25 and 24 on the charge storage electrode oxide layer 22 are removed by a CMP method to form a charge storage electrode having a polysilicon layer 25 pattern. (See FIG. 1G).

이상에서 설명한 바와 같이 본 발명에 따른 반도체소자의 제조방법은 질화막을 하드마스크로하여 비트라인들을 형성하고, 그 측벽에 스페이서를 형성한 후에 전하저장전극 콘택 플러그를 비트라인 사이에 형성하고, 전면에 산화막-질화막-전하저장전극 산화막-다결정실리콘층을 도포하고 전하저장전극 마스크로 상기 적층막 들을 패턴닝하여 전하저장전극 콘택 플러그를 노출시키는 홈을 형성하고, 다시 다결정실리콘층을 도포하고 여분의 다결정실리콘층을 CMP 방법으로 식각하여 전하저장전극을 정의하였으므로, 전하저장전극 형성 공정이 간단하고 공정여유도가 증가되어 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있는 이점이 있다. As described above, in the method of manufacturing a semiconductor device according to the present invention, bit lines are formed using a nitride film as a hard mask, spacers are formed on the sidewalls, and a charge storage electrode contact plug is formed between the bit lines, Apply oxide-nitride-charge storage electrode oxide-polycrystalline silicon layer and pattern the stacked layers with a charge storage electrode mask to form grooves exposing the charge storage electrode contact plugs, and then apply polycrystalline silicon layer and excess polycrystal Since the charge storage electrode is defined by etching the silicon layer by the CMP method, the process of forming the charge storage electrode is simple and the process margin is increased, thereby improving process yield and reliability of device operation.

Claims (9)

반도체기판상에 형성된 층간절연막상에 마스크 절연막 패턴을 하드 마스크로하여 비트라인을 형성하는 공정과, Forming a bit line on the interlayer insulating film formed on the semiconductor substrate using a mask insulating film pattern as a hard mask; 상기 비트라인과 마스크 절연막 패턴의 측벽에 절연 스페이서를 형성하는 공정과, Forming an insulating spacer on sidewalls of the bit line and the mask insulating film pattern; 상기 비트라인들의 사이에 전하저장전극 콘택 플러그를 형성하는 공정과, Forming a charge storage electrode contact plug between the bit lines; 상기 구조의 전표면에 산화막-질화막-전하저장전극 산화막-다결정실리콘층을 순차적으로 도포하는 공정과, Sequentially applying an oxide film-nitride film-charge storage electrode oxide film-polycrystalline silicon layer to the entire surface of the structure; 상기 다결정실리콘층상에 전하저장전극 마스크인 감광막 패턴을 형성하는 공정과, Forming a photoresist pattern as a charge storage electrode mask on the polysilicon layer; 상기 감광막 패턴에 의해 노출되어있는 다결정실리콘층에서 산화막까지 제거하여 상기 전하저장전극 콘택 플러그를 노출시킨 후, 상기 감광막 패턴을 제거하는 공정과, Removing the photoresist pattern after exposing the charge storage electrode contact plug by removing the oxide film from the polysilicon layer exposed by the photoresist pattern; 상기 구조의 전표면에 다결정실리콘층을 도포하는 공정과, Applying a polysilicon layer to the entire surface of the structure; 상기 전하저장전극 산화막 상부의 다결정실리콘층을 제거하여 다결정실리콘층 패턴으로된 전하저장전극을 형성하는 공정을 구비하는 반도체소자의 제조방법. And removing a polysilicon layer on the charge storage electrode oxide layer to form a charge storage electrode having a polysilicon layer pattern. 제 1 항에 있어서, 상기 마스크 절연막을 질화막으로 형성하는 것을 특징으로 하는 반도체소자의 제조방법. The method of manufacturing a semiconductor device according to claim 1, wherein the mask insulating film is formed of a nitride film. 제 1 항에 있어서, 상기 비트라인을 W 재질로 형성하는 것을 특징으로 하는 반도체소자의 제조방법. The method of claim 1, wherein the bit line is formed of a W material. 제 1 항에 있어서, 상기 스페이서를 질화막으로 형성하는 것을 특징으로 하는 반도체소자의 제조방법. The method of manufacturing a semiconductor device according to claim 1, wherein the spacer is formed of a nitride film. 제 1 항에 있어서, 상기 전하저장전극 콘택 플러그를 다결정실리콘재질로 형성하는 것을 특징으로 하는 반도체소자의 제조방법. The method of claim 1, wherein the charge storage electrode contact plug is formed of a polycrystalline silicon material. 제 1 항에 있어서, 상기 전하저장전극 콘택 플러그를 스페이서 형성 후에 전면에 다결정실리콘층을 도포하고, 마스크 절연막 패턴을 식각 정지층으로하여 CMP 방법으로 다결정실리콘층의 상부를 제거하여 분리시키고, 사진식각 방법으로 전하저장전극과 접촉되는 부분만 남도록 하여 형성하는 것을 특징으로 하는 반도체소자의 제조방법. The method of claim 1, wherein after the formation of the spacer, the polysilicon layer is coated on the entire surface of the charge storage electrode contact plug, the mask insulating layer is used as an etch stop layer, and the upper portion of the polysilicon layer is removed and separated by a CMP method. A method of manufacturing a semiconductor device, characterized in that formed by leaving only the portion in contact with the charge storage electrode by the method. 제 1 항에 있어서, 상기 전하저장전극 콘택 플러그를 스페이서 형성 후에 전면에 산화막을 형성하고, 전하저장전극 콘택 플러그를 형성할 부분을 패턴닝하여 제거한 후에, 전면에 다결정실리콘층을 도포하고, CMP 방법으로 연마하여 비트라인을 경계로 고립시켜 산화막에 둘러싸인 전하저장전극 콘택 플러그를 형성하는 것 을 특징으로 하는 반도체소자의 제조방법. The CMP method of claim 1, wherein an oxide film is formed on the entire surface of the charge storage electrode contact plug after formation of a spacer, and after patterning and removing a portion to form the charge storage electrode contact plug, a polysilicon layer is coated on the entire surface, and a CMP method is used. And forming a charge storage electrode contact plug surrounded by the oxide film by isolating the bit line at the boundary. 제 1 항에 있어서, 상기 전하저장전극 산화막은 희생 산화막으로서 PSG 나 PE-TEOS막으로 형성하는 것을 특징으로 하는 반도체소자의 제조방법. The method of claim 1, wherein the charge storage electrode oxide film is formed of a PSG or PE-TEOS film as a sacrificial oxide film. 제 1 항에 있어서, 상기 전하저장전극 산화막 상의 다결정실리콘층을 CMP 방법으로 제거하는 것을 특징으로 하는 반도체소자의 제조방법. The method of claim 1, wherein the polysilicon layer on the charge storage electrode oxide film is removed by a CMP method.
KR1019990063571A 1999-12-28 1999-12-28 Manufacturing method of semiconductor device KR100546112B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990063571A KR100546112B1 (en) 1999-12-28 1999-12-28 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990063571A KR100546112B1 (en) 1999-12-28 1999-12-28 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
KR20010061087A KR20010061087A (en) 2001-07-07
KR100546112B1 true KR100546112B1 (en) 2006-01-24

Family

ID=19630896

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990063571A KR100546112B1 (en) 1999-12-28 1999-12-28 Manufacturing method of semiconductor device

Country Status (1)

Country Link
KR (1) KR100546112B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910868B1 (en) * 2002-12-26 2009-08-06 주식회사 하이닉스반도체 Method for fabrication of semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940004825A (en) * 1992-08-25 1994-03-16 문정환 DRAM Cell Manufacturing Method
KR19980020386A (en) * 1996-09-09 1998-06-25 김주용 Capacitor Formation Method of Semiconductor Device
JPH1145983A (en) * 1997-05-06 1999-02-16 Natl Sci Council Manufacture of dram capacitor by utilizing chemical mechanical polishing method
KR19990084959A (en) * 1998-05-12 1999-12-06 윤종용 How to form a conductive pad

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940004825A (en) * 1992-08-25 1994-03-16 문정환 DRAM Cell Manufacturing Method
KR19980020386A (en) * 1996-09-09 1998-06-25 김주용 Capacitor Formation Method of Semiconductor Device
JPH1145983A (en) * 1997-05-06 1999-02-16 Natl Sci Council Manufacture of dram capacitor by utilizing chemical mechanical polishing method
KR19990084959A (en) * 1998-05-12 1999-12-06 윤종용 How to form a conductive pad

Also Published As

Publication number Publication date
KR20010061087A (en) 2001-07-07

Similar Documents

Publication Publication Date Title
US5677221A (en) Method of manufacture DRAM capacitor with reduced layout area
KR100327123B1 (en) A method of fabricating dram cell capacitor
KR20040078828A (en) Method for forming capacitor in semiconductor device
US6403431B1 (en) Method of forming in an insulating layer a trench that exceeds the photolithographic resolution limits
KR100546112B1 (en) Manufacturing method of semiconductor device
KR100282431B1 (en) Method for forming capacitor of semiconductor device the same
KR100305024B1 (en) Manufacturing method of semiconductor device
KR100764336B1 (en) storage node of semiconductor device and manufacturing method using the same
KR100583640B1 (en) Method for fabricating of dram cell capacitor
KR20010059014A (en) Manufacturing method of semiconductor device
KR100546162B1 (en) Manufacturing method of semiconductor device
KR100341248B1 (en) Forming method for storge node of semiconductor device
KR100609558B1 (en) Manufacturing method of capacitor of semiconductor device
KR960013644B1 (en) Capacitor manufacture method
KR20000042489A (en) Method for making storage electrode of semiconductor device
KR100232205B1 (en) Semiconductor memory and its fabrication method
KR100390846B1 (en) Method for fabricating semiconductor device
KR19990076063A (en) Manufacturing method of DRAM cell capacitor
KR0146238B1 (en) Method for manufacturing electric charge conservation electrode of semiconductor
KR0154152B1 (en) Stack capacitor fabrication method of semiconductor device
KR100287165B1 (en) Method for fabricating capacitor of semiconductor memory device
KR19990003042A (en) Capacitor Formation Method of Semiconductor Device
KR20040002277A (en) Manufacturing method storage node of semiconductor device
KR20000045447A (en) Fabrication method of capacitor for semiconductor device
KR20020043959A (en) A method for manufacturing a capacitor of a semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101224

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee