KR100502425B1 - Method for preparing 4-amino-1-butanol - Google Patents

Method for preparing 4-amino-1-butanol Download PDF

Info

Publication number
KR100502425B1
KR100502425B1 KR10-2002-0061291A KR20020061291A KR100502425B1 KR 100502425 B1 KR100502425 B1 KR 100502425B1 KR 20020061291 A KR20020061291 A KR 20020061291A KR 100502425 B1 KR100502425 B1 KR 100502425B1
Authority
KR
South Korea
Prior art keywords
butanol
amino
producing
azido
reaction
Prior art date
Application number
KR10-2002-0061291A
Other languages
Korean (ko)
Other versions
KR20040031989A (en
Inventor
곽병성
정기남
최준태
김진웅
이상일
임종호
Original Assignee
에스케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이 주식회사 filed Critical 에스케이 주식회사
Priority to KR10-2002-0061291A priority Critical patent/KR100502425B1/en
Publication of KR20040031989A publication Critical patent/KR20040031989A/en
Application granted granted Critical
Publication of KR100502425B1 publication Critical patent/KR100502425B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/08Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic with only one hydroxy group and one amino group bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 4-아미노-1-부탄올의 제조방법에 관한 것으로, 좀 더 구체적으로 4-아지도-1-부탄올을 수소화 환원반응시켜 고순도의 4-아미노-1-부탄올을 제조하는 방법에 관한 것이다. 본 발명의 방법에 따라, 불균일계 촉매를 이용한 청정기술을 사용하여 폐기물이 거의 발생하지 않고, 추출공정을 배제시킴으로써 간단한 공정으로 산업적으로 활용 가능한 고순도의 4-아미노-1-부탄올을 얻을 수 있다.The present invention relates to a method for preparing 4-amino-1-butanol, and more particularly, to a method for producing 4-amino-1-butanol of high purity by hydrogenation of 4-azido-1-butanol. . According to the method of the present invention, a high-purity 4-amino-1-butanol which can be industrially utilized in a simple process can be obtained by eliminating the extraction process using little clean water using a clean technology using a heterogeneous catalyst.

Description

4-아미노-1-부탄올의 제조방법{METHOD FOR PREPARING 4-AMINO-1-BUTANOL}Method for producing 4-amino-1-butanol {METHOD FOR PREPARING 4-AMINO-1-BUTANOL}

본 발명은 4-아미노-1-부탄올의 제조방법에 관한 것으로, 보다 구체적으로는 4-아지도-1-부탄올을 수소화 환원반응시켜 고순도의 4-아미노-1-부탄올을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing 4-amino-1-butanol, and more particularly, to a method for producing 4-amino-1-butanol of high purity by hydrogenation reduction of 4-azido-1-butanol. .

일반적으로 4-아미노-1-부탄올은 고분자 물질 제조 및 의약품 제조의 기초가 되는 중요한 원료이다.In general, 4-amino-1-butanol is an important raw material which is the basis for the preparation of polymer materials and pharmaceuticals.

이러한 4-아미노-1-부탄올의 제조방법의 대표적인 종래기술의 예는 다음과 같다.Representative prior art examples of the preparation method of such 4-amino-1-butanol are as follows.

Zhongguo Yiyao Gongye Zazhi, 1992, 23 (12), 556 및 Synthesis. 1990, (8), 735에는 산업적으로 널리 사용되고 있는 프탈이미드(phthalimide)를 출발원료로 사용하여 4-아미노-1-부탄올을 제조하는 방법이 기재되어 있다. 상기 제조방법은 가격이 저렴한 원료를 사용하므로 경제적인 측면에서 유리한 제조방법이지만, 프탈이미드를 가수분해하는 공정이 필수적으로 수반되어야 하는 단점이 있고, 이 과정에서 물에 대한 용해도가 매우 큰 아미노알콜을 추출해야 하므로 수율이 낮아지는 문제가 있다. 또한, 증류와 같이 간단한 정제방법으로는 정제할 수 없으므로 음이온교환수지를 사용하여 정제하여야 하고, 4-아미노-1-부탄올이 수분 흡수가 매우 쉬운 화합물이기 때문에 고순도의 4-아미노-1-부탄올을 산업적으로 제조하는 데에는 문제가 있다. Zhongguo Yiyao Gongye Zazhi , 1992, 23 (12), 556 and Synthesis . 1990, (8), 735 describes a process for preparing 4-amino-1-butanol using phthalimide, which is widely used in industry, as a starting material. The manufacturing method is an advantageous manufacturing method in terms of economics because it uses a cheap material, but there is a disadvantage that the process of hydrolyzing phthalimide must be accompanied, and amino alcohol having a very high solubility in water in this process There is a problem that the yield is lowered because it must be extracted. In addition, since it cannot be purified by a simple purification method such as distillation, it must be purified using an anion exchange resin. There is a problem in industrial manufacturing.

또한, 일본특개평 제1-242559호에는 산업적으로 매우 널리 사용되고 있는 1,4-부탄디올을 출발원료로 사용하며 수소와 암모니아 기체를 이용하여 고온, 고압 하에서 4-아미노-1-부탄올을 제조하는 방법이 기재되어 있다. 상기 방법은 경제적인 측면에서 매우 유리한 제조방법이나, 낮은 전환율과 선택도를 갖기 때문에 산업적 생산에 적용하기 어려운 문제점이 있다.In addition, Japanese Patent Laid-Open No. 1-242559 uses 1,4-butanediol, which is very widely used industrially, as a starting material, and a method for producing 4-amino-1-butanol under high temperature and high pressure using hydrogen and ammonia gas. This is described. The method is very economically advantageous manufacturing method, but has a low conversion rate and selectivity has a problem that is difficult to apply to industrial production.

한편, 독일공개특허 제3415322호에는 3-염화프로피오니트릴을 출발원료로 사용하여 촉매를 이용한 수소화 반응을 통해 4-아미노-1-부탄올의 제조방법이 기재되어 있으나, 출발원료로 사용하는 3-염화프로피오니트릴의 가격이 높기 때문에 경제적인 측면에서 산업적 생산에 적용하기 어렵다. 체코슬로바키아특허 제216444호에는 4-아미노-1-부탄산을 사용하여 4-아미노-1-부탄올을 고수율로 제조하는 방법이 기재되어 있으나, 이 방법 역시 가연성 환원물질을 사용해야 하며 폐기물이 많이 발생하는 단점이 있다.Meanwhile, German Patent Publication No. 3415322 describes a method for preparing 4-amino-1-butanol through a hydrogenation reaction using a catalyst using 3-chloropropionitrile as a starting material, but 3- Because of the high price of propionitrile chloride, it is difficult to apply to industrial production from an economic point of view. Czechoslovak Patent No. 216444 describes a method for producing 4-amino-1-butanol in high yield using 4-amino-1-butanoic acid, but this method also uses flammable reducing materials and generates a lot of waste. There is a disadvantage.

독일공개특허 제19602049호에는 2-부텐-1,4-디올을 이성화반응과 환원적 아민화반응을 통해 4-아미노-1-부탄올의 제조방법이 기재되어 있다. 상기 제조방법은 촉매를 이용하는 매우 효율적인 제조방법이나, 가격이 비싼 균일계 촉매를 사용해야 하는 문제점이 있다.German Patent Publication No. 19602049 describes a method for preparing 4-amino-1-butanol through isomerization of 2-butene-1,4-diol and reductive amination. The production method has a problem that a very efficient production method using a catalyst, but expensive homogeneous catalyst should be used.

전술한 문제점들을 해결하기 위하여, 본 발명자들이 광범위한 연구를 거듭한 결과, 4-아지도-1-부탄올을 출발물질로 사용하여 불균일계 촉매 수소화 반응을 통해 높은 순도를 갖는 4-아미노-1-부탄올을 얻을 수 있는 방법을 발견하였으며, 본 발명은 이에 기초하여 완성되었다. In order to solve the above-mentioned problems, the inventors have conducted extensive research, and found that 4-amino-1-butanol having high purity through heterogeneous catalytic hydrogenation using 4-azido-1-butanol as a starting material. Found a way to obtain, the present invention was completed based on this.

따라서, 본 발명의 목적은 산업적으로 활용 가능한 고순도의 4-아미노-1-부탄올의 효율적인 제조방법을 제공하는데 있다.Accordingly, it is an object of the present invention to provide an efficient method for producing high purity 4-amino-1-butanol which is industrially available.

상기 목적을 달성하기 위한 본 발명에 따른 하기 화학식 2로 표시되는 4-아미노-1-부탄올의 제조방법은 하기 화학식 1로 표시되는 4-아지도-1-부탄올을 불균일계 촉매 및 유기용매 존재 하에서 반응온도 0∼200℃ 및 수소분압 0.1∼1500psig 하에서 수소화 환원반응시키는 것으로 구성된다.Method for producing 4-amino-1-butanol represented by the following formula (2) according to the present invention for achieving the above object is the 4-azido-1-butanol represented by the formula (1) in the presence of a heterogeneous catalyst and an organic solvent Hydrogenation reduction reaction at a reaction temperature of 0 to 200 캜 and a hydrogen partial pressure of 0.1 to 1500 psig.

N3CH2CH2CH2CH2OHN 3 CH 2 CH 2 CH 2 CH 2 OH

H2NCH2CH2CH2CH2OHH 2 NCH 2 CH 2 CH 2 CH 2 OH

이하, 본 발명의 방법을 좀 더 구체적으로 살펴보면 다음과 같다.Hereinafter, the method of the present invention will be described in more detail.

본 발명의 출발물질인 4-아지도-1-부탄올은 하기 화학식 1로 표시된다.4-azido-1-butanol as a starting material of the present invention is represented by the following formula (1).

화학식 1Formula 1

N3CH2CH2CH2CH2OHN 3 CH 2 CH 2 CH 2 CH 2 OH

상기 화학식 1로 표시되는 4-아지도-1-부탄올은 산업적으로 사용이 가능하며, 가격이 저렴한 4-염화-1-부탄올로부터 제조될 수 있다. 4-염화-1-부탄올은 테트라히드로퓨란을 원료로 사용하여 쉽게 제조될 수 있으며, Seances.Acad.Sci. 1955, 241, 963에 그 방법이 기재되어 있다. 또한, 4-염화-1-부탄올과 아지드화나트륨을 용매 하에서 반응시킴으로써 4-아지도-1-부탄올을 효율적으로 제조할 수 있다.4-azido-1-butanol represented by Formula 1 may be used industrially, and may be prepared from inexpensive 4-chloride-1-butanol. 4-chloride-1-butanol can be easily prepared using tetrahydrofuran as a raw material, and Seances . Acad . Sci . The method is described in 1955, 241, 963. In addition, 4-azido-1-butanol can be efficiently produced by reacting 4-chloride-1-butanol and sodium azide in a solvent.

이때 반응에 사용되는 용매는 물, 메탄올, 에탄올, 프로판올, 이소프로판올, 노르말부탄올, 이소부탄올, 네오부탄올, 벤젠, 톨루엔, 자일렌, 테트라히드로퓨란, 1,4-디옥산, 에틸에테르, 부틸에테르, 메틸티부틸에테르, 에틸아세테이트, 아세토니트릴, 노르말펜탄, 노르말헥산, 시클로헥산, 노르말헵탄, 디메틸포름아미드, 디메틸술폭시드, 아세톤, 메틸에틸케톤, 디클로로메탄, 클로로포름, 사염화탄소 및 이들의 조합으로 이루어진 군으로부터 적어도 하나 이상 선택되어 사용되며, 바람직하게는 물과 디메틸포름아미드이다.The solvent used in the reaction is water, methanol, ethanol, propanol, isopropanol, normal butanol, isobutanol, neobutanol, benzene, toluene, xylene, tetrahydrofuran, 1,4-dioxane, ethyl ether, butyl ether, Methyl thibutyl ether, ethyl acetate, acetonitrile, normal pentane, normal hexane, cyclohexane, normal heptane, dimethylformamide, dimethyl sulfoxide, acetone, methyl ethyl ketone, dichloromethane, chloroform, carbon tetrachloride and combinations thereof At least one is selected from and used, preferably water and dimethylformamide.

본 발명에 따르면, 상기 4-아지도-1-부탄올을 불균일계 촉매 및 유기용매 존재 하에서 반응온도 0∼200℃ 및 수소분압 0.1∼1500psig 조건 하에서 수소화 환원반응시켜 하기 화학식 2로 표시되는 4-아미노-1-부탄올을 얻는다.According to the present invention, the 4-azido-1-butanol is subjected to a hydrogenation reduction reaction under a reaction temperature of 0 to 200 ° C. and a hydrogen partial pressure of 0.1 to 1500 psig in the presence of a heterogeneous catalyst and an organic solvent. Obtain -1-butanol.

화학식 2Formula 2

H2NCH2CH2CH2CH2OHH 2 NCH 2 CH 2 CH 2 CH 2 OH

상기 화학식 2로 표시되는 4-아미노-1-부탄올을 불균일계 촉매와 용매 존재 하에서 수소화시킴으로써 효율적으로 제조할 수 있다. The 4-amino-1-butanol represented by the formula (2) can be efficiently produced by hydrogenation in the presence of a heterogeneous catalyst and a solvent.

이때 사용되는 수소화 반응 불균일계 촉매는 니켈(Ni), 루테늄(Ru), 팔라듐(Pd), 백금(Pt), 로듐(Rh), 구리(Cu) 및 이들의 조합으로 이루어진 군으로부터 적어도 하나 이상 선택되어 사용된다. The hydrogenation heterogeneous catalyst used at this time is at least one selected from the group consisting of nickel (Ni), ruthenium (Ru), palladium (Pd), platinum (Pt), rhodium (Rh), copper (Cu) and combinations thereof It is used.

상기 금속을 단독 또는 무기산화물 담체에 담지시켜 촉매로 사용할 수 있으나, 담체에 담지시킨 촉매를 사용하는 것이 더 바람직하다.The metal may be used alone or in an inorganic oxide carrier to be used as a catalyst, but it is more preferable to use a catalyst supported on the carrier.

상기 담체는 탄소, 실리카, 알루미나, 실리카-알루미나, 티타니아, 아연산화물, 지르코니아, 알카리 금속산화물, 알카리토 금속산화물 및 이들의 조합으로 이루어진 군으로부터 적어도 하나 이상 선택되어 사용된다. The carrier is selected from at least one selected from the group consisting of carbon, silica, alumina, silica-alumina, titania, zinc oxide, zirconia, alkali metal oxide, alkaline earth metal oxide, and combinations thereof.

이때, 상기 담지되는 수소화 금속의 함량은 상기 촉매 전체에 대하여 1∼80중량%, 더욱 바람직하게는 1∼60중량%이며, 만약 상기 금속의 함량이 1중량% 미만이면 수소화 반응의 활성이 감소하고, 80중량%를 초과하면 금속의 높은 가격으로 인해 공정의 경제성이 낮아지는 단점이 있다.At this time, the content of the supported metal hydride is 1 to 80% by weight, more preferably 1 to 60% by weight based on the entire catalyst, if the content of the metal is less than 1% by weight the activity of the hydrogenation reaction is reduced and If it exceeds 80% by weight, the economical efficiency of the process is lowered due to the high price of the metal.

반응에 사용되는 용매는 반응조건에서 반응물 및 생성물을 잘 녹여 반응기로 원활하게 공급할 수 있어야 하고, 발열 반응인 수소화 반응에 의해 발생된 반응열을 쉽게 제거하는 역할도 해야하며, 반응물, 생성물 및 수소와 반응하지 않아야 한다. 따라서 본 발명의 수소화 반응에 적절한 용매는 메탄올, 에탄올, 프로판올, 이소프로판올, 노르말부탄올, 이소부탄올, 네오부탄올, 테트라히드로퓨란, 1,4-디옥산, 에틸에테르, 부틸에테르, 메틸티부틸에테르, 디메틸포름아미드 및 이들의 조합으로 이루어진 군으로부터 적어도 하나 이상 선택되어 사용된다. The solvent used in the reaction should be able to dissolve the reactants and products well under the reaction conditions so that it can be smoothly supplied to the reactor, and also easily remove the heat of reaction generated by the exothermic hydrogenation reaction, and react with the reactants, products and hydrogen. Should not. Therefore, suitable solvents for the hydrogenation reaction of the present invention are methanol, ethanol, propanol, isopropanol, normal butanol, isobutanol, neobutanol, tetrahydrofuran, 1,4-dioxane, ethyl ether, butyl ether, methyl thibutyl ether, dimethyl At least one selected from the group consisting of formamide and combinations thereof is used.

상기 용매를 사용할 때, 용액 중의 4-아지도-1-부탄올의 함량은 1∼70중량%, 바람직하게는 2∼40중량%로 유지하는 것이 바람직하며, 만약 상기 4-아지도-1-부탄올의 함량이 1중량% 미만이면 용매 비용이 증가하고 생산성이 낮아지며, 70중량%를 초과하면 반응열 제어가 어려운 문제점이 있다.When using the solvent, the content of 4-azido-1-butanol in the solution is preferably maintained at 1 to 70% by weight, preferably 2 to 40% by weight, if the 4-azido-1-butanol If the content of less than 1% by weight, the solvent cost is increased and productivity is lowered, when the content of more than 70% by weight is difficult to control the reaction heat.

또한, 본 발명에서는 반응기 형태에는 제한이 없으나, 회분식 반응기 보다 고정층 연속 반응기를 사용하는 것이 특히 바람직하다. 고정층 연속 반응기를 사용함으로써 반응공간시간 대비 생산성이 향상되고, 촉매 제거공정이 불필요하며, 추가적인 처리공정 없이 촉매를 재사용할 수 있는 장점이 있다.In addition, in the present invention, there is no limitation in the form of the reactor, but it is particularly preferable to use a fixed bed continuous reactor rather than a batch reactor. By using a fixed bed continuous reactor, productivity is increased compared to the reaction space time, a catalyst removal process is unnecessary, and there is an advantage in that the catalyst can be reused without an additional treatment process.

한편, 본 발명에서 수행되는 수소화 반응은 반응온도 0∼200℃ 및 수소분압 0.1∼1500psig, 바람직하게는 반응온도 0∼150℃ 및 수소분압 0.1∼1300psig의 범위에서 조절되는 것이 바람직하다. 상기 반응온도가 200℃를 초과하면 반응생성물의 고리화 등의 추가반응으로 인해 부반응 생성물이 증가하며, 반응온도가 0℃ 미만이면 반응이 거의 일어나지 않는 문제점이 있다. On the other hand, the hydrogenation reaction carried out in the present invention is preferably controlled in the range of reaction temperature 0 ~ 200 ℃ and hydrogen partial pressure 0.1 ~ 1500psig, preferably in the reaction temperature 0 ~ 150 ℃ and hydrogen partial pressure 0.1 ~ 1300psig. When the reaction temperature exceeds 200 ℃ side reaction products increase due to additional reactions such as cyclization of the reaction product, there is a problem that the reaction hardly occurs when the reaction temperature is less than 0 ℃.

전술한 바와 같이, 본 발명에 따른 4-아미노-1-부탄올의 제조방법은 종래의 제조방법과는 달리, 상기 화학식 1로 표시되는 4-아지도-1-부탄올을 수소화 환원반응시켜 이루어지며, 고순도의 4-아미노-1-부탄올을 얻을 수 있어 산업상 매우 유용하게 적용할 수 있는 장점이 있다. 또한, 물에서 4-아미노-1-부탄올을 추출할 필요가 없어 공정이 간단하고, 유기용매를 사용하므로 수분함량을 낮게 유지할 수 있는 장점이 있다. 한편, 연속 수소화 반응은 가격이 저렴한 불균일계 촉매를 사용하므로 대량생산에 매우 유리하고 경제적이다. As described above, the manufacturing method of 4-amino-1-butanol according to the present invention is made by hydrogenation reduction reaction of 4-azido-1-butanol represented by Formula 1, unlike the conventional manufacturing method, Since high purity 4-amino-1-butanol can be obtained, there is an advantage that it can be very usefully applied industrially. In addition, there is no need to extract 4-amino-1-butanol from water, the process is simple, and there is an advantage that can maintain a low moisture content because an organic solvent is used. On the other hand, the continuous hydrogenation reaction is very advantageous and economical for mass production because it uses a heterogeneous catalyst which is inexpensive.

이하 실시예를 통하여 본 발명을 좀 더 구체적으로 설명하지만 하기 실시예에 본 발명의 범주가 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following Examples, but the scope of the present invention is not limited to the following Examples.

제조예 1Preparation Example 1

4-아지도-1-부탄올의 제조Preparation of 4-azido-1-butanol

디메틸포름아미드 0.5ℓ 및 아지드화나트륨 132g을 1ℓ 반응용기에 상온에서 투입한 후, 순도 85%인 4-염화-1-부탄올 245g을 천천히 투입하면서 교반하였다. 이때, 반응물의 온도는 100℃로 10시간 동안 유지하였다. 4-아지도-1-부탄올의 생성여부 및 전환율은 기체 크로마토그래피를 이용하여 확인하였다. 4-염화-1-부탄올이 모두 생성물로 전환되었을때 온도를 상온으로 낮추고, 반응혼합물을 걸러서 남겨진 고체는 폐기했다. 이때 걸러진 고체는 170g이었다. 결러진 용액을 감압증류하여 용매로 사용한 디메틸포름아미드를 제거한 후 4-아지도-1-부탄올 179g을 얻었다.0.5 L of dimethylformamide and 132 g of sodium azide were added to a 1 L reaction vessel at room temperature, followed by stirring while slowly adding 245 g of 4-chloro-1-butanol having a purity of 85%. At this time, the temperature of the reaction was maintained at 100 ℃ for 10 hours. Production and conversion of 4-azido-1-butanol were confirmed by gas chromatography. When all of the 4-chloro-1-butanol was converted to the product, the temperature was lowered to room temperature, and the reaction mixture was filtered to discard the remaining solid. The filtered solid at this time was 170g. The resulting solution was distilled under reduced pressure to remove dimethylformamide, which was used as a solvent, to obtain 179 g of 4-azido-1-butanol.

실시예 1Example 1

상기 제조예 1에서 얻은 4-아지도-1-부탄올 6g, 에탄올 60g 및 팔라듐-카본(팔라듐 함량 10%) 0.6g을 회분식 반응기에 투입한 후, 반응온도 25℃, 수소분압 100psig의 조건 하에서 3시간 동안 반응시켰다. 일정한 시간 간격으로 시료를 채취해서 고성능 가스 크로마토 그래피(High performance Gas chromatography)로 분석하고, 전환율이 100%에 도달했을때 반응을 종료시키고 반응기의 온도를 낮추었다. 이 때, 4-아미노-1-부탄올에 대한 선택도는 90%이었고, 반응생성물을 감압 증류하여 얻은 4-아미노-1-부탄올의 순도는 98%이었다.6 g of 4-azido-1-butanol, 60 g of ethanol, and 0.6 g of palladium-carbon (10% of palladium content) obtained in Preparation Example 1 were added to a batch reactor, followed by reaction temperature of 25 ° C. and hydrogen partial pressure of 100 psig. The reaction was carried out for a time. Samples were taken at regular time intervals and analyzed by high performance gas chromatography. When the conversion reached 100%, the reaction was terminated and the reactor temperature was lowered. At this time, the selectivity for 4-amino-1-butanol was 90%, and the purity of 4-amino-1-butanol obtained by distillation of the reaction product under reduced pressure was 98%.

실시예 2Example 2

상기 제조예 1에서 얻은 4-아지도-1-부탄올 6g, 에탄올 60g 및 루테늄-알루미나(루테늄 함량 5%) 1.5g을 회분식 반응기에 투입한 후, 반응온도 50℃, 수소분압 900psig의 조건 하에서 12시간 동안 반응시켰다. 이때, 4-아지도-1-부탄올의 전환율은 100%이었고, 4-아미노-1-부탄올에 대한 선택도는 98%이었다.6 g of 4-azido-1-butanol, 60 g of ethanol, and 1.5 g of ruthenium-alumina (5% of ruthenium) obtained in Preparation Example 1 were added to a batch reactor, and then reacted under a reaction temperature of 50 ° C. and a hydrogen partial pressure of 900 psig. The reaction was carried out for a time. At this time, the conversion rate of 4-azido-1-butanol was 100%, and the selectivity for 4-amino-1-butanol was 98%.

실시예 3Example 3

4-아지도-1-부탄올 6g, 에탄올 60g 및 구리-알루미나(구리 함량 25%) 1.5g을 회분식 반응기에 투입한 후, 반응온도 90℃, 수소분압 800psig의 조건하에서 12시간동안 반응시켰다. 이때, 4-아지도-1-부탄올의 전환율은 100%이었고, 4-아미노-1-부탄올에 대한 선택도는 94%이었다.6 g of 4-azido-1-butanol, 60 g of ethanol, and 1.5 g of copper-alumina (copper content 25%) were added to a batch reactor, and reacted for 12 hours under a reaction temperature of 90 ° C. and a hydrogen partial pressure of 800 psig. At this time, the conversion rate of 4-azido-1-butanol was 100%, and the selectivity for 4-amino-1-butanol was 94%.

실시예 4 Example 4

상기 제조예 1에서 얻은 4-아지도-1-부탄올 6g, 메탄올 60g 및 레이니니켈 1.5g을 회분식 반응기에 투입한 후, 반응온도 60℃, 수소분압 800psig의 조건 하에서 6시간 동안 반응시켰다. 이때, 4-아지도-1-부탄올의 전환율은 100%이었고, 4-아미노-1-부탄올에 대한 선택도는 99%이었다.6 g of 4-azido-1-butanol obtained in Preparation Example 1, 60 g of methanol, and 1.5 g of Raney Nickel were added to a batch reactor, and reacted for 6 hours under a reaction temperature of 60 ° C. and a hydrogen partial pressure of 800 psig. At this time, the conversion rate of 4-azido-1-butanol was 100%, and the selectivity for 4-amino-1-butanol was 99%.

실시예 5Example 5

산화니켈-알루미나(니켈 함량 58%) 40g을 스테인레스 재질의 자동화된 고압반응기에 충진시키고, 고압 하에서 수소를 30ℓ/hr로 주입하여 1℃/min로 300℃까지 온도를 상승시킨 다음, 3시간 동안 상기 촉매를 환원시켰다. 그런 다음, 반응기의 내부 온도를 70℃로 낮추고, 반응기 압력을 700psig로 조절한 후, 상기 제조예 1에서 얻은 4-아지도-1-부탄올, 에탄올 및 수소가스를 각각 15g/hr, 180g/hr, 60ℓ/hr의 속도로 주입하여 반응시켰다. 이때, 4-아지도-1-부탄올의 전환율은 100%이고, 4-아미노-1-부탄올에 대한 선택도는 99%이었다.40 g of nickel oxide-alumina (58% nickel) was charged in an automated high pressure reactor made of stainless steel, and hydrogen was injected at 30 l / hr under high pressure to raise the temperature to 300 ° C. at 1 ° C./min, and then for 3 hours. The catalyst was reduced. Then, the internal temperature of the reactor was lowered to 70 ° C., the reactor pressure was adjusted to 700 psig, and the 4-azido-1-butanol, ethanol, and hydrogen gas obtained in Preparation Example 1 were 15 g / hr and 180 g / hr, respectively. And reacted by injecting at a rate of 60 L / hr. At this time, the conversion rate of 4-azido-1-butanol was 100%, and the selectivity for 4-amino-1-butanol was 99%.

실시예 6Example 6

백금-알루미나(백금 함량 5%) 40g을 스테인레스 재질의 자동화된 고압반응기에 충진시키고, 고압 하에서 수소를 30ℓ/hr로 주입하면서 1℃/min로 400℃까지 온도를 상승시킨 다음, 3시간 동안 상기 촉매를 환원시켰다. 그런 다음, 반응기 내부 온도를 25℃로 낮추고, 반응기 압력을 120psig로 조절한 후, 상기 제조예 1에서 얻은 4-아지도-1-부탄올, 에탄올 및 수소가스를 각각 15g/hr, 180g/hr, 60ℓ/hr의 속도로 주입하여 반응시켰다. 이때, 4-아지도-1-부탄올의 전환율은 100%이었고, 4-아미노-1-부탄올에 대한 선택도는 99%이었다.40 g of platinum-alumina (5% platinum) was charged into an automated high pressure reactor made of stainless steel, and the temperature was raised to 400 ° C. at 1 ° C./min while injecting hydrogen at 30 L / hr under high pressure, followed by The catalyst was reduced. Then, the temperature inside the reactor was lowered to 25 ° C., the reactor pressure was adjusted to 120 psig, and the 4-azido-1-butanol, ethanol and hydrogen gas obtained in Preparation Example 1 were each 15 g / hr, 180 g / hr, The reaction was carried out by injecting at a rate of 60 L / hr. At this time, the conversion rate of 4-azido-1-butanol was 100%, and the selectivity for 4-amino-1-butanol was 99%.

상기 실시예를 통해 알 수 있는 바와 같이, 본 발명에 따라 4-아미노-1-부탄올을 제조할 경우, 불균일계 촉매를 사용한 청정기술을 이용하므로 폐기물이 거의 발생하지 않고, 경제적이며, 대량생산에 유리하다. 또한, 추출공정을 배제시킴으로써 간단한 공정으로 산업적으로 활용 가능한 고순도의 4-아미노-1-부탄올을 제조할 수 있는 장점이 있다. As can be seen through the above embodiment, when producing 4-amino-1-butanol according to the present invention, since a clean technology using a heterogeneous catalyst is used, almost no waste is generated, and economical, It is advantageous. In addition, by eliminating the extraction process there is an advantage that can be produced in high purity 4-amino-1-butanol industrially available in a simple process.

Claims (7)

하기 화학식 1로 표시되는 4-아지도-1-부탄올을 불균일계 촉매 및 유기용매존재 하에서 반응온도 0∼200℃ 및 수소분압 0.1∼1500psig의 조건 하에서 수소화 환원반응키는 것을 특징으로 하는 하기 화학식 2로 표시되는 4-아미노-1-부탄올의 제조방법.The 4-azido-1-butanol represented by the following Chemical Formula 1 is subjected to a hydrogenation reduction reaction under a heterogeneous catalyst and an organic solvent in the presence of a reaction temperature of 0 to 200 ° C. and a hydrogen partial pressure of 0.1 to 1500 psig. Method for producing 4-amino-1-butanol represented by 화학식 1Formula 1 N3CH2CH2CH2CH2OHN 3 CH 2 CH 2 CH 2 CH 2 OH 화학식 2Formula 2 H2NCH2CH2CH2CH2OHH 2 NCH 2 CH 2 CH 2 CH 2 OH 제1항에 있어서, 상기 4-아지도-1-부탄올의 함량은 상기 유기용매에 대하여 1∼70중량%인 것을 특징으로 하는 4-아미노-1-부탄올의 제조방법.The method for producing 4-amino-1-butanol according to claim 1, wherein the content of 4-azido-1-butanol is 1 to 70% by weight based on the organic solvent. 제1항에 있어서, 상기 불균일계 촉매는 니켈(Ni), 루테늄(Ru), 팔라듐(Pd), 백금(Pt), 로듐(Rh), 구리(Cu) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것을 특징으로 하는 4-아미노-1-부탄올의 제조방법.According to claim 1, wherein the heterogeneous catalyst is one selected from the group consisting of nickel (Ni), ruthenium (Ru), palladium (Pd), platinum (Pt), rhodium (Rh), copper (Cu) and combinations thereof Method for producing 4-amino-1-butanol, characterized by the above-mentioned. 제1항에 있어서, 상기 불균일계 촉매는 니켈(Ni), 루테늄(Ru), 팔라듐(Pd), 백금(Pt), 로듐(Rh), 구리(Cu) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 금속을 무기산화물 담체에 담지시킨 촉매이며, 상기 담지된 금속의 함량은 상기 촉매 전체에 대하여 1∼80중량%인 것을 특징으로 하는 4-아미노-1-부탄올의 제조방법.According to claim 1, wherein the heterogeneous catalyst is one selected from the group consisting of nickel (Ni), ruthenium (Ru), palladium (Pd), platinum (Pt), rhodium (Rh), copper (Cu) and combinations thereof A method of preparing 4-amino-1-butanol, wherein the metal is supported on an inorganic oxide support, and the content of the supported metal is 1 to 80% by weight based on the whole of the catalyst. 제4항에 있어서, 상기 무기산화물 담체는 탄소, 실리카, 알루미나, 실리카-알루미나, 티타니아, 아연산화물, 지르코니아, 알카리 금속산화물 및 알카리토 금속산화물로 이루어진 군으로부터 선택된 하나인 것을 특징으로 하는 4-아미노-1-부탄올의 제조방법.The method of claim 4, wherein the inorganic oxide carrier is 4-amino, characterized in that one selected from the group consisting of carbon, silica, alumina, silica-alumina, titania, zinc oxide, zirconia, alkali metal oxide and alkaline metal oxide. -1-Butanol Production Method. 제1항에 있어서, 상기 반응온도는 0∼150℃이고 및 수소분압은 0.1∼1300psig인 것을 특징으로 하는 4-아미노-1-부탄올의 제조방법.The method for producing 4-amino-1-butanol according to claim 1, wherein the reaction temperature is 0 to 150 ° C and the hydrogen partial pressure is 0.1 to 1300 psig. 제1항에 있어서, 상기 유기용매는 메탄올, 에탄올, 프로판올, 이소프로판올, 노르말부탄올, 이소부탄올, 네오부탄올, 테트라히드로퓨란, 1,4-디옥산, 에틸에테르, 부틸에테르, 메틸티부틸에테르, 디메틸포름아미드 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것을 특징으로 하는 4-아미노-1-부탄올의 제조방법.The method of claim 1, wherein the organic solvent is methanol, ethanol, propanol, isopropanol, normal butanol, isobutanol, neobutanol, tetrahydrofuran, 1,4-dioxane, ethyl ether, butyl ether, methyl thibutyl ether, dimethyl Method for producing 4-amino-1-butanol, characterized in that one selected from the group consisting of formamide and combinations thereof.
KR10-2002-0061291A 2002-10-08 2002-10-08 Method for preparing 4-amino-1-butanol KR100502425B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0061291A KR100502425B1 (en) 2002-10-08 2002-10-08 Method for preparing 4-amino-1-butanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0061291A KR100502425B1 (en) 2002-10-08 2002-10-08 Method for preparing 4-amino-1-butanol

Publications (2)

Publication Number Publication Date
KR20040031989A KR20040031989A (en) 2004-04-14
KR100502425B1 true KR100502425B1 (en) 2005-07-20

Family

ID=37332016

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0061291A KR100502425B1 (en) 2002-10-08 2002-10-08 Method for preparing 4-amino-1-butanol

Country Status (1)

Country Link
KR (1) KR100502425B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2049A (en) * 1841-04-16 Mode of ascebtarntng the pressuse of steamc in the boilers of steam
US3415322A (en) * 1966-10-14 1968-12-10 Fmc Corp Expandable bushing for well casing hangers
JPH01242559A (en) * 1988-03-23 1989-09-27 Japan Synthetic Rubber Co Ltd Production of amino alcohol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2049A (en) * 1841-04-16 Mode of ascebtarntng the pressuse of steamc in the boilers of steam
US3415322A (en) * 1966-10-14 1968-12-10 Fmc Corp Expandable bushing for well casing hangers
JPH01242559A (en) * 1988-03-23 1989-09-27 Japan Synthetic Rubber Co Ltd Production of amino alcohol

Also Published As

Publication number Publication date
KR20040031989A (en) 2004-04-14

Similar Documents

Publication Publication Date Title
EP3674285B1 (en) Process for producing m-xylylenediamine
KR101619399B1 (en) Preparation method of 1,4-cyclohexanedimethanol
EP2524909B1 (en) Preparation method of 4-aminomethylbenzoic acid
CN106518754B (en) A method of preparing 2,3- dichloropyridine
KR100502425B1 (en) Method for preparing 4-amino-1-butanol
MX2012006590A (en) Method for producing 2,2-difluoroethylamine and salts thereof, starting with difluoroacetone nitrile.
KR20000071062A (en) PROCESS TO CONTINUOUSLY PREPARE AN AQUEOUS MIXTURE OF ε-CAPROLACTAM AND ε-CAPROLACTAM PRECURSORS
US5922917A (en) Process for the preparation of 2-amino-1,3-propanediol
KR100774627B1 (en) Method for preparing of optically pure R-form or S-form tetrahydro furfuryl alcohol using heterogeneous catalysts
JP2740828B2 (en) Method for producing N, N-diisopropylethylamine
CN108602758B (en) Process for preparing trans-4-amino-1-cyclohexanecarboxylic acids and derivatives thereof
AU2020230965A1 (en) Synthesis of 4-amino-5-methyl-1H-pyridin-2(1H)-on (intermediate compound for the synthesis of the MR antagonist finerenone) from 2-chloro-5-methyl-4-nitro-pyridine-1-oxide using the intermediate compound 2-chloro-5-methyl-4-pyridinamine
US6429319B1 (en) Continuous process for the production of optically pure (S)-beta-hydroxy-gamma-butyrolactone
CN112661694B (en) Preparation method of 4- (dimethoxymethyl) -piperidine
CN111433181A (en) Synthesis of bicyclo [2.2.2] octane derivatives
CN107089918B (en) Preparation method of benzhydrylamine hydrochloride
JP4389683B2 (en) Process for producing trans-4-aminocyclohexanecarboxylic acid alkyl ester hydrochloride
JP5512202B2 (en) Process for producing β, β-dimethyl-ε-caprolactam
WO2004058785A1 (en) Process for producing 2-deoxyaldose compound
KR100774629B1 (en) A continuous process for the production of pure 2,3-dihydrobenzofuran
KR100774628B1 (en) Method for preparing of optically pure R-form or S-form tetrahydrofurfurylamine using heterogeneous catalysts
JP4747249B2 (en) Process for producing 1,2-dimethylimidazole
JPH03133954A (en) Production of 3-aminopyrrolidine
GB2084146A (en) Process for preparing 4-aminomethylbenzoic acid
KR100710558B1 (en) A continuous process for the production of optically pure S-4-hydroxy-2-pyrrolidone

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090710

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee