KR100519089B1 - Preparation and Compositions of Mixed Fruit and Vegetable Juices According to Ultrafiltration Conditions - Google Patents
Preparation and Compositions of Mixed Fruit and Vegetable Juices According to Ultrafiltration Conditions Download PDFInfo
- Publication number
- KR100519089B1 KR100519089B1 KR10-2003-0001366A KR20030001366A KR100519089B1 KR 100519089 B1 KR100519089 B1 KR 100519089B1 KR 20030001366 A KR20030001366 A KR 20030001366A KR 100519089 B1 KR100519089 B1 KR 100519089B1
- Authority
- KR
- South Korea
- Prior art keywords
- fruit
- juice
- temperature
- pressure
- permeate
- Prior art date
Links
- 235000011389 fruit/vegetable juice Nutrition 0.000 title claims abstract description 48
- 238000000108 ultra-filtration Methods 0.000 title claims abstract description 25
- 235000012055 fruits and vegetables Nutrition 0.000 title claims abstract description 24
- 239000000203 mixture Substances 0.000 title claims description 14
- 238000002360 preparation method Methods 0.000 title description 3
- 238000002156 mixing Methods 0.000 claims abstract description 32
- 235000013399 edible fruits Nutrition 0.000 claims abstract description 19
- 238000011045 prefiltration Methods 0.000 claims abstract description 6
- 238000005406 washing Methods 0.000 claims abstract description 6
- 239000003963 antioxidant agent Substances 0.000 claims abstract description 5
- 238000002845 discoloration Methods 0.000 claims abstract description 5
- 239000006228 supernatant Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 43
- 230000008569 process Effects 0.000 claims description 36
- 235000015203 fruit juice Nutrition 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 abstract description 5
- 230000003078 antioxidant effect Effects 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 239000012466 permeate Substances 0.000 description 44
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 35
- 241000220225 Malus Species 0.000 description 34
- 230000008859 change Effects 0.000 description 33
- 244000000626 Daucus carota Species 0.000 description 31
- 235000002767 Daucus carota Nutrition 0.000 description 31
- 230000007717 exclusion Effects 0.000 description 26
- 239000012528 membrane Substances 0.000 description 24
- 230000004907 flux Effects 0.000 description 20
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 17
- 229930003268 Vitamin C Natural products 0.000 description 17
- 235000019154 vitamin C Nutrition 0.000 description 17
- 239000011718 vitamin C Substances 0.000 description 17
- 235000000346 sugar Nutrition 0.000 description 16
- 238000005352 clarification Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 235000021016 apples Nutrition 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 235000013305 food Nutrition 0.000 description 11
- 239000007787 solid Substances 0.000 description 10
- 230000004044 response Effects 0.000 description 9
- 235000013311 vegetables Nutrition 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000000926 separation method Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 235000019629 palatability Nutrition 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 3
- 235000013361 beverage Nutrition 0.000 description 3
- 235000021466 carotenoid Nutrition 0.000 description 3
- 150000001747 carotenoids Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000207199 Citrus Species 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000001054 red pigment Substances 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000005211 surface analysis Methods 0.000 description 2
- 235000015192 vegetable juice Nutrition 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- HORQAOAYAYGIBM-UHFFFAOYSA-N 2,4-dinitrophenylhydrazine Chemical compound NNC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O HORQAOAYAYGIBM-UHFFFAOYSA-N 0.000 description 1
- CIWBSHSKHKDKBQ-SZSCBOSDSA-N 2-[(1s)-1,2-dihydroxyethyl]-3,4-dihydroxy-2h-furan-5-one Chemical compound OC[C@H](O)C1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-SZSCBOSDSA-N 0.000 description 1
- 241001310494 Ammodytes marinus Species 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 101100216185 Oryza sativa subsp. japonica AP25 gene Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 206010033546 Pallor Diseases 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 244000126002 Ziziphus vulgaris Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000015197 apple juice Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000014171 carbonated beverage Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 235000019987 cider Nutrition 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 235000021121 fermented vegetables Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 235000021022 fresh fruits Nutrition 0.000 description 1
- 235000013569 fruit product Nutrition 0.000 description 1
- 235000019990 fruit wine Nutrition 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 235000019674 grape juice Nutrition 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 235000013402 health food Nutrition 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 235000021581 juice product Nutrition 0.000 description 1
- 235000021056 liquid food Nutrition 0.000 description 1
- 238000009285 membrane fouling Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 235000013324 preserved food Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 235000011496 sports drink Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 235000014101 wine Nutrition 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2200/00—Function of food ingredients
- A23V2200/02—Antioxidant
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Non-Alcoholic Beverages (AREA)
Abstract
본 발명은 과일과 채소를 수세 정선하여 데치기를 실시한 후 녹즙기로 마쇄·착즙하여 여과한 시료에 항산화제를 1 L당 2 g 가하여 변색을 방지하는 단계; 상기 마쇄된 쥬스를 원심분리하여 상등액을 취하고 예비여과하는 단계; 예비여과과정이 끝난 과일과 채소의 비율을 과일을 기준으로 25 내지 75(v/v%)로 혼합하고 상기 혼합액을 온도 15 내지 45℃, 압력 100∼200 kPa에서 한외여과하는 단계로 이루어진 것이다.The present invention comprises the steps of washing the fruit and vegetables washed with water, and then crushed and juiced with a juicer to add 2 g of antioxidant to the filtered sample to prevent discoloration; Centrifuging the ground juice to take a supernatant and prefilter; The pre-filtering ratio of the fruit and vegetables is completed by mixing 25 to 75 (v / v%) based on the fruit and ultrafiltration at a temperature of 15 to 45 ℃, pressure 100 ~ 200 kPa.
Description
본 발명은 과일과 채소를 한외여과하여 혼합쥬스의 당도, 탁도 및 비타민 C함량이 최대값에서의 공정범위로 제조하기 위한 것이다. 더욱 상세하게는 본 발명은 과일과 채소를 수세 정선하여 데치기를 실시한 후 녹즙기로 마쇄·착즙하여 여과한 시료에 항산화제를 1 L당 2 g 가하여 변색을 방지하는 단계; 상기 마쇄된 쥬스를 원심분리하여 상등액을 취하고 예비여과하는 단계; 예비여과과정이 끝난 과일과 채소의 비율을 과일을 기준으로 25 내지 75(v/v%)로 혼합하고 상기 혼합액을 온도 15 내지 45℃, 압력 100 내지 200 kPa에서 한외여과하는 단계로 이루어진 것이다. The present invention is to ultra-filtration of fruits and vegetables to prepare the sugar, turbidity and vitamin C content of the mixed juice in the process range at the maximum value. More specifically, the present invention comprises washing and crushing fruits and vegetables, washing and crushing with a juicer, adding 2 g of antioxidant to 1 L of filtered sample to prevent discoloration; Centrifuging the ground juice to take a supernatant and prefilter; The pre-filtering ratio of the fruit and vegetables is completed at 25 to 75 (v / v%) based on the fruit mixture and the mixture is ultrafiltration at a temperature of 15 to 45 ℃, pressure 100 to 200 kPa.
본 발명은 고차가공과 품질개선에 우수한 막분리 기술을 쥬스에 적용하여 쥬스의 온도, 압력, 혼합비율에 따른 색도, 투과플럭스 및 일반성분의 변화를 측정하여 제품의 기호성을 높이고 막분리 공정의 효율성을 극대화하기 위한 것이다.The present invention measures the change in chromaticity, permeate flux and general composition of juice according to temperature, pressure and mixing ratio of juice to improve the palatability of the product and the efficiency of membrane separation process. Is to maximize.
국내에서 과실을 가공하여 음료 상품으로 만든 역사는 60년대 후반기이며 70, 80년대 들어서면서 과실음료에 대한 소비가 증가함에 따라 과실가공 사업의 중요성이 크게 대두되었다[참조: Eun, D. W. and Choi, Y. H. : Physical properties of the factors afecting the evaporation process of fruit juices. Korean J. Food Sci. Technol., 23, 605-609 (1991)].The history of making fruit products by processing fruits in Korea was in the late 60s, and as the consumption of fruit drinks increased in the 70s and 80s, the importance of the fruit processing business emerged. [Eun, DW and Choi, YH : Physical properties of the factors afecting the evaporation process of fruit juices. Korean J. Food Sci. Technol. , 23 , 605-609 (1991).
우리나라의 음료시장은 최근 급격히 다양해지면서 과거 음료시장의 주종을 이루던 사이다와 콜라 등 탄산음료의 성장은 점차 둔화 또는 감소되는 경향을 보이고 있는 반면, 건강 지향적 기능성 음료인 스포츠 음료나 과일이나 채소를 함유한 음료 또는 특정 영양성분을 강화한 음료시장은 눈에 띄게 성장하고 있다[참조: Lee, J. H. and Seog-Lee, E, J. : Studies on the quality changes of mixed fruit and vegetable juices as influenced by processing conditions during storage. Korean J. postharvest Sci. Technol., 5, 41-47 (1998)].As Korea's beverage market has recently diversified rapidly, the growth of carbonated beverages such as cider and cola, which used to be the mainstay of the beverage market, has tended to slow down or decrease, while sports drinks or fruits or vegetables containing health-oriented functional drinks Lee, JH and Seog-Lee, E, J .: Studies on the quality changes of mixed fruit and vegetable juices as influenced by processing conditions during storage . Korean J. postharvest Sci. Technol. , 5 , 41-47 (1998).
우리나라에서 소비되고 있는 과채류의 이용현황은 과일류의 경우 대부분 생과일 형태로 이용되고 있으며 일부분만이 통조림, 쥬스, 건조품으로 가공되어 상품화되고 있다. 채소류도 쥬스의 형태로 일부 제품화 되고 있는데 종류는 유기산으로 산성화시킨 쥬스, 발효 채소를 이용한 고산성쥬스, 가열처리하지 않은 중성쥬스, 고온살균시킨 쥬스 등으로 구분된다[참조: Lee, K. H., Choi, H. S. and Kim, W. H. : Effect of several factors on the characteristics of six-vegetable and fruit juice. Korean J. food Sci. Technol., 27, 439-444 (1995)]. 이러한 과실과 채소는 비타민, 미네랄, 섬유소, 효소 그 밖의 약리성분들을 다량으로 함유하고 있기 때문에 건강식품으로 중요시 되고 있으며 과실과 채소의 즙액은 장에 부담을 적게 주고 다량의 유효성분을 섭취할 수 있는 잇점을 가지고 있다. 특히 한 종류의 즙액만을 단독으로 섭취하는 것보다 몇가지의 채소나 과실즙을 혼합하여 섭취할 경우 효과가 큰 것으로 알려져 있다[참조: Kim, S. Y., Yoon, Y. B. and Choi, E. H. : Change in quality of mixed juice of fruits and vegetables by aseptic treatment and packing with nitrogen gas during storage. Korean J. Food Sci. Technol., 32, 1271-1277 (2000)]. 그러나, 재래적인 쥬스의 청징화 공정은 화학약품의 소비, 가열에 의한 영양성분의 파괴, 처리시간의 과다소비로 생산성 및 생산비의 상승을 가져오므로, 비용절감, 품질 개선 등을 위해 새로운 쥬스제조 방법의 개발이 절실하다.The use of fruits and vegetables consumed in Korea is mostly used in the form of fresh fruits, and only a part is processed into canned food, juice, and dried products. Vegetables are also partly commercialized in the form of juices, which are classified into juices acidified with organic acids, high acid juices using fermented vegetables, neutral juices without heat treatment, and juices sterilized at high temperature [Lee, KH, Choi, HS and Kim, WH: Effect of several factors on the characteristics of six-vegetable and fruit juice. Korean J. food Sci. Technol ., 27, 439-444 (1995). These fruits and vegetables are important as health foods because they contain a large amount of vitamins, minerals, fiber, enzymes and other pharmacological ingredients. Fruit and vegetable juices can reduce the intestinal burden and consume large amounts of active ingredients. It has an advantage. In particular, it is known that the effects of mixing several vegetables or fruit juices are greater than consuming only one type of juice solution [Kim, SY, Yoon, YB and Choi, EH: Change in quality of mixed juice of fruits and vegetables by aseptic treatment and packing with nitrogen gas during storage. Korean J. Food Sci. Technol ., 32 , 1271-1277 (2000)]. However, the conventional juice clarification process increases the productivity and production cost due to the consumption of chemicals, the destruction of nutrients by heating, and the excessive consumption of processing time, thus producing new juices for cost reduction and quality improvement. Development of the method is urgently needed.
현재 식품산업에서 열처리 방법의 새로운 대안책으로 관심을 모으고 있는 기술중의 하나인 막분리 기술 중 한외여과법은 식료의 청징화, 배제용질의 농축, 용질의 분회화를 주목적으로 과일쥬스 및 와인 등의 청징, 폐수 중 유효성분의 회수, 효소의 정제 등 여러 분야에 응용되고 있다[참조: Kang, H. A., Cang, K. S., Min, Y. K. and Choi, Y. H. : Value addition of Jujube wine using micrefiltration and ultrafiltraion. Korean J. Food Sci. Technol., 30, 1146-1151 (1998)]. 또한, 막분리 공정은 상변화 없이 조작이 가능하므로 이화학적 성질의 변화가 거의 없고, 에너지를 절감할 수 있으며, 가열에 의한 가열취, 색소 분해, 갈변이 일어나지 않고, 향미의 변화가 거의 없으며 미생물에 대한 안정성도 매우 커서 쥬스의 보존성을 높여준다.Membrane separation technology, one of the technologies currently attracting attention as a new alternative to the heat treatment method in the food industry, is the filtration of fruit juices and wines with the main purpose of clarification of food, concentration of exclusion solutes and fractionation of solutes. , Recovery of active ingredients in wastewater, purification of enzymes, etc. [Kang, HA, Cang, KS, Min, YK and Choi, YH: Value addition of Jujube wine using micrefiltration and ultrafiltraion. Korean J. Food Sci. Technol ., 30 , 1146-1151 (1998). In addition, since the membrane separation process can be operated without phase change, there is almost no change in physicochemical properties, energy can be saved, heating odor, no pigment decomposition, browning due to heating, almost no change in flavor, and no microbe. The stability of the is so great that it increases the preservation of juice.
따라서 국내의 생산량이 많은 과실 및 채소를 이용하여 고품질의 쥬스 제조를 위한 가공 공정의 최적화는 시급한 연구 과제이며, 더욱이 소비자들의 기호가 갈수록 고급화 다양화되는 것에 발맞추어 고차 가공된 우수한 품질의 청징쥬스 최적가공공정 조건을 수립하고 다양한 청징 기법을 도입해 비교·분석할 필요성이 있다. 또한 최근 농산물의 부가가치 향상을 위한 노력이 다각도로 진행되고 있으며 세계시장에서 경쟁력을 갖추기 위해서는 기능성의 부여나 품질고급화를 위한 노력이 시급하다. 또한 최근 각광을 받고 있는 퓨전 음료시장의 성장에 발맞추어 혼합과채쥬스의 품질고급화가 이루어진다면 첨단기술 활용을 통한 국산 농산물의 부가가치를 증대시킬 뿐만 아니라 농산물 가공기술 및 생산제품 품질향상에 의한 국제 경쟁력을 제고하고 과실의 가공이용률을 2배 이상 높여 과수재배 농가의 소득증대를 이룰 수 있다. 또한 저이용 과실의 고급화로 농업 생산성을 증대시키고 국산 과실류의 부가가치 및 소비를 창출하여 결과적으로 농가·기업 그리고 소비자 모두에게 이로울 것이다.Therefore, the optimization of the processing process for the production of high quality juice using domestically produced fruits and vegetables is an urgent research task. Furthermore, in order to keep up with the diversification of consumers' preferences, the optimization of high quality clarified juice There is a need to establish processing process conditions and introduce various clarification techniques for comparison and analysis. In addition, efforts to improve the added value of agricultural products have been made in various ways in recent years, and in order to be competitive in the global market, it is urgent to provide functionality and quality enhancement. In addition, if the quality of mixed fruit and vegetable juices is enhanced in line with the recent growth of the fusion beverage market, it will not only increase the added value of domestic agricultural products through the use of cutting-edge technology, but also enhance the international competitiveness by improving the processing technology of agricultural products and the quality of produced products. Increasing the processing utilization rate of fruits by more than double, can increase the income of fruit-growing farmers. In addition, the high-quality of low-use fruits will increase agricultural productivity, create added value and consumption of domestic fruits, and consequently benefit farmers, enterprises and consumers.
본 발명은 사과·당근의 혼합과채 쥬스를 막분리하는 경우 혼합 비율, 온도, 압력에 따른 변화를 측정하기 위하여 사과·당근의 혼합비율을 25:75, 50:50, 75:25%로 달리하고, 온도를 5℃, 25℃, 45℃로, 압력을 100 kPa, 150 kPa, 200 kPa로 각각 변화시켜서 분획분자량(molecular weight cut-off)이 10.000 달톤(Dalton)인 막을 사용하여 30분 동안 480 rpm에서 막분리하여, 상기 투과액과 배제액을 대상으로 색도, 투과플럭스, 당도, 총당, 비타민 C, 탁도 및 점도를 측정한 것이다. In the present invention, in order to measure the change according to the mixing ratio, temperature, and pressure when the mixed fruit juice of apple and carrot is separated, the mixing ratio of apple and carrot is changed to 25:75, 50:50, and 75: 25%. 480 minutes for 30 minutes using a membrane having a molecular weight cut-off of 10.000 Daltons by varying the temperature at 5 ° C, 25 ° C, 45 ° C and the pressure at 100 kPa, 150 kPa, 200 kPa, respectively. The membrane was separated at rpm, and the permeate and the exclusion solution were measured for chromaticity, permeate flux, sugar content, total sugar, vitamin C, turbidity and viscosity.
본 발명은 사과의 비율이 높고 온도와 압력이 높을 때 플럭스(Flux)량이 늘어났으며 밝기를 나타내는 L*값은 투과액의 경우 배제액보다 높아졌고 온도가 증가함에 따라 L*값이 증가하다가 감소하였고, 배제액의 경우 투과액보다 낮아졌으며 같은 압력일 경우 온도에 따른 변화는 거의 없었다. 적색도를 나타내는 a*(redness, 적색도) 값은 투과액의 경우 혼합비율이 75:25%일 때 온도에 따른 변화가 컸으며 배제액의 경우 a*값이 (-)로 녹색에 가까웠으나 막분리 후 (+)값을 나타내 적색에 가까워 졌다. 황색도를 나타내는 b*(yellowness, 황색도) 값은 투과액의 경우 배제액 보다 낮아졌으나, 배제액의 경우 혼합비율이 3:1인 경우를 제외하고 투과액 보다 높아지는 경향을 보였다. 투과플럭스의 경우 시간이 경과함에 따라 감소하다가 일정하게 유지되었다. 당도의 경우 높은 온도에서 보다 낮은 온도에서의 막분리 시 투과액의 당도가 배제액보다 낮아졌으며, 압력에 따른 변화는 거의 없었다. 총당은 온도의 증가에 비례하여 급격히 증가하는 경향을 보였으나 시간이 경과 후 감소하는 경향을 나타냈으며, 비타민 C의 경우 온도가 낮고 압력이 높을 때 증가하였으나 그 변화폭은 미미하였다. 탁도는 투과액의 경우 낮은 온도에서 압력의 영향을 받지 않았으나 높은 온도에서는 압력이 높을수록 탁도가 높아졌으며 사과의 비율이 50%일 때 높게 측정되었고 75%일 때 낮게 나타났다. 배제액에서는 온도와 압력이 낮을 때 탁도가 낮아지는 것으로 관찰되었다. 점도는 전체적으로 높은 온도와 압력에 큰 변화를 나타내었다.In the present invention, when the ratio of apples is high and the temperature and pressure are high, the flux is increased, and the L * value representing the brightness is higher than the exclusion liquid in the case of permeate, and the L * value increases and decreases with increasing temperature. In the case of the exclusion solution, the permeate solution was lower than that of the permeate solution. The a * (redness) value, which represents redness, was significantly changed with temperature when the mixing ratio was 75: 25% in the case of permeate, and the a * value was negative (-) in the case of the exclusion solution. After separation, it showed a positive value and became red. The b * (yellowness) value, which indicates yellowness, was lower than that of the permeate, but was higher than that of the permeate except for the mixing ratio of 3: 1. In the case of permeate flux, it decreased over time and remained constant. The sugar content of the permeate was lower than that of the exclusion solution when the membrane was separated at a higher temperature and at a lower temperature, and there was little change in pressure. Total sugar tended to increase rapidly in proportion to the increase in temperature, but decreased over time. Vitamin C increased with low temperature and high pressure, but the change was small. Turbidity was not affected by pressure at low temperatures for permeate, but at higher temperatures, turbidity was increased, measured higher at 50% of apples, and lower at 75%. The turbidity was observed to be low when the temperature and pressure were low in the exclusion solution. Viscosity showed a big change in high temperature and pressure as a whole.
본 발명은 고차가공과 품질개선에 우수한 막분리 기술을 쥬스에 적용함에 있어 쥬스의 온도, 압력, 혼합비율에 따른 색도, 투과플럭스 및 일반성분의 변화를 측정하여 제품의 기호성을 높이고 막분리 공정의 효율성을 극대화하기 위한 것이다. The present invention measures the change in chromaticity, permeate flux and general composition according to the temperature, pressure, and mixing ratio of juice to improve the palatability of the product in the process of applying the membrane separation technology to higher order processing and quality improvement. It is to maximize efficiency.
본 발명은 과일과 채소를 수세 정선하여 데치기를 실시한 후 녹즙기로 마쇄·착즙하여 여과한 시료에 항산화제를 1 L당 2 g 가하여 변색을 방지하는 단계; 상기 마쇄된 쥬스를 원심분리하여 상등액을 취하고 예비여과하는 단계; 예비여과과정이 끝난 과일과 채소의 비율을 과일을 기준으로 25 내지 75(v/v%)로 혼합하고 상기 혼합액을 온도 15 내지 45℃, 압력 100∼200 kPa에서 한외여과하는 단계로 이루어진다.The present invention comprises the steps of washing the fruit and vegetables washed with water, and then crushed and juiced with a juicer to add 2 g of antioxidant to the filtered sample to prevent discoloration; Centrifuging the ground juice to take a supernatant and prefilter; The pre-filtration is completed, the ratio of fruit and vegetables is mixed to 25 to 75 (v / v%) based on the fruit and the mixture is ultrafiltration at a temperature of 15 to 45 ℃, pressure 100 ~ 200 kPa.
실험예 1: 쥬스의 제조Experimental Example 1 Preparation of Juice
본 실험에 사용된 사과는 경북 영천 지역에서 수확한 부사 품종을 사용하였으며, 당근은 경북 선산 지역에서 수확한 것을 사용하였다. 각 시료는 수세과정을 거쳐 사과와 당근은 박피하지 않고 일정한 크기로 절단후 실험을 실시하였다. 구체적인 실험순서는 도 1에서 나타낸 바와 같이 각각의 사과·당근을 수세 정선한 다음 녹즙기(Model DO-9001, Dongaosca, Co., Korea)로 마쇄·착즙하였다. 마쇄하기 전에 당근의 경우는 원료의 박피를 수월하게 하고, 외피의 점착물과 왁스질을 제거하고, 원료를 수축시켜 담기에 수월토록 하며, 조직이 연약한 것을 강하게 하고 산화효소 불활성화 및 용액의 혼탁을 방지하기 위해 80℃에서 30초간 데치기(blanching)를 실시하였다. 200 매쉬 나일론포로 여과과정을 거친 시료에 항산화제(L(+)-ascorbic acid)를 1 L당 2 g을 가하여 변색을 방지하였다. 마쇄된 쥬스를 4℃, 10,000 rpm, 15 min 원심분리하였고 상등액을 취하여 AP25 필터를 이용하여 예비여과(prefiltration)를 하였다. 예비여과과정이 끝난 사과와 당근의 비율을 사과를 기준으로 25, 50 및 75%의 비율(v/v%)로 혼합하여 한외여과하였다.Apples used in this experiment were used as adverb varieties harvested from Yeongcheon, Gyeongbuk, and carrots were harvested from Sunsan, Gyeongbuk. Each sample was washed with water and apples and carrots were peeled to a constant size, and then experimented. As shown in FIG. 1, each apple / carrot was washed with water and then crushed and juiced with a green juice (Model DO-9001, Dongaosca, Co., Korea) as shown in FIG. 1. Before grinding, carrots facilitate the peeling of raw materials, remove the sticky and waxy material of the outer skin, shrink the raw materials to make them easier to contain, strengthen the soft tissues, inactivate oxidase and turbidity of the solution. Blanching was carried out for 30 seconds at 80 ℃ to prevent. Discoloration was prevented by adding 2 g of antioxidant (L (+)-ascorbic acid) to 1 L of the sample filtered through 200-mesh nylon cloth. The ground juice was centrifuged at 4 ° C., 10,000 rpm, 15 min, and the supernatant was taken out and prefiltered using an AP25 filter. After filtration, the ratio of apples and carrots was ultrafiltered by mixing 25, 50, and 75% apples (v / v%).
실험예 2: 한외여과 Experimental Example 2: Ultrafiltration
한외여과를 이용한 혼합과채쥬스의 청징에 10 K Dalton의 분획분자량(molecular weight cut-off, MWCO)으로 유효막면적이 2.4 ㎡를 가지는 폴리설폰(polysulfone) 재질의 막(Model high flux biomax polysulfone membrane, Millipore, U.S.A.)을 사용하여 막분리장치(Model 7523-20, Barnut Co., U.S.A)에 이용하였으며, 공정조건은 처리압력의 경우 100 kPa, 150 kPa 및 200 kPa이 되게 하였으며, 온도의 경우 5℃, 25℃ 및 45℃, 사과와 당근의 혼합비율을 사과를 기준으로 25, 50 및 75% (v/v%)로 하였고, 30분동안 480 rpm에서 막분리하여 투과액과 배제액을 대상으로 각 성분을 측정하였다. 10 K Dalton's molecular weight cut-off (MWCO) for the clarification of mixed fruit juice using ultrafiltration (Model high flux biomax polysulfone membrane, which has an effective membrane area of 2.4 m2) Millipore, USA) was used for the membrane separator (Model 7523-20, Barnut Co., USA), the process conditions were 100 kPa, 150 kPa and 200 kPa for the processing pressure, 5 ℃ for the temperature , 25 ℃ and 45 ℃, the mixing ratio of apple and carrot was 25, 50 and 75% (v / v%) based on the apple, the membrane was separated at 480 rpm for 30 minutes to the permeate and the exclusion solution Each component was measured.
실험예3: 색도 측정Experimental Example 3: Chromaticity Measurement
색도는 색차계(Model CR-200, Minolta Co., Japan)를 이용하여 L* (lightness, 명도), a* (redness, 적색도), b* (yellowness, 황색도), chroma (채도), Hue angle (색조)값을 각각 3회 반복 측정하고 아래식을 이용하여 초기 시료과의 색도차(△E)를 나타내었다[참조: A.O.A.C.: Official Methods of Analysis, 15th ed. Association Analytical Chemists, Washington, D.C. (1990)].Chromaticity is measured using the color difference meter (Model CR-200, Minolta Co., Japan) using L * (lightness), a * (redness), b * (yellowness), chroma (saturation), Hue angle (hue) values were measured three times each, and the chromaticity difference (ΔE) with the initial sample was expressed using the following equation (AOAC: Official Methods of Analysis, 15th ed. Association Analytical Chemists, Washington, DC (1990)].
실험예4: 투과플럭스, 가용성 고형성분, 전체 당의 측정Experimental Example 4 Measurement of Permeate Flux, Soluble Solid Components and Total Sugar
투과플럭스는 사용한 유효막면적에 시간 당 투과량으로 산출하였으며, 가용성 고형분의 함량은 일정량의 시료를 취하여 굴절당도계(Model Type 1, Atago Co., Japan)로 3회 반복 후 가용성 고형분의 함량을 측정하고 oBix로 표시하였다. 총당은 페놀-황산(phenol-H2SO4)법에 의한 전당의 정량을 하였는데, 시료 1 mL를 취해 5% 페놀 1 mL를 가한 다음 H2SO4를 5 mL 가하여 상온에서 20분간 반응 냉각 후 480 mn에서 3회 반복하여 측정하였다[참조: A.O.A.C.: Official Methods of Analysis, 15th ed. Association Analytical Chemists, Washington, D.C. (1990)].The permeate flux was calculated as the amount of permeation per hour to the effective membrane area used, and the content of soluble solids was measured by taking a certain amount of sample and repeating it three times with a refractometer (Model Type 1, Atago Co., Japan). o Bix. Total sugar was determined by phenol-H 2 SO 4 method. 1 mL of sample was taken, 1 mL of 5% phenol was added, 5 mL of H 2 SO 4 was added, and the reaction was cooled at room temperature for 20 minutes. Three replicates were measured at 480 mn [AOAC: Official Methods of Analysis, 15 th ed. Association Analytical Chemists, Washington, DC (1990)].
실험예5: 비타민 C, 탁도 및 점도 측정Experimental Example 5: Measurement of Vitamin C, Turbidity and Viscosity
비타민 C는 2, 4-디니트로페닐히드라진 비색법을 통해 분광광도계(Model UV-1201 PC, Shimadzu Co., Japan)을 사용하여 540 nm에서 3회 반복하여 흡광도를 측정하였으며, 탁도는 시료 3 mL를 취하여 분광광도계(Model UV-1201 PC, Shimadzu Co., Japan)를 사용하여 660 nm에서 3회 반복 측정하였다. Vitamin C was absorbed at 540 nm three times using a spectrophotometer (Model UV-1201 PC, Shimadzu Co., Japan) using 2, 4-dinitrophenylhydrazine colorimetric method. Was taken and repeated measurements were repeated three times at 660 nm using a spectrophotometer (Model UV-1201 PC, Shimadzu Co., Japan).
실험예6: 반응표면분석 및 실험설계Experimental Example 6: Response Surface Analysis and Experimental Design
반응표면분석법을 이용하여 쥬스청징의 최적화를 이루기 위하여 이차식 형태의 반응모형을 얻을 수 있도록 중심합성계획법(central composite experiment design)을 사용하였으며, 반응표면 회귀분석을 위해 SAS(statistical analysis system) 프로그램을 사용하였다. 중심합성계획은 표 1에 표시하였다.In order to optimize juice clarification by using response surface analysis, we used a central composite experiment design to obtain a quadratic response model and a SAS (statistical analysis system) program for response surface regression analysis. Used. The central synthesis plan is shown in Table 1.
3개의 요인(독립)변수를 처리온도 3수준(x 1 ; 5, 25 and 45℃), 처리압력 3수준(x 2 ;100, 150 and 200 kPa), 처리혼합비율 3수준(x 3 ; 25, 50 and 75%)으로 다음의 모델식에 최소자승법을 적용하여 계산하였다.Three factor (independent) variables were treated at three levels of processing temperature ( x 1 ; 5, 25 and 45 ° C), three levels of processing pressure ( x 2 ; 100, 150 and 200 kPa), and three levels of mixing ratio ( x 3 ; 25). , 50 and 75%) were calculated by applying the least-squares method to the following equation.
여기서, Y는 답(response)이고, x i,j 는 코드화된(coded) 독립변수들이며 beta_0, ~ beta_i, ~ beta_ii, 및 beta_ij는 회귀계수들이다.Where Y is the answer, x i, j are the coded independent variables and beta_0, ~ beta_i, ~ beta_ii, and beta_ij are the regression coefficients.
액상식품의 색도는 소비자의 구매욕구를 자극하므로 매우 중요한 성분이라고 할 수 있다[참조: Youn, K. S., Kim, H. D. and Choi, Y. H. : Clarification of apple vinegar by ultrafiltration and flux characteristics. J. Korean Soc. Agric. Chem. Bioechnol., 43, 24-28 (2000)]. 따라서 한외여과에 의한 색도변화는 도 2 내지 7에 나타내었다.The color of liquid foods is a very important ingredient because it stimulates consumer's desire to buy [Ref. Youn, KS, Kim, HD and Choi, YH: Clarification of apple vinegar by ultrafiltration and flux characteristics. J. Korean Soc. Agric. Chem. Bioechnol., 43, 24-28 (2000)]. Therefore, chromaticity change due to ultrafiltration is shown in FIGS. 2 to 7.
한외여과의 공정변수별 색도의 변화를 투과액과 배제액에 따라 살펴보면, L* 값의 경우 투과액에서는 온도가 증가함에 따라 밝기가 증가하다가 감소하였으며, 압력이 증가함에 따라 감소하다가 증가하는 경향을 보였고 배제액은 온도에 따른 변화는 거의 없었으나 압력에 따른 변화는 컸으며, 낮은 압력에서 높게 나타났다. 전체적으로 한외여과 과정을 거치면서 막을 통과한 투과액의 경우 혼탁물인 부유물의 제거로 밝기가 증가하여 배제액에 비해 크게 L*값이 개선되는 결과를 나타내었다.The change in chromaticity of the ultrafiltration process by the permeate and the exclusion solution showed that the L * value of the permeate increased and decreased with increasing temperature, and then decreased with increasing pressure. The exclusion solution showed little change with temperature, but the change with pressure was large, and high at low pressure. Overall, the permeate that passed through the membrane during the ultrafiltration process increased the brightness due to the removal of the suspended solids, resulting in a significantly improved L * value compared to the exclusion solution.
a*값은 투과액의 경우 압력에 따른 변화는 거의 없으나 온도에 따른 변화가 컸으며, 배제액의 경우 낮은 압력에서는 온도가 증가함에 따라 증가하나 높은 압력에서는 온도에 따른 변화가 거의 없었다. 전체적으로 a*값은 낮은 압력과 높은 온도에 의해 변화의 폭이 크게 나타나 온도의 영향에 민감한 것으로 나타났다. 이는 김 등[참조: Kim, K. T., Kim, S. S., Choi, H. D., Hong, H. D. and Lee, Y. T. : Changes in chemical compositions of fruit-vegetable mixed juice sterilized at various conditions during storage. Korean J. Food & nutr., 9, 314-318 (1996)]의 처리온도가 높을수록 색도의 변화가 크게 나타난다는 연구과 유사한 결과를 얻을 수 있었다. 또한 투과액보다 배제액에서 적색도가 크게 높게 측정되었는데 이는 한외여과 장치를 운전하면서 녹색 계열의 수용성 색소들이 막을 통과하여 상대적으로 적색 계열 색소가 증가하며, 청징화 과정 중 카로티노이드류의 붉은 색소 성분들의 미투과를 통해 배제액에 잔존으로 인한 것이라는 김 등[참조: Kim, S. M. and Kang, Y. J. : Changes in the constituents of citrus juice by ultrafiltration. Korean J. Postharvest Sci. Technol., 8, 442-448 (2001)]의 연구과 일치하는 결과를 얻었다.The a * value of permeate was little change with pressure, but the change was large with temperature. Exclusion liquid increased with increasing temperature at low pressure but little with temperature at high pressure. Overall, the a * value is highly sensitive to the influence of temperature, due to the wide range of change caused by low pressure and high temperature. This is described in Kim, KT, Kim, SS, Choi, HD, Hong, HD and Lee, YT: Changes in chemical compositions of fruit-vegetable mixed juice sterilized at various conditions during storage. Korean J. Food & nutr ., 9 , 314-318 (1996)], the higher the treatment temperature, the greater the change in chromaticity. In addition, the redness of the exclusion solution was significantly higher than that of the permeate solution. This is because the green water-soluble pigments pass through the membrane to increase the red pigment relative to the ultrafiltration device, and the red pigments of carotenoids are not impermeable during the clarification process. Kim, SM and Kang, YJ: Changes in the constituents of citrus juice by ultrafiltration. Korean J. Postharvest Sci. Technol ., 8 , 442-448 (2001).
b*값의 경우 투과액의 압력, 온도에 따른 변화 거의 없었으나 배제액의 경우 압력과 온도의 증가에 비례하여 황색도가 증가했는데 이는 한외여과과정을 거치면서 막을 통과하지 못한 쥬스가 갈변을 일으키는 비타민 C, 클로로필 등 물질의 배제 저장탱크내 적체를 야기시켰고 비효소적 갈변반응과 배제의 과정에서 아무런 물리적 처리가 없는 배제액에 산화과정을 거치면서 갈변의 심화로 황색도가 증가하였다[참조: Kim, S. Y., Yoon, Y. B. and Choi, E. H. : Change in quality of mixed juice of fruits and vegetables by aseptic treatment and packing with nitrogen gas during storage. Korean J. Food Sci. Technol., 32, 1271-1277 (2000)].In case of b * value, there was almost no change according to pressure and temperature of permeate, but in case of exclusion solution, yellowness increased in proportion to the increase of pressure and temperature, which caused the browning of juice which failed to pass through the membrane during the ultrafiltration process. Exclusion of substances such as vitamin C and chlorophyll resulted in accumulation in the storage tank, and yellowing increased due to the deepening of browning as the non-enzymatic browning reaction and the oxidation process were performed in the exclusion solution without any physical treatment [see: Kim, SY, Yoon, YB and Choi, EH: Change in quality of mixed juice of fruits and vegetables by aseptic treatment and packing with nitrogen gas during storage. Korean J. Food Sci. Technol ., 32 , 1271-1277 (2000)].
크로마(Chroma)는 배제액에서 높은 값을 나타냈으며, 온도와 압력이 높을수록 높은 값을 나타내며 낮은 온도에서 압력에 따른 변화는 거의 없었다. 휴앵글(Hue angle)은 투과액과 배제액 모두 압력에 따른 변화가 컸으며, 투과액에서 높은 측정치를 나타내었다.Chroma was high in the exclusion solution, and the higher the temperature and pressure, the higher the value, and little change with pressure at low temperature. Hue angle of the permeate and the exclusion fluid showed a large change according to the pressure and showed a high measurement in the permeate.
색도차의 경우, 전체적으로 높은 압력에서보다 낮은 압력에서 온도에 따른 변화가 컸으며, 낮은 온도에서는 압력이 증가 할수록 ΔE값이 증가했고 높은 온도에서는 압력이 증가함에 따라 ΔE값이 증가하다가 감소하는 경향이 나타났다. In the case of chromatic difference, the change in temperature was larger at lower pressure than at high pressure.In low temperature, ΔE value increased with increasing pressure, and at high temperature, ΔE value increased and then decreased with increasing pressure. appear.
혼합비율별 색도의 변화를 투과액과 배제액을 대상으로 관찰해 보면 명도를 나타내는 L*값의 경우 사과의 비율이 높은 투과 및 배제액에서 모두 높게 측정되었으며 이는 사과의 명도가 당근보다 높기 때문에 사과의 비율이 증가함으로 인해 L*값 또한 높게 측정된 것으로 관찰되었다. 50:50의 비율로 혼합될 경우가 당근의 함량이 높은 경우보다 명도가 낮게 측정되었는데 이는 사과와 당근의 부유물질이 고루 분포해 이같은 결과를 야기한 것이다. a*값은 당근 속에 많이 포함되어 있는 카로티노이드류가 여과 과정을 통해 막을 통과하지 못하여 (-)값을 나타내어 사과의 비율이 높은 실험구와 50:50혼합 실험구에 비해 낮게 측정되었고 배제액의 경우 이 카로티노이드류의 성분의 축적으로 인해 당근의 혼합비율이 높은 실험구에서 오히려 높게 측정되었다. b*값의 경우는 투과액 및 배제액에서 당근의 함량이 높은 심험구에서 전체적으로 (+)값을 나타내어 황색도가 높았으며 사과의 혼합비율이 높은 실험구에서는 (-)값을 나타내어 전체적으로 푸른색의 계열을 관찰할 수 있었지만 육안으로의 관찰은 미미한 수준이었다. 전체적인 색도차의 경우 사과의 혼합비율이 높은 실험구에서 △E값이 낮게 측정되었고 당근의 비율이 높은 시료에서 색도차가 크게 나타났는데 이는 막분리 과정 중 당근의 경우 명도, 적색도, 황색도의 변화가 컸기 때문에 색도차가 크게 나타난 것이다. 채도를 나타내는 크로마의 경우는 당근의 함량이 높을 경우 투과액 및 배제액 모두에서 높게 측정되어 당근이 사과보다 채도에 많은 영향을 미치는 것으로 나타났으며 색조를 나타내는 휴앵글은 크로마와 마찬가지로 당근의 함량에 영향을 받는 것으로 나타냈으나 혼합비율 별 영향은 크게 나타나지 않았다.When observing targeting mixture passed through the change of the color liquid and exclusion liquid by the ratio when the L * value indicating the brightness was measured both increase the proportion of the apples at a high transmission and exclude liquid which apple because the brightness of the apple is higher than carrots As the ratio of was increased, the L * value was also observed to be higher. When mixed in a 50:50 ratio, the brightness was lower than that of the high carrot content, which is caused by the even distribution of suspended solids in apples and carrots. The a * value is negative because carotenoids contained in carrots cannot pass through the membrane through the filtration process, which is lower than that of the high apple and 50:50 mixed experiments. Due to the accumulation of components of carotenoids, the mixing ratio of carrots was rather high in the experimental group. In case of b * value, the yellow color was high in the experimental group with high carrot content in permeate and exclusion solution, and the yellowness was high. Although it was possible to observe the series of, visual observation was insignificant. In the case of the overall chromaticity difference, the △ E value was low in the experimental group with high apple mixing ratio, and the chromaticity difference was high in the sample with high carrot ratio. Because of the large chromatic difference. In the case of chroma, the chroma content is high in both permeate and exclusion liquids, indicating that carrots have more influence on saturation than apples. It was shown to be affected, but the effect of mixing ratio was not significant.
식물성 쥬스류의 투과플럭스에 주요 원인은 펙틴과 셀룰로스, 헤미셀룰로스 등으로 이들 물질은 막 표면에 흡착하여 쥬스에 함유된 당, 구연산과 함께 겔 매트릭스(gel matrix)를 형성하여 플럭스를 감소시키게 된다[참조: Kim, S. M. and Kang, Y. J. : Changes in the constituents of citrus juice by ultrafiltration. Korean J. Postharvest sci. Technol., 8, 442-448 (2001)]. 도 8은 혼합과채쥬스가 공정압력과 온도에 따라 측정된 플럭스를 나타낸 것이다. 압력의 증가에 따라 비례적으로 투과플럭스가 증가하였으며, 이는 일반적으로 공정압력을 증가시키면 투과플럭스의 증가를 가져오며 압력의 증가에 대한 플럭스의 증가폭은 직선적인 경향을 나타낸다는 이 등[참조: Lee, E. M., Kang, H. A., Chang, K. S. and Choi, Y. H. : Clarification of sandlance joetkal using ultrafiltration. Food Engineering Progress, 2, 96-101 (1998)] 및 자라테-로드리구에즈[참조: Zarate-Rodriguez, E., Prtega-Rivas, E. and Barbosa-Canovas, G. V. : Effect of membrane pore size on quality of ultrafiltered apple juice. Int. J. Food Sci. Technol., 36, 663-667 (2001)]의 연구결과와 일치하였다. 공정온도 역시 온도의 증가에 비례하여 증가를 가져왔는데 이는 온도가 높을수록 유체의 점성이 낮아져 투과플럭스가 증가한 것이며, 확산계수의 증가와 유입액 중에 존재하는 확산물질의 용해도 증가로 인하여 투과플럭스가 증가하였으며, 유입액은 온도 상승에 의한 막의 열적 팽창에 의해 세공크기가 변화됨으로서 투과플럭스의 증가를 초례한 것으로 고 등[참조: Ko, E. J. and Choi, Y. H. : Clarification of grape juice by ultrafiltration and membrane fouling characteristics. Food Engineering Porgress, 3, 57-63 (1999)]의 연구와 유사한 결과를 얻을 수 있었다. 혼합비율에 따른 투과플럭스는 사과의 혼합비율이 높은 실험구에서 전체적으로 높게 측정되어 비교적 당근에 비해 겔 메트릭스를 형성하는 물질이 적은 것이다.Pectin, cellulose, hemicellulose, etc. are the main causes of the permeate flux of vegetable juices. These substances are adsorbed on the surface of the membrane to form a gel matrix with sugar and citric acid in the juice. : Kim, SM and Kang, YJ: Changes in the constituents of citrus juice by ultrafiltration. Korean J. Postharvest sci. Technol ., 8 , 442-448 (2001). 8 shows the flux of mixed fruit juice measured with process pressure and temperature. The permeate flux increased proportionally with the increase in pressure, which generally increases the permeate flux with increasing process pressure, and the increase in flux with increasing pressure tends to be linear. , EM, Kang, HA, Chang, KS and Choi, YH: Clarification of sandlance joetkal using ultrafiltration. Food Engineering Progress, 2 , 96-101 (1998)] and Zarate-Rodriguez, E., Prtega-Rivas, E. and Barbosa-Canovas, GV: Effect of membrane pore size on quality of ultrafiltered apple juice. Int. J. Food Sci. Technol ., 36 , 663-667 (2001). The process temperature also increased in proportion to the increase in temperature. The higher the temperature, the lower the viscosity of the fluid, which increased the permeate flux. The permeate flux increased due to the increase of the diffusion coefficient and the solubility of the diffusion material in the influent. The influx of the influent was the first to increase the permeate flux by changing the pore size due to the thermal expansion of the membrane due to the temperature rise. Ko, EJ and Choi, YH: Clarification of grape juice by ultrafiltration and membrane fouling characteristics. Food Engineering Porgress , 3 , 57-63 (1999)]. The permeation flux according to the mixing ratio is measured as a whole in the experimental zone where the mixing ratio of apple is high, and relatively less gel forming substance is formed than the carrot.
가용성 고형분의 경우 도 9에서 나타나듯이 공정변수와 투과액 및 배제액에서 특이적인 경향을 나타내지 않았으며, 사과의 함량이 높은 실험구에서 투과 및 배제액에서 가용성 고형분이 높게 측정되었다. 이는 초기 함량의 영향으로 사과의 경우 당근보다 가용성 고형분의 함량이 많았기 때문이다. 도 10은 공정변수와 투과 및 배제액에 따른 총당의 변화를 나타낸 것으로 가용성 고형분과 전체적으로 마찬가지의 경향을 나타냈고, 한외여과에 따른 가용성 고형분과 총당의 영향은 크지 않은 것으로 측정되었다. As shown in FIG. 9, the soluble solids did not show a specific trend in the process variables, the permeate and the exclusion solution, and the high soluble solid content was measured in the permeate and the exclusion solution in the high apple content. This is because apples had more soluble solids than carrots due to the initial content. Figure 10 shows the change in total sugar according to the process variables and permeation and exclusion liquids showed the same trend as the soluble solids as a whole, and the effect of soluble solids and total sugars by ultrafiltration was not significant.
도 11에서 나타난 것과 같이 공정변수별 비타민 C의 변화를 관찰하기 힘들었으며 투과액이 배제액의 경우보다 전반적으로 높은 함량을 나타내었고 당근의 함량이 많을수록 전체적인 함량이 높게 측정되었다. 도 12는 한외여과의 최대효과 중 하나인 탁도를 나타낸 것으로 배제액에 비해 투과액의 탁도 개선효과가 약 90%이상 향상된 것을 알 수 있으며, 특히 투과액의 경우 공정변수, 혼합비율에 관계없이 우수한 청징효과를 나타내었다. 배제액에서는 온도가 높을수록 탁도변화에 많은 영향을 주었고 당근의 혼합비율이 높은 실험구에서 탁도가 크게 개선된 것을 알 수 있었다. 점도는 투과액에서 급격히 감소하였는데, 이는 겔 메트릭스를 이루는 물질들이 막을 통과하지 못하고 막에 침착되었기 때문에 막을 통과한 물질의 점성이 크게 떨어진 것으로 관찰되며 공정조건이나 혼합비율에는 크게 영향을 받지 않았다. 그러나 막을 통과하지 못한 배제액에서 공정압력과 온도 그리고 50% 혼합비율에서 크게 점성이 높아졌으며 이는 막을 통과하지 못한 펙틴, 셀룰로스, 헤미셀룰로스 등의 물질이 막에 침착하여 겔화 및 배제액 탱크로의 유입을 통해 상대적으로 투과액에 비해 점도가 높아진 것이다(도 13 참조).As shown in FIG. 11, it was difficult to observe the change of vitamin C for each process variable, and the permeate showed higher overall content than the exclusion solution, and the higher the content of carrot, the higher the overall content. Figure 12 shows the turbidity, one of the maximum effects of the ultrafiltration, it can be seen that the turbidity improvement effect of the permeate compared to the exclusion liquid is improved by about 90% or more, especially in the case of the permeate is excellent regardless of the process parameters, mixing ratio The clarification effect was shown. The higher the temperature, the greater the effect of turbidity on the turbidity, and the higher the turbidity of the carrots. Viscosity decreased rapidly in the permeate, which was observed that the viscosity of the material passed through the membrane was greatly reduced because the materials forming the gel matrix did not pass through the membrane and were not affected by the process conditions or the mixing ratio. However, the viscosity of the excipient that did not pass through the membrane increased significantly at the process pressure, temperature and 50% of the mixing ratio. The viscosity is relatively higher than the permeate through (see FIG. 13).
사과, 당근을 일정비율로 혼합한 과채주스를 위한 최적 공정조건을 알아보기 위하여 RSM(Response surface method)을 이용하여 이차식 형태의 반응모형을 얻을 수 있도록 중심합성계획법(Central composite experiment design)을 사용하였으며, 반응표면 회귀분석을 위해 SAS(Statistical analysis system) program을 사용하였다. 사과 당근을 이용한 혼합과채주스의 제조 시 공정변수인 요인변수를 온도(5, 25 45℃), 압력(50, 100, 150 kPa), 혼합비율(apple:carrot=75, 50, 25%)의 3수준으로 하였으며, 이 때의 반응변수로 탁도, 당도, 비타민을 분석하였다.In order to find out the optimal process conditions for fruit and vegetable juices in which apple and carrots are mixed at a certain ratio, the central composite experiment design is used to obtain a second type reaction model using the response surface method (RSM). SAS (Statistical analysis system) program was used for the response surface regression analysis. Factor variables, which are process variables in the preparation of mixed fruit juice using apple and carrot, were temperature (5, 25 and 45 ℃), pressure (50, 100 and 150 kPa) and mixing ratio (apple: carrot = 75, 50 and 25%). Three levels were used, and turbidity, sugar and vitamin were analyzed as response variables.
한외여과 투과액을 대상으로 사과, 당근 혼합과채주스의 당도를 분석한 결과를 도 14에 나타냈으며, 모형식에 대한 R-스퀘어(R-square)가 0.9188, 전체 리그레스(Total regress)가 0.0115로 나타나 적합도가 상당히 우수한 것으로 나타났다. 정준분석결과 고유벡터(Eigenvalues)가 음수와 양수가 섞여 있어 능산분석을 통해 최대값을 알아본 결과 공정온도가 28.80℃, 공정압력이 101.51 kPa, 혼합비율이 사과를 기준으로 74.53%에서 11.15oBrix로 가장 높은값을 나타내었다. 탁도의 경우는 모형식에 대한 R-스퀘어가 0.5579, 전체 리그레스가 0.6086로 나타났으며, 능산분석을 통한 최대값은 0.005725 공정온도 22.83℃, 공정압력 93.34 kPa, 사과의 혼합비율 74.63%에서 탁도가 0.005725로 나타나 우수한 청징효과를 측정할 수 있었다(도 15 참조). 도 16은 비타민C의 함량을 나타낸 것으로 R-스퀘어가 0.7238, 전체 리그레스가 0.3544로 측정되었고, 비타민C의 최대함량을 나타내는 공정조건은 18.19℃, 76.81 kPa, 29.55%의 혼합비율에서 3.13 mg%로 나타났다.The results of analyzing the sugar content of the apple and carrot mixed fruit juice in the ultrafiltration permeate are shown in FIG. 14. The R-square of the model was 0.9188 and the total regress was 0.0115. It appeared that the goodness of fit was quite excellent. As a result of the canonical analysis, the eigenvectors were mixed with negative and positive numbers, so the maximum value was determined through the analysis of nitric acid.The process temperature was 28.80 ℃, the process pressure was 101.51 kPa, and the mixing ratio was 11.15 o Brix at 74.53%. The highest value is shown. In the case of turbidity, the R-square for the model was 0.5579 and the total leagues were 0.6086, and the maximum value through the analysis of nitric acid was turbidity at 0.005725 process temperature 22.83 ℃, process pressure 93.34 kPa, and apple blend ratio 74.63%. Was 0.005725, which could measure the excellent clarification effect (see FIG. 15). Figure 16 shows the content of vitamin C, the R-square was 0.7238, the total leares of 0.3544 was measured, the process conditions showing the maximum content of vitamin C is 3.13 mg% at a mixing ratio of 18.19 ℃, 76.81 kPa, 29.55% Appeared.
도 17은 사과, 당근의 혼합과채주스의 제조 공정 중 당도, 탁도, 비타민 C함량의 최대값에서의 공정 범위를 나타낸 그래프이다. 각 최적 반응변수값을 만족하는 최적 공정 범위는 온도의 경우 18.19∼28.80℃, 압력은 76.81∼101.51 kPa, 혼합비율은 사과를 기준으로 29.55%에서 높게 측정되었다. 일반적으로 당근에 함유된 비타민C의 함량이 사과에 비해 높기 때문에 혼합비율의 경우에서는 당근의 함량이 높을수록 비타민C의 함량이 증가된 것이다.Figure 17 is a graph showing the process range at the maximum value of sugar, turbidity, vitamin C content of the apple and carrot mixed fruit and vegetable juice manufacturing process. The optimum process range that satisfies each optimum response was 18.19 ~ 28.80 ℃ for temperature, 76.81 ~ 101.51 kPa for pressure, and the mixing ratio was high at 29.55% based on apple. In general, since the content of vitamin C in carrots is higher than that of apples, the higher the content of carrots, the higher the content of vitamin C.
본 발명은 고차가공과 품질개선에 우수한 막분리 기술을 쥬스에 적용하여 쥬스의 온도, 압력, 혼합비율에 따른 색도, 투과플럭스 및 일반성분의 변화를 측정하여 제품의 기호성을 높이고 막분리 공정의 효율성을 극대화할 수 있는 것이다. 본 발명의 혼합쥬스는 각 최적 반응변수값을 만족하는 최적 공정 범위로서 온도 경우 18.19∼28.80℃, 압력 경우 76.81∼101.51 kPa, 혼합비율 경우 과일을 기준으로 29.55%에서 높게 측정되었으며 채소에 함유된 비타민C의 함량이 과일에 비해 높기 때문에 혼합비율의 경우에서는 채소의 함량이 높을수록 비타민C의 함량을 증가시켜 과일과 채소 혼합쥬스제품의 기호성을 높이고 막분리 공정의 효율성을 극대화할 수 있는 농산물 가공산업상 매우 유용한 것이다.The present invention measures the change in chromaticity, permeate flux and general composition of juice according to temperature, pressure and mixing ratio of juice to improve the palatability of the product and the efficiency of membrane separation process. To maximize. The mixed juice of the present invention is an optimum process range that satisfies each optimum response variable value, and is measured at 18.19 to 28.80 ° C. for temperature, 76.81 to 101.51 kPa for pressure, and 29.55% for fruit in the mixing ratio. As the content of C is higher than that of fruits, the higher the content of vegetables, the higher the content of vitamin C. The higher the content of vitamin C, the higher the palatability of the mixed fruit and vegetable juice products and the more efficient the membrane separation process. It is very useful.
도 1은 과일야채혼합쥬스의 제조공정을 나타낸 것이다.Figure 1 shows the manufacturing process of fruit vegetable mixed juice.
도 2 내지 7은 한외여과에 의한 과일야채혼합쥬스의 색도변화를 나타낸 것이다.2 to 7 shows the change in chromaticity of the fruit vegetable mixed juice by ultrafiltration.
도 8은 공정변수 및 혼합비율에 따른 과일야채혼합쥬스의 투과플럭스를 나타낸 것이다.Figure 8 shows the permeation flux of fruit vegetable blend juice according to the process variable and mixing ratio.
도 9는 공정변수 및 혼합비율에 따른 과일야채혼합쥬스의 가용성 고형분 변화를 나타낸 것이다.Figure 9 shows the change in the soluble solids of fruit and vegetable mixed juice according to the process variable and mixing ratio.
도 10은 공정변수 및 혼합비율에 따른 과일야채혼합쥬스의 총당 변화를 나타낸 것이다.Figure 10 shows the total sugar change of fruit and vegetable mixed juice according to the process variable and mixing ratio.
도 11은 공정변수 및 혼합비율에 따른 과일야채혼합쥬스의 비타민C 변화를 나타낸 것이다.Figure 11 shows the vitamin C change of the fruit vegetable blend juice according to the process variable and mixing ratio.
도 12는 공정변수 및 혼합비율에 따른 과일야채혼합쥬스의 탁도 변화를 나타낸 것이다.Figure 12 shows the turbidity change of the fruit vegetable blend juice according to the process variable and mixing ratio.
도 13은 공정변수 및 혼합비율에 따른 과일야채혼합쥬스의 점도 변화를 나타낸 것이다.Figure 13 shows the change in viscosity of fruit and vegetable mixed juice according to the process variable and mixing ratio.
도 14는 한외여과 투과액을 대상으로 사과, 당근 혼합과채주스의 당도를 분석한 결과를 나타낸 것이다.Figure 14 shows the results of analyzing the sugar content of apple, carrot mixed fruit juice in the ultrafiltration permeate.
도 15는 한외여과 투과액을 대상으로 사과, 당근 혼합과채주스의 청징효과를 나타낸 것이다. Figure 15 shows the clarification effect of apple, carrot mixed fruit juice in the ultrafiltration permeate.
도 16은 한외여과 투과액을 대상으로 사과, 당근 혼합과채주스의 비타민C 함량을 나타낸 것이다.Figure 16 shows the vitamin C content of apple, carrot mixed fruit juice in the ultrafiltration permeate.
도 17은 사과, 당근의 혼합과채주스의 제조 공정 중 당도, 탁도, 비타민 C함량의 최대값에서의 공정범위를 나타낸 그래프이다.Figure 17 is a graph showing the process range at the maximum value of sugar, turbidity, vitamin C content of the apple and carrot mixed fruit juice manufacturing process.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0001366A KR100519089B1 (en) | 2003-01-09 | 2003-01-09 | Preparation and Compositions of Mixed Fruit and Vegetable Juices According to Ultrafiltration Conditions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0001366A KR100519089B1 (en) | 2003-01-09 | 2003-01-09 | Preparation and Compositions of Mixed Fruit and Vegetable Juices According to Ultrafiltration Conditions |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040064092A KR20040064092A (en) | 2004-07-16 |
KR100519089B1 true KR100519089B1 (en) | 2005-10-05 |
Family
ID=37354761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-0001366A KR100519089B1 (en) | 2003-01-09 | 2003-01-09 | Preparation and Compositions of Mixed Fruit and Vegetable Juices According to Ultrafiltration Conditions |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100519089B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101006465B1 (en) * | 2010-06-03 | 2011-01-06 | (주)다손 | Method for manufactureing of fresh fruit-vegetables juice |
WO2011142592A2 (en) * | 2010-05-12 | 2011-11-17 | 한국식품연구원 | Method for making eco-friendly apple cider, and eco-friendly apple cider made from whole apples using the method |
KR102339451B1 (en) | 2021-01-08 | 2021-12-16 | 경북햇살농원영농조합법인 | Fruits and vegetables juice and manufacturing method of the same |
KR102408512B1 (en) | 2021-01-13 | 2022-06-13 | 김태범 | Apple beverage and manufacturing method of the same |
KR20240055362A (en) | 2022-10-20 | 2024-04-29 | 농업회사법인 과일드림 주식회사 | Manufacturing method of seedless juice using fruits produced by low-carbon agricultural technology |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2302420B1 (en) * | 2006-01-16 | 2009-05-29 | Universidad De Zaragoza | PROCEDURE FOR OBTAINING TRANSPARENT VEGETABLE JUICE AND TRANSPARENT VEGETABLE JUICE |
-
2003
- 2003-01-09 KR KR10-2003-0001366A patent/KR100519089B1/en active IP Right Grant
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011142592A2 (en) * | 2010-05-12 | 2011-11-17 | 한국식품연구원 | Method for making eco-friendly apple cider, and eco-friendly apple cider made from whole apples using the method |
WO2011142592A3 (en) * | 2010-05-12 | 2012-05-03 | 한국식품연구원 | Method for making eco-friendly apple cider, and eco-friendly apple cider made from whole apples using the method |
KR101006465B1 (en) * | 2010-06-03 | 2011-01-06 | (주)다손 | Method for manufactureing of fresh fruit-vegetables juice |
KR102339451B1 (en) | 2021-01-08 | 2021-12-16 | 경북햇살농원영농조합법인 | Fruits and vegetables juice and manufacturing method of the same |
KR102408512B1 (en) | 2021-01-13 | 2022-06-13 | 김태범 | Apple beverage and manufacturing method of the same |
KR20240055362A (en) | 2022-10-20 | 2024-04-29 | 농업회사법인 과일드림 주식회사 | Manufacturing method of seedless juice using fruits produced by low-carbon agricultural technology |
Also Published As
Publication number | Publication date |
---|---|
KR20040064092A (en) | 2004-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vaillant et al. | Clarification and concentration of melon juice using membrane processes | |
Oh et al. | Chemical composition and antioxidative activity of kiwifruit in different cultivars and maturity | |
EA020098B1 (en) | Method of preparing juice-based stable natural colors, colors and edible materials containing them | |
KR101227366B1 (en) | Method for producing environment-friendly apple vinegar and environment-friendly apple vinegar produced by the same | |
CN104336706A (en) | Preparation method for sugarcane and water-chestnut juice | |
CN104284603A (en) | Fruit-based food or drink containing component of amla origin | |
KR20220062601A (en) | Whole Pressed Coffee Berry Juice | |
Threlfall et al. | Pressing effects on yield, quality, and nutraceutical content of juice, seeds, and skins from Black Beauty and Sunbelt grapes | |
KR100519089B1 (en) | Preparation and Compositions of Mixed Fruit and Vegetable Juices According to Ultrafiltration Conditions | |
Samreen et al. | Physicochemical characteristics of pomegranate and pineapple juice | |
KR101194048B1 (en) | Method for producing environment-friendly apple whole cider and environment-friendly apple whole cider produced by the same | |
KR101225942B1 (en) | Method for producing alcohol fermented apple cider and alcohol fermented apple cider produced by the same | |
KR100639394B1 (en) | A preparation method of anthocyanin from gourd of BOKBOONJA and the food comprising the anthocyanin | |
KR101567806B1 (en) | Bee feed containing sugar solution obtained from defective melon and preparation method thereof | |
Selvanathan et al. | A statistical study of factors affecting natural biovinegar fermentation from pineapple peel waste | |
Byanna et al. | Standardization of sweet orange and pomegranate blended RTS beverage preparation and its storage | |
US20210069279A1 (en) | Antioxidant enriched distilled alcohol product and process therefor | |
KR20000067197A (en) | The manufacturing process of Can drink beverage by use of activated Figue material | |
KR20070002764A (en) | Juice with meoru fruit and preparation method thereof | |
KR20220146770A (en) | Manufacturing process of sweet persimmon syrup | |
CN110583824A (en) | Making process of apple green tea beverage | |
SU1634240A1 (en) | Non-alcoholic fruitvegetable drink | |
Mardiana et al. | Physicochemical properties and sensory evaluation of fermented mustard with difference ratio of rice water and tal palm sap | |
KR101474939B1 (en) | Functional beverage containing vinegar using Japanese apricots and Artemisia annua L and the manufacturing method thereof | |
Wireko-Manu et al. | Development and Quality Assessment of Cassava-Sweetpotato Non-Alcoholic Beverage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120921 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20130910 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20140929 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20150924 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20160928 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20170901 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20180927 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20190902 Year of fee payment: 15 |