KR100512128B1 - Automatic arraying machine of solar cells - Google Patents

Automatic arraying machine of solar cells Download PDF

Info

Publication number
KR100512128B1
KR100512128B1 KR10-2003-0056367A KR20030056367A KR100512128B1 KR 100512128 B1 KR100512128 B1 KR 100512128B1 KR 20030056367 A KR20030056367 A KR 20030056367A KR 100512128 B1 KR100512128 B1 KR 100512128B1
Authority
KR
South Korea
Prior art keywords
solar cell
support frame
air cylinder
test
jig
Prior art date
Application number
KR10-2003-0056367A
Other languages
Korean (ko)
Other versions
KR20040086088A (en
Inventor
유권종
강기환
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR10-2003-0056367A priority Critical patent/KR100512128B1/en
Publication of KR20040086088A publication Critical patent/KR20040086088A/en
Application granted granted Critical
Publication of KR100512128B1 publication Critical patent/KR100512128B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 태양전지 자동배열장치에 관한 것으로, 그 목적은 태양전지모듈 셋업(Setup)공정을 자동화하여, 태양전지모듈(Photovoltaic Module)의 생산성을 높이고, 불량률을 최소화하며, 이로 인해 경제적 손실을 절감할 수 있는 태양전지 자동배열장치를 제공하는 것이다. The present invention relates to a solar cell automatic arranging apparatus, the purpose of which is to automate the solar cell module setup process, to increase the productivity of the solar cell module (Photovoltaic Module), to minimize the failure rate, thereby reducing the economic loss It is to provide a solar cell automatic array device that can be.

본 발명은 다수개의 세로지지대 및 가로지지대로 이루어진 상/하부 지지틀부와, 상기 하부 지지틀부의 일측에 일체형으로 설치되고 스트링지그에 놓여진 태양전지를 이송하며 태양전지의 전류/전압값을 측정하는 테스트부와, 상기 상부 지지틀부 상단에 설치되어 작동 에어실린더와 서보모터에 의해 상/하 이동되고 다수개의 진공패드를 구비하는 상부흡착부와, 상기 상부 흡착부 하단에 위치하도록 상부 지지틀부 중단에 설치되고 에어실린더에 의해 회전되며 위치제어모터에 의해 LM가이드를 따라 전/후 이동됨과 동시에 다수개의 진공패드를 구비하는 이동흡착부를 포함하여 구성되어 태양전지를 자동으로 이송 배열하는 태양전지 자동배열장치를 제공함에 있다. The present invention is a test for measuring the current / voltage value of the solar cell while transporting the solar cell placed in the string jig integrally installed on one side of the upper and lower support frame portion consisting of a plurality of vertical support and horizontal support and the lower support frame portion And an upper suction part installed at an upper end of the upper support frame part and moved up / down by an operating air cylinder and a servomotor, and having a plurality of vacuum pads, and installed at an upper end of the upper support frame part so as to be positioned at the lower end of the upper suction part. It is rotated by an air cylinder and moved forward / backward along the LM guide by a position control motor and at the same time includes a mobile adsorption unit having a plurality of vacuum pads. In providing.

Description

태양전지 자동배열장치{Automatic arraying machine of solar cells} Automatic arraying machine of solar cells

본 발명은 태양전지 자동배열장치에 관한 것으로, 태양전지모듈 (Photovoltaic Module) 제조공정중에서 솔더링(Soldering M/C)을 이용하여 태양전지와 태양전지를 지그(Jig)위에서 일렬로 납땜한 태양전지를 자동으로 운반한 후 태양전지의 납땜성 및 전기적인 불량율을 검사하고, 세팅된 수순에 의해 자동으로 위치를 제어하여 태양전지를 모듈화하는 태양전지 자동배열장치에 관한 것이다. The present invention relates to a solar cell automatic arranging device, a solar cell in which the solar cell and the solar cell in a row on the jig (Jig) by using soldering (Soldering M / C) during the photovoltaic module manufacturing process The present invention relates to a solar cell automatic arranging apparatus for inspecting the solderability and electrical defect rate of the solar cell after carrying it automatically and modularizing the solar cell by automatically controlling the position according to the set procedure.

현재 태양전지모듈 생산라인에서 사용되고 있는 태양전지 배열(Arraying)장치는 태양전지 4*9열 또는 8*12열 등등 소형 태양전지모듈로부터 대형 태양전지모듈까지 모두 미리 준비되어 있는 지그(Jig)위에서 납땜을 한 후 진공패드를 이용하여 지그로부터 태양전지를 분리한 후 회전하여 플레이트(Plate)위에 안착해주는 역할만을 담당하고 있으며, 수작업으로 하는 경우 지그위에 플레이트를 올려놓고 뒤집어서 지그로부터 납땜된 수십개의 태양전지를 분리하고 있으나, 위의 두가지 방법 모두 태양전지의 모델이 변경될 경우마다 항상 새로운 지그의 제작이 필요하게 되며, 또한 수작업으로 하는 경우 수십개의 태양전지를 뒤집고 운반하는 과정에서 태양전지의 파손 및 얇은 리본의 휘어짐, 배열의 흐트러지는 현상이 발생되고 있어, 생산성 저하 및 경제적으로 막대한 손실이 있는 등 여러 가지 문제점이 있었다. Currently, the solar cell arraying device used in the solar cell module production line is soldered on a jig prepared in advance from small solar cell modules to large solar cell modules, such as solar cells 4 * 9 rows or 8 * 12 rows. After removing the solar cell from the jig using a vacuum pad and rotating it, it only plays the role of seating on the plate.In the case of manual operation, dozens of solar cells are soldered from the jig by placing the plate on the jig and turning it over. However, both of the above methods require the manufacture of a new jig whenever the solar cell model is changed, and in the case of manual operation, the solar cell is damaged and thinned in the process of inverting and transporting dozens of solar cells. The bowing of the ribbon and the disturbance of the arrangement are occurring, resulting in reduced productivity and economical There were several problems with such a huge loss to the.

본 발명은 상기와 같은 문제점을 고려하여 이루어진 것으로, 그 목적은 태양전지모듈 셋업(Setup)공정을 자동화하여, 태양전지모듈(Photovoltaic Module)의 생산성을 높이고, 전기적 불량률을 최소화하며, 이로 인해 경제적 손실을 절감할 수 있는 태양전지 자동배열장치를 제공하는 것이다. The present invention has been made in consideration of the above problems, the purpose of which is to automate the solar cell module setup process, to increase the productivity of the solar cell module (Photovoltaic Module), to minimize the electrical failure rate, thereby resulting in economic losses It is to provide a solar cell automatic arrangement that can reduce the.

본 발명은 다수개의 세로지지대 및 가로지지대로 이루어진 상/하부 지지틀부와, 상기 하부 지지틀부의 일측에 일체형으로 설치되고 스트링지그에 놓여진 태양전지를 이송하며 태양전지의 전류/전압값을 측정하는 테스트부와, 상기 상부 지지틀부 상단에 설치되어 서보모터에 의해 상/하 이동되고 다수개의 진공패드를 구비하는 상부흡착부와, 상기 상부 흡착부 하단에 위치하도록 상부 지지틀부 중단에 설치되고 에어실린더에 의해 회전되며 위치제어모터에 의해 LM가이드를 따라 전/후 이동됨과 동시에 다수개의 진공패드를 구비하는 이동흡착부를 포함하여 구성되어 태양전지를 자동으로 이송 배열하는 태양전지 자동배열장치를 제공함에 있다. The present invention is a test for measuring the current / voltage value of the solar cell while transporting the solar cell placed in the string jig integrally installed on one side of the upper and lower support frame portion consisting of a plurality of vertical support and horizontal support and the lower support frame portion And an upper suction part installed on an upper end of the upper support frame part and being moved up / down by a servo motor and having a plurality of vacuum pads, and installed on a suspension of the upper support frame part so as to be positioned at the lower end of the upper suction part. It is rotated by a position control motor is moved forward / backward along the LM guide and at the same time comprising a mobile adsorption unit having a plurality of vacuum pads is provided to provide a solar cell automatic array device for automatically transport arrangement arrangement.

도 1 은 본 발명에 따른 구성을 보인 정면예시도를, 도 2 는 본 발명에 따른 구성을 보인 측면예시도를 도시한 것으로, 본 발명은 라미네이션(Lamination)하기 전에 납땜된 수개 또는 수십개의 태양전지를 스트링 지그(String Jig)로부터 분리하여 테스트 지그(Test Jig)위에 태양전지를 안착하면 할로겐램프가 점등되어 전압, 전류를 측정한 후 불량률을 검사하고, 합격된 일렬로 납땜된 수개의 태양전지를 진공패드와 PLC 프로그램에 의해 사용자가 디자인한 형태로 정확하게 자동으로 배열하여 태양전지모듈 제조를 위한 세팅작업을 용이하게 할 수 있도록 되어 있다. Figure 1 shows a front view showing a configuration according to the present invention, Figure 2 shows a side view showing a configuration according to the present invention, the present invention is several or dozens of solar cells soldered before lamination (Lamination) Is separated from the string jig, and the solar cell is placed on the test jig.The halogen lamp is turned on to measure the voltage and current, and then the defect rate is checked. The vacuum pad and PLC program can be arranged automatically and accurately in the form designed by the user to facilitate setting work for manufacturing the solar cell module.

즉, 본 발명은 컨베이어에 의해 일렬로 납땜된 다수개의 태양전지(100)가 놓여진 스트링 지그(10)를 이송하고, 상기 태양전지(100)를 이동흡착부(20)에 의해 흡착하여 테스트부(30)로 이동시키며, 테스트부(30)에 의해 태양전지의 전기적 불량여부를 검사한 후, 이를 다시 이동흡착부(20)에 의해 흡착하여 특정된 상부흡착부(40) 하부로 이동하고, 이를 상부흡착부(40)에서 흡착한 후 볼 캐리어 플레이트(50)에 의해 이송된 글라스로 다운-로딩하도록 되어 있다.That is, the present invention transfers the string jig 10 in which a plurality of solar cells 100 soldered in a row by a conveyor, and absorbs the solar cells 100 by the mobile adsorption unit 20 to test unit ( 30), and inspects whether the electrical failure of the solar cell by the test unit 30, and then absorbed by the mobile adsorption unit 20 again to move to the lower portion of the upper upper adsorption unit 40, and this It is adapted to be down-loaded into the glass conveyed by the ball carrier plate 50 after being adsorbed by the upper adsorption part 40.

상기 테스트부(30)는 다수개의 세로지지대 및 가로지지대로 이루어진 상/하부 지지틀(61,62) 중, 하부 지지틀(62)의 일측에 설치되는 것으로, 도 3 에 도시된 바와 같이, 태양전지가 놓여진 스트링 지그를 이송하는 이송컨베이어(31)와, 상기 이송컨베이어(31) 끝단 위치하도록 설치되는 감지센서(32)와, 상기 이송컨베이어(31) 하부에 위치하고, 에어실린더에 의해 이동되어 일렬로 납땜된 수개의 태양전지 상하도체 리본(101)에 접촉되는 테스트 핀(33)과, 상기 테스트 핀(33)이 상부면에 설치된 테스트 지그(34)와, 상기 테스트 지그(34)를 승하강 시키는 승하강 에어실린더(37) 및, 상기 이송컨베이어(31), 감지센서(32)가 설치되고 승하강 에어실린더(37)를 지지하는 테스트 틀(35)로 구성되어 있으며, 테스트부(30) 상부에 위치하도록 상부 지지틀(61) 일측에 할로겐 램프(36)가 설치되어 있다.The test part 30 is installed on one side of the lower support frame 62 among the upper and lower support frames 61 and 62 formed of a plurality of vertical supports and horizontal supports, as shown in FIG. Transfer conveyor 31 for transferring the string jig in which the battery is placed, the detection sensor 32 is installed to be positioned at the end of the transfer conveyor 31, and located under the transfer conveyor 31, moved by an air cylinder in a row The test pins 33 contacting several solar cell upper and lower conductor ribbons 101 soldered with the test strips, the test jig 34 provided on the upper surface of the test pins 33, and the test jig 34 are lowered. Lifting and lowering air cylinder 37, and the conveying conveyor 31, the sensor 32 is installed and consists of a test frame 35 for supporting the lifting air cylinder 37, the test unit 30 Halogen lamp 36 on one side of the upper support frame 61 to be located in the upper ) Is installed.

상기 이동흡착부(20)는 스트링 지그(10)로부터 태양전지(100)를 흡착한 후 이를 테스트 지그(34) 또는 상부흡착부(40)로 이동시키는 것으로, 도 8 에 도시된 바와 같이, 상부 지지틀(61) 양측에 서로 평행하도록 각각 설치되는 LM가이드(21)와, 상기 양측에 위치한 LM 가이드(21)에 양끝단이 연결 설치되고 위치제어모터(22)에 의해 이동되며, 회전용 에어실린더(23) 및 회전기어(24)에 의해 회전되는 회전축 가이드바(25)와, 상기 회전축 가이드바(25)에 고정 설치되는 밸런스축(26)과, 상기 회전축 가이드바(25)를 중심으로 밸런스축(26)과 대칭되는 위치의 양측에 각각 설치되는 이동에어실린더(27)와, 상기 2개의 이동에어실린더(27) 끝단에 연결되어 설치되는 진공패드지지대(28)와, 상기 진공패드 지지대(28)에 설치되는 다수개의 진공패드(29)로 구성되어 있다. 이때, 상기 진공패드 지지대(28)에 설치되는 다수개의 진공패드(29)는 이송컨베이어(31)에 의해 이송된 다수개의 태양전지를 동시에 흡착할 수 있도록 태양전지(100)의 배열과 동일한 간격 및 배열로 설치되어 있다.The mobile adsorption unit 20 absorbs the solar cell 100 from the string jig 10 and then moves it to the test jig 34 or the upper adsorption unit 40. As shown in FIG. Both ends of the LM guides 21 are installed on both sides of the support frame 61 so as to be parallel to each other, and LM guides 21 located on both sides thereof are connected to each other and moved by the position control motor 22. Based on the rotary shaft guide bar 25 rotated by the cylinder 23 and the rotary gear 24, the balance shaft 26 fixed to the rotary shaft guide bar 25, and the rotary shaft guide bar 25. A mobile air cylinder 27 installed on both sides of a position symmetrical with the balance shaft 26, a vacuum pad support 28 connected to the ends of the two mobile air cylinders 27, and the vacuum pad support It consists of the several vacuum pad 29 provided in 28. As shown in FIG. In this case, the plurality of vacuum pads 29 installed on the vacuum pad support 28 are equally spaced with the arrangement of the solar cells 100 so as to simultaneously adsorb a plurality of solar cells transferred by the transfer conveyor 31. Installed in an array.

상기와 같이 구성된 이동흡착부(20)는 이동에어실린더(27)에 의해 진공패드 지지대(28)가 하강하게 되고, 진공패드(29)에 의해 태양전지가 흡착되며, 회전용 에어실린더(23)에 의해 회전기어(24)를 작동시켜 회전축 가이드바(25)를 회전시킴으로써, 회전축 가이드바(25)를 중심으로 태양전지가 진공흡착된 진공패드(29) 및 진공패드 지지대(28)를 회전시키도록 되어 있다. 이와 같이 진공패드(29)에 의해 흡착되고 회전용 에어실린더(23)에 의해 180°회전된 태양전지는 LM 가이드(21)와 회전축 가이드바(25)의 연결부위에 설치된 위치제어모터(22)에 의해 LM 가이드(21)를 따라 설정된 위치로 이동된다. 이와 같은 이동흡착부의 이동은 작업자가 미리 셋업해 놓은 설정값에 따라 동작하여 진공패드로 일렬로 납땜된 수개의 태양전지를 흡착한 후, 회전하여 자동으로 정확하게 위치할 수 있도록 되어 있다.In the mobile adsorption unit 20 configured as described above, the vacuum pad support 28 is lowered by the moving air cylinder 27, and the solar cell is adsorbed by the vacuum pad 29, and the rotating air cylinder 23 is provided. By rotating the rotary shaft guide bar 25 by operating the rotary gear 24 by rotating the vacuum pad 29 and the vacuum pad support 28, the solar cell is vacuum-adsorbed around the rotary shaft guide bar 25 It is supposed to be. As described above, the solar cell, which is sucked by the vacuum pad 29 and rotated by 180 ° by the rotary air cylinder 23, is installed in the position control motor 22 installed at the connection portion between the LM guide 21 and the rotary shaft guide bar 25. It moves to the position set along the LM guide 21 by this. The movement of the mobile adsorption unit operates according to a preset value set by the operator, so as to adsorb several solar cells soldered in a row with a vacuum pad, and then rotate and automatically position them accurately.

상기 상부 흡착부(40)는 이동흡착부(20)에 진공흡착되어 있는 태양전지를 흡착하여 볼 컨베이어 플레이트(50)에 의해 이송된 글래스로 다운로딩시키는 것으로, 도 5 및 도 6 에 도시된 바와 같이, 상부 지지틀(61) 상단에 설치되는 서보모터(41)와, 상기 서보모터(41)에 연결되는 워엄기어(42)와, 상기 워엄기어(42)에 연결되고 상부 지지틀(61)을 관통하는 다수개의 가이드봉(43)을 구비하는 지지플레이트(44)와, 상기 지지플레이트(44) 하단에 하부 수직방향으로 설치되는 다수개의 작동에어실린더(46)와 상기 작동 에어실린더에 의해 작동되는 진공패드(45)로 구성되어 있다.The upper adsorption part 40 is to absorb the solar cells vacuum-absorbed in the mobile adsorption part 20 to download the glass transferred by the ball conveyor plate 50, as shown in Figures 5 and 6 Similarly, the servo motor 41 installed on the upper support frame 61, the worm gear 42 connected to the servo motor 41, and the worm gear 42 connected to the upper support frame 61 are provided. It is operated by a support plate 44 having a plurality of guide rods 43 penetrating through it, a plurality of actuating air cylinders 46 installed in the lower vertical direction at the bottom of the support plate 44 and the actuating air cylinders. It consists of the vacuum pad 45 which becomes.

도 4 는 본 발명에 따른 테스트핀과 태양전지의 작동상태를 보인 예시도를, 도 9 는 태양전지의 납땜 결선 상태를 보인 예시도를 도시한 것으로, 상기 테스트부와 이동흡착부 및 상부흡착부를 연계하여 설명하면, 납땜장치에서 납땜되어 나오는 태양전지를 받쳐주는 스트링 지그는 남땝장치의 컨베이어를 통하여 이송컨베이어에 위치하게 되며, 이송컨베이어에 의해 이송된 스트링 지그는 감지센서의 감지에 의해 정지된다. 이와 같이 태양전지가 스트링 지그에 의해 이송되면, 이동흡착부의 이동에어실린더의 작동에 의해 진공패드가 하강하여 스트링 지그에서 일렬로 납땜된 수개의 태양전지를 흡착하게 되고, 스트링 지그가 이송컨베이어에 의해 빠져나가게 되며, 이를 감지센서에 의해 감지하도록 되어 있다.4 is an exemplary view showing an operating state of the test pin and the solar cell according to the present invention, Figure 9 is an exemplary view showing a solder connection state of the solar cell, the test unit and the mobile adsorption unit and the upper adsorption unit In connection with the description, the string jig supporting the solar cell soldered from the soldering apparatus is located in the conveying conveyor through the conveyor of the Naming apparatus, and the string jig conveyed by the conveying conveyor is stopped by the detection of the sensing sensor. As such, when the solar cell is transferred by the string jig, the vacuum pad is lowered by the operation of the moving air cylinder of the movable adsorption unit, so that several solar cells soldered in a row in the string jig are absorbed, and the string jig is moved by the transfer conveyor. It will exit, and it will be detected by the sensor.

이와 같이, 스트링 지그가 빠져나가는 것을 감지센서가 감지하면, 테스트 핀이 설치된 테스트 지그 플레이트가 승하강 에어실린더에 의해 스트링 지그가 놓여져 있던 위치까지 상부방향으로 이동되고, 이동흡착부의 이동에어실린더가 작동하여 테스트 지그 플레이트 상부로 태양전지를 로딩하게 된다.In this way, when the detection sensor detects that the string jig is pulled out, the test jig plate provided with the test pin is moved upwards to the position where the string jig was placed by the elevating air cylinder, and the moving air cylinder of the movable adsorption unit is operated. The solar cell is loaded onto the test jig plate.

이와 같이 테스트 지그 위에 납땜된 수개의 태양전지가 올려지면, 도 1 에 도시된 바와 같이, 테스트부 상부에 위치하도록 상부 지지틀 상단 일측에 설치된 할로겐 램프가 점등하게 되고, 테스트 핀이 에어실린더에 의해 작동되어 태양전지의 상하도체 리본에 접촉되어 전압, 전류를 측정한다.When several solar cells soldered on the test jig are lifted up, as shown in FIG. 1, a halogen lamp installed at one side of the upper side of the upper support frame is turned on so that the test pin is positioned by the air cylinder as shown in FIG. 1. It operates in contact with the upper and lower conductor ribbon of the solar cell to measure voltage and current.

이와 같이, 측정에 의해 측정값이 합격되면, 테스트 지그 플레이트위에 로딩되어 있던 일렬로 납땜된 수개의 태양전지를 이동흡착부가 다시 흡착하게 되며, 회전실린더에 의해 회전기어를 작동시켜 회전축 가이드바를 180°회전시킨 후, 위치제어모터에 의해 사용자가 셋업한 위치로 태양전지를 흡착한 회전축 가이드바를 이동시킨다. 이때, 테스트 플레이트는 원 위치로 이동하게 되며, 할로겐램프는 소등된다.In this way, when the measured value is passed by the measurement, the mobile adsorption unit resorbs several solar cells that are soldered in a row on the test jig plate, and the rotary cylinder is operated by the rotary cylinder to rotate the rotary shaft guide bar by 180 °. After the rotation, the rotary shaft guide bar that absorbs the solar cell is moved to the position set by the user by the position control motor. At this time, the test plate moves to the original position, and the halogen lamp is turned off.

위치제어모터에 의해 셋업한 위치로 태양전지를 흡착한 진공패드 및 회전축 가이드바가 도착되면, 상부흡착부의 작동 에어실린더가 동작하여 이동흡착부의 진공패드위에 놓인 태양전지 후면의 표면까지 하강하게 된다. 이와 같은 상부흡착부의 하강에 의해 이동흡착부에 의해 셋업위치로 이동된 태양전지의 후면은 그 상단에 위치하는 상부흡착부의 진공패드에 흡착되며, 이동흡착부는 태양전지의 흡착을 해제하고 홈 포지션(최초대기위치)으로 이동하게 된다.When the vacuum pad and the rotating shaft guide bar that have absorbed the solar cells arrive at the position set by the position control motor, the operation air cylinder of the upper adsorption unit is operated to descend to the surface of the solar cell rear surface placed on the vacuum pad of the mobile adsorption unit. The rear surface of the solar cell moved to the set-up position by the mobile adsorption unit by the lowering of the upper adsorption unit is adsorbed on the vacuum pad of the upper adsorption unit located at the upper end thereof, and the mobile adsorption unit releases the adsorption of the solar cell and the home position ( Initial standby position).

이동흡착부가 홈 포지션에 위치하게 되면, 상부흡착부의 서보모터가 동작되어 워엄기어를 작동시키고, 상기 워엄기어의 작동에 의해 태양전지를 흡착하고 있는 진공패드 및 이를 지지하는 지지플레이트가 하강하여 볼 캐리어 플레이트 위로 로딩되어 있는 글래스 위로 태양전지를 다운-로딩하게 된다. 상기 이동흡착부는 태양전지를 글래스위로 다운-로딩한 후, 원위치로 이동하게 된다.When the mobile adsorption unit is located at the home position, the servomotor of the upper adsorption unit is operated to operate the worm gear, and the vacuum pad and the support plate supporting the solar cell are lowered by the operation of the worm gear to lower the ball carrier. The solar cell is down-loaded onto the glass loaded onto the plate. The mobile adsorption unit moves down to the original position after down-loading the solar cell onto the glass.

상기와 같은 작동의 반복에 의해 태양전지 모듈은 도 10 과 같은 태양전지 모듈 형태로 배열하게 되며, 사용자의 선택사양으로 배열된 수십개의 태양전지를 흡착하여 올리고 내릴 수 있게 되며, 태양전지 모듈 세팅 완료 후 종료하게 된다. By repeating the operation as described above, the solar cell module is arranged in the form of the solar cell module as shown in FIG. 10, and it is possible to lift and lower dozens of solar cells arranged as a user's option, and complete the solar cell module setting. Will be terminated.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

이와 같이, 본 발명은 자동으로 태양전지의 불량여부를 검사하고, 이를 흡착하여 임의의 형태로 정렬할 수 있도록 되어 있어, 태양전지모듈 제조공정의 자동화가 가능하고, 이로 인해 생산성을 향상시킬 수 있으며, 태양전지의 파손을 방지하고 전기적인 불량률을 최소화할 수 있는 등 많은 효과가 있다. As described above, the present invention is to automatically check whether the solar cell is defective, and it can be adsorbed to align it in any form, it is possible to automate the solar cell module manufacturing process, thereby improving productivity In addition, there are many effects such as preventing damage of the solar cell and minimizing an electrical failure rate.

도 1 은 본 발명에 따른 구성을 보인 정면예시도1 is a front view showing the configuration according to the present invention

도 2 는 본 발명에 따른 구성을 보인 측면예시도Figure 2 is a side view showing a configuration according to the present invention

도 3 은 본 발명에 따른 태양전지 테스트부의 구성을 보인 예시도3 is an exemplary view showing a configuration of a solar cell test unit according to the present invention

도 4 는 본 발명에 따른 테스트핀과 태양전지의 작동상태를 보인 예시도4 is an exemplary view showing an operating state of the test pin and the solar cell according to the present invention.

도 5 는 본 발명에 따른 상부 흡착부의 구성을 보인 예시도5 is an exemplary view showing the configuration of the upper adsorption portion according to the present invention

도 6 은 도 5 의 ' A ' 부 상세도FIG. 6 is a detailed view 'A' of FIG. 5.

도 7 은 본 발명에 따른 볼 캐리어 플레이트부의 구성을 보인 예시도7 is an exemplary view showing a configuration of a ball carrier plate portion according to the present invention

도 8 은 본 발명에 따른 이동흡착부의 개략적인 구성을 보인 예시도8 is an exemplary view showing a schematic configuration of a mobile adsorption unit according to the present invention;

도 9 는 태양전지의 납땜 결선 상태를 보인 예시도9 is an exemplary view showing a solder connection state of a solar cell.

도 10은 태양전지의 배열도를 보인 예시도10 is an exemplary view showing an arrangement of a solar cell

도 11은 본 발명에 따른 스트링 지그(string jig)의 구성을 보인 예시도11 is an exemplary view showing the configuration of a string jig (string jig) according to the present invention

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

(10) : 스트링 지그(string jig) (20) : 이동흡착부(10): string jig (20): mobile adsorption part

(21) : LM 가이드 (22) : 위치제어모터(21): LM guide (22): position control motor

(23) : 회전용 에어실린더 (24) : 회전기어(23): rotating air cylinder (24): rotating gear

(25) : 가이드 바 (26) : 밸런스 축25: guide bar 26: balance axis

(27) : 이동 에어실린더 (28) : 지지플레이트(27): movable air cylinder (28): support plate

(29) : 진공패드 (30) : 테스트부(29): vacuum pad (30): test section

(31) : 이송 컨베이어 (32) : 감지센서31: conveying conveyor 32: detecting sensor

(33) : 테스트 핀 (34) : 테스트 지그33: test pin 34: test jig

(35) : 테스트 틀 (36) : 할로겐 램프35: test frame 36: halogen lamps

(37) : 승하강 에어실린더 (40) : 상부 흡착부37: lifting and lowering air cylinder 40: upper suction part

(41) : 서보모터 (42) : 워엄기어(41): servomotor (42): worm gear

(43) : 가이드봉 (44) : 지지플레이트(43): guide rod (44): support plate

(45) : 진공패드 (46) : 작동에어실린더(45): vacuum pad (46): working air cylinder

(50) : 볼 캐리어 플레이트50: ball carrier plate

(61) : 상부 지지틀 (62) : 하부 지지틀(61): upper support frame 62: lower support frame

(100) : 태양전지 (101) : 태양전지 상하도체 리본100: solar cell 101: solar cell upper and lower conductor ribbon

Claims (4)

다수개의 세로지지대 및 가로지지대로 이루어진 상/하부 지지틀부Upper / lower support frame consisting of multiple longitudinal supports and horizontal supports 상기 하부 지지틀부의 일측에 일체형으로 설치되고 스트링지그에 놓여진 태양전지가 이송되며, 태양전지의 전류전압값을 측정하는 테스트부와,A test unit which is integrally installed on one side of the lower support frame unit and is transported with a solar cell placed on a string jig, and measures a current voltage value of the solar cell; 상기 상부 지지틀부 상단에 설치되어 작동에어실린더 및 서보모터에 의해 상/하 이동되고 다수개의 진공패드를 구비하는 상부흡착부와,An upper suction part installed at an upper end of the upper support frame part and moved up / down by an operating air cylinder and a servomotor and having a plurality of vacuum pads; 상기 상부 흡착부 하단에 위치하도록 상부 지지틀부 중단에 설치되고 에어실린더에 의해 회전되며 위치제어모터에 의해 LM가이드를 따라 전/후 이동됨과 동시에 다수개의 진공패드를 구비하는 이동흡착부를 포함하는 것을 특징으로 하는 태양전지 자동배열장치.It is installed on the upper support frame stop to be located at the lower end of the upper adsorption unit, rotated by an air cylinder, and moved along the LM guide by a position control motor, and includes a mobile adsorption unit having a plurality of vacuum pads at the same time Solar cell automatic arranging device. 제 1 항에 있어서;The method of claim 1; 상기 테스트부는 태양전지가 적재된 스트링 지그를 이송하는 이송컨베이어와, 상기 이송컨베이어 끝단 위치하도록 설치되는 감지센서와, 상기 이송컨베이어 하부에 위치하고 에어실린더에 의해 이동되어 일렬로 납땜된 다수개 태양전지의 상하도체 리본에 접촉되는 테스트 핀과, 상기 테스트 핀이 상부면에 설치된 테스트 지그와, 상기 테스트지그를 상하 이동시키는 승하강 에어실린더와, 상기 이송컨베이어, 감지센서가 설치되고 승하강 에어실린더를 지지하며 하부 지지틀에 일체형으로 설치되는 테스트 틀과, 상기 상부 지지틀의 일측에 설치되는 할로겐 램프로 구성된 것을 특징으로 하는 태양전지 자동배열장치.The test unit includes a transfer conveyor for transferring a string jig loaded with a solar cell, a sensing sensor installed to be positioned at the end of the transfer conveyor, and a plurality of solar cells that are positioned under the transfer conveyor and moved by an air cylinder to be soldered in a row. A test pin in contact with the upper and lower conductor ribbons, a test jig provided on the upper surface of the test pin, a lifting air cylinder for moving the test jig up and down, the transfer conveyor and a sensing sensor are installed to support the lifting air cylinder. And a test frame integrally installed on the lower support frame, and a halogen lamp installed on one side of the upper support frame. 제 1 항에 있어서;The method of claim 1; 상기 상부흡착부는 상부 지지틀 상단에 설치되는 서보모터와, 상기 서보모터에 연결되는 워엄기어와, 상기 워엄기어에 연결되고 상부 지지틀을 관통하는 다수개의 가이드봉을 구비하는 지지플레이트와, 상기 지지플레이트 하단에 하부 수직방향으로 설치되는 다수개의 작동에어실린더와, 상기 작동에어실린더에 연결설치되어 작동되는 진공패드로 구성된 것을 특징으로 하는 태양전지 자동배열장치.The upper suction part includes a support plate having a servo motor installed on the upper support frame, a worm gear connected to the servo motor, a plurality of guide rods connected to the worm gear and penetrating the upper support frame, and the support. And a plurality of operating air cylinders installed in the lower vertical direction at the bottom of the plate, and vacuum pads connected to and installed in the operating air cylinders. 제 1 항에 있어서;The method of claim 1; 상기 이동흡착부는 상부 지지틀 양측에 서로 평행하도록 각각 설치되는 LM가이드와, 상기 양측에 위치한 LM 가이드에 양끝단이 연결 설치되고 위치제어모터에 의해 이동되며, 회전용 에어실린더에 의해 회전되는 회전축 가이드바와, 상기 회전축 가이드바에 고정 설치되는 밸런스축과, 상기 회전축 가이드바를 중심으로 밸런스축과 대칭되는 위치의 양측에 각각 설치되는 이동에어실린더와, 상기 2개의 이동에어실린더 끝단에 연결되어 설치되는 진공패드지지대와, 상기 진공패드 지지대에 설치되는 다수개의 진공패드로 구성된 것을 특징으로 하는 태양전지 자동배열장치.The movable adsorption unit has LM guides installed on both sides of the upper support frame so as to be parallel to each other, and both ends are connected to the LM guides located at both sides, and are moved by a position control motor, and are rotated by a rotating air cylinder. A bar and a balance shaft fixed to the rotary shaft guide bar, a movable air cylinder installed on both sides of a position symmetrical to the balance shaft with respect to the rotary shaft guide bar, and a vacuum pad connected to the ends of the two movable air cylinders. Solar cell automatic array device, characterized in that consisting of a support and a plurality of vacuum pads installed on the vacuum pad support.
KR10-2003-0056367A 2003-08-14 2003-08-14 Automatic arraying machine of solar cells KR100512128B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0056367A KR100512128B1 (en) 2003-08-14 2003-08-14 Automatic arraying machine of solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0056367A KR100512128B1 (en) 2003-08-14 2003-08-14 Automatic arraying machine of solar cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR20-2003-0009565U Division KR200317024Y1 (en) 2003-03-31 2003-03-31 Automatic arraying machine of solar cells

Publications (2)

Publication Number Publication Date
KR20040086088A KR20040086088A (en) 2004-10-08
KR100512128B1 true KR100512128B1 (en) 2005-09-05

Family

ID=37368967

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0056367A KR100512128B1 (en) 2003-08-14 2003-08-14 Automatic arraying machine of solar cells

Country Status (1)

Country Link
KR (1) KR100512128B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063882A (en) * 2012-12-24 2013-04-24 芜湖市凤翔设备制造有限公司 Transmission and jacking device for optoelectronic device battery assembly detecting system
KR101910907B1 (en) * 2018-07-06 2018-10-24 곽성희 Vacuum suction appartus for display panels

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
EP2232690B1 (en) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel connected inverters
JP2011507465A (en) 2007-12-05 2011-03-03 ソラレッジ テクノロジーズ リミテッド Safety mechanism, wake-up method and shutdown method in distributed power installation
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
WO2009072075A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
EP2269290B1 (en) 2008-03-24 2018-12-19 Solaredge Technologies Ltd. Switch mode converter including active clamp for achieving zero voltage switching
EP2294669B8 (en) 2008-05-05 2016-12-07 Solaredge Technologies Ltd. Direct current power combiner
KR100903950B1 (en) * 2008-11-22 2009-06-25 이차석 Solar battery module manufacturing apparatus and process for producing the same
KR101020051B1 (en) * 2008-12-05 2011-03-09 (주)리드 of lay-up system for manufacturing solar cell module and assembly unit used in the system
US20100197051A1 (en) * 2009-02-04 2010-08-05 Applied Materials, Inc. Metrology and inspection suite for a solar production line
US20100273279A1 (en) * 2009-04-27 2010-10-28 Applied Materials, Inc. Production line for the production of multiple sized photovoltaic devices
KR101129650B1 (en) * 2010-02-01 2012-03-28 주식회사 인라인메카닉스 Transfer unit for solar cell module
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP3506370B1 (en) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
CN110434086A (en) * 2019-08-06 2019-11-12 浙江瑞尚能源科技有限公司 A kind of solar battery sheet detection screening line
CN112652546A (en) * 2020-10-09 2021-04-13 毕涛 Automatic test equipment for detecting highlight type solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063882A (en) * 2012-12-24 2013-04-24 芜湖市凤翔设备制造有限公司 Transmission and jacking device for optoelectronic device battery assembly detecting system
KR101910907B1 (en) * 2018-07-06 2018-10-24 곽성희 Vacuum suction appartus for display panels

Also Published As

Publication number Publication date
KR20040086088A (en) 2004-10-08

Similar Documents

Publication Publication Date Title
KR100512128B1 (en) Automatic arraying machine of solar cells
KR20220112819A (en) Chip detection device, chip detection system and control method
KR100903950B1 (en) Solar battery module manufacturing apparatus and process for producing the same
CN110225697B (en) Automatic production line of PTC heating plate
CN102800616A (en) Calibration mechanism and method for calibrating solar cell
CN110225698B (en) Manufacturing process of PTC heating sheet
KR200317024Y1 (en) Automatic arraying machine of solar cells
CN111308325A (en) Chip detection system and method
CN217361537U (en) Positioning device for wafer
CN114678302A (en) Chip packaging manufacturing equipment
CN115172206A (en) Wafer production equipment and method
CN115000248A (en) Positioning tool cyclic detection removal and supplement device and method based on battery string preparation
KR101042997B1 (en) soldering apparatus and soldering method for manufacturing solar cell module
CN108247343B (en) Automatic assembly machine for dial potentiometer
CN113200324A (en) Terminal outward appearance detects and equipment for packing
CN219871632U (en) Detection device
CN211895073U (en) Automatic feeding device for visual inspection equipment
CN212275887U (en) Chip detection system
CN112158578A (en) Aging test transmission system
CN213817697U (en) Electroluminescent defect detection device for battery piece
CN110907182A (en) Material clamping mechanism for motor testing device
KR101142274B1 (en) Arrangement appratus for lead frame
CN115188683A (en) Automatic chip test control device and method
CN210549119U (en) Bus bar welding device
CN113441419A (en) Testing arrangement of chip production usefulness

Legal Events

Date Code Title Description
A108 Dual application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120824

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130823

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150824

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160810

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170824

Year of fee payment: 13