KR100493145B1 - Gan laser diode - Google Patents

Gan laser diode Download PDF

Info

Publication number
KR100493145B1
KR100493145B1 KR1019980000684A KR19980000684A KR100493145B1 KR 100493145 B1 KR100493145 B1 KR 100493145B1 KR 1019980000684 A KR1019980000684 A KR 1019980000684A KR 19980000684 A KR19980000684 A KR 19980000684A KR 100493145 B1 KR100493145 B1 KR 100493145B1
Authority
KR
South Korea
Prior art keywords
gan
layer
laser diode
contact layer
metal electrode
Prior art date
Application number
KR1019980000684A
Other languages
Korean (ko)
Other versions
KR19990065411A (en
Inventor
오은순
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1019980000684A priority Critical patent/KR100493145B1/en
Publication of KR19990065411A publication Critical patent/KR19990065411A/en
Application granted granted Critical
Publication of KR100493145B1 publication Critical patent/KR100493145B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

본 발명에 따른 GaN계 레이저 다이오드는, 기판 위에 n-GaN 컨택층, n-AlGaN 크래드층, InGaN 활성층, p-AlGaN 크래드층, p-GaN 컨택층이 순차적으로 형성된 GaN계 레이저 다이오드에 있어서, 상기 p-GaN 컨택층 위에 p형으로 도핑된 다이아몬드막이 형성된 점에 그 특징이 있다.The GaN laser diode according to the present invention is a GaN laser diode in which an n-GaN contact layer, an n-AlGaN clad layer, an InGaN active layer, a p-AlGaN clad layer, and a p-GaN contact layer are sequentially formed on a substrate. And a p-type doped diamond film is formed on the p-GaN contact layer.

Description

GaN계 레이저 다이오드{GaN laser diode}GaN-based laser diodes {GaN laser diode}

본 발명은 GaN계 레이저 다이오드에 관한 것이다.The present invention relates to a GaN-based laser diode.

GaN계 반도체 소자는 에너지 밴드 갭이 약 3.4eV인 광대역 밴드갭을 갖는 직접 천이(Direct Transition)형 구조로서, 단파장의 광학 소자, 고출력/고주파 전자 소자로의 응용 범위가 점차 확대되어 가고 있으며, 특히 단파장 계열인 청색 레이저 다이오드의 수요는 급증하고 있는 추세이다.GaN-based semiconductor devices are direct transition type structures having a broadband bandgap with an energy band gap of about 3.4 eV, and the application range of short wavelength optical devices and high power / high frequency electronic devices is gradually increasing. The demand for short wavelength blue laser diodes is increasing rapidly.

도 1은 이와 같은 GaN 반도체 소자들 중, GaN 레이저 다이오드의 단면도이다. 도시된 바와 같이, 종래의 GaN 레이저 다이오드는 기판(1) 위에 n-GaN 컨택층(2), n-AlGaN 크래드층(3), InGaN 활성층(4), p-AlGaN 크래드층(5) 및 p-GaN 컨택층(6)이 순차적으로 형성된 구조로 이루어져 있다.1 is a cross-sectional view of a GaN laser diode among such GaN semiconductor devices. As shown, a conventional GaN laser diode has an n-GaN contact layer 2, an n-AlGaN cladding layer 3, an InGaN active layer 4, and a p-AlGaN cladding layer 5 on a substrate 1. And a p-GaN contact layer 6 formed sequentially.

상기 기판(1)은 사파이어 기판으로서 부도체이다. 따라서, 소정의 식각 과정에 의한 n-GaN 컨택층(2)의 노출 부분에 n-금속 전극(미도시)이 형성되며, p-GaN 컨택층(2) 위에는 p-금속 전극(미도시)이 형성된다.The substrate 1 is an insulator as a sapphire substrate. Accordingly, an n-metal electrode (not shown) is formed on an exposed portion of the n-GaN contact layer 2 by a predetermined etching process, and a p-metal electrode (not shown) is formed on the p-GaN contact layer 2. Is formed.

이와 같은 구조를 갖는 GaN 레이저 다이오드의 두 금속 전극 사이에 소정의 순방향 바이어스를 인가하면, n-AlGaN 크래드층(3)으로부터는 전자들이, p-AlGaN 크래드층(5)으로부터는 홀들이 각각 InGaN 활성층(4)으로 주입된다. 그러면, InGaN 활성층(4)에 주입된 캐리어(전자 및 홀)들은 유폐되어 여기 상태로 존재하다가 전자-홀 재결합이 이루어진다. 이 전자-홀 재결합에 의해 빛이 방출되며, InGaN 활성층(4)의 분포 반전(population inversion)에 의해 레이저 발진이 가능하게 된다.When a predetermined forward bias is applied between the two metal electrodes of the GaN laser diode having such a structure, electrons from the n-AlGaN cladding layer 3 and holes from the p-AlGaN cladding layer 5 are respectively. It is injected into the InGaN active layer 4. Then, carriers (electrons and holes) injected into the InGaN active layer 4 remain in a closed state and are excited, and electron-hole recombination takes place. Light is emitted by this electron-hole recombination, and laser oscillation is enabled by the population inversion of the InGaN active layer 4.

한편, 상기 p-GaN 컨택층(6)을 p 타입으로 도핑하기 위하여 일반적으로 Mg를 도핑하면서 GaN을 성장시킨다. 그런데, 이와 같이 Mg를 도핑하여 현재까지 얻어진 최대 홀 농도는 1018/㎤정도이지만, 그 재연성을 달성하기가 용이하지 않다. 그리고, GaN은 그 성질상 p 도핑이 용이하지 않다는 문제점이 있다. 또한, 레이저 다이오드는 발광 소자보다 더 많은 전류가 흐르도록 하여야 하는데, 이 흐르는 전류에 의해 Mg가 도핑된 p-GaAs 컨택층(6)과 p-금속 전극 사이에서는 많은 열이 발생된다는 문제점이 있다.Meanwhile, in order to dope the p-GaN contact layer 6 to p type, GaN is grown while doping Mg. By the way, although the maximum hole concentration obtained so far by doping Mg is about 10 18 / cm <3>, it is not easy to achieve the recombination property. In addition, GaN has a problem that p doping is not easy due to its properties. In addition, the laser diode should allow more current to flow than the light emitting device, and there is a problem in that a lot of heat is generated between the p-GaAs contact layer 6 doped with Mg and the p-metal electrode.

본 발명은 상기와 같은 문제점을 개선하기 위하여 창출된 것으로서, p-컨택층에 p형 도핑 농도가 증가되며, 금속 전극과의 접촉면에서 열이 적게 발생되는 GaN계 레이저 다이오드를 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object thereof is to provide a GaN-based laser diode in which a p-type doping concentration is increased in a p-contact layer and less heat is generated at a contact surface with a metal electrode. .

상기 목적들을 달성하기 위하여, 본 발명에 따른 GaN계 레이저 다이오드는, 기판 위에 n-GaN 컨택층, n-AlGaN 크래드층, InGaN 활성층, p-AlGaN 크래드층, p-GaN 컨택층이 순차적으로 형성된 GaN계 레이저 다이오드에 있어서, 상기 p-GaN 컨택층 위에 p형으로 도핑된 다이아몬드막이 형성된 것을 특징으로 한다.In order to achieve the above objects, the GaN-based laser diode according to the present invention, the n-GaN contact layer, n-AlGaN cladding layer, InGaN active layer, p-AlGaN cladding layer, p-GaN contact layer sequentially on the substrate In the formed GaN-based laser diode, a p-type doped diamond film is formed on the p-GaN contact layer.

이하, 첨부된 도면을 참조하면서 본 발명에 따른 GaN계 레이저 다이오드를 설명한다.Hereinafter, a GaN laser diode according to the present invention will be described with reference to the accompanying drawings.

도 2는 본 발명에 따른 GaN계 레이저 다이오드의 단면도이다. 도시된 바와 같이, 본 발명에 따른 GaN계 레이저 다이오드는, p-GaN 컨택층 위에 p형으로 도핑된 다이아몬드막이 형성된 점에 그 특징이 있다. 이와 같이, p형 도핑이 용이한 다이아몬드막을 형성시킴으로 용이하게 p도핑 농도를 증가시킬 수 있다.2 is a cross-sectional view of a GaN laser diode according to the present invention. As shown, the GaN-based laser diode according to the present invention is characterized in that a p-type doped diamond film is formed on the p-GaN contact layer. In this manner, the p-doped concentration can be easily increased by forming a diamond film which is easy to p-type doping.

도 2를 참조하여 본 발명에 따른 GaN계 레이저 다이오드를 보다 상세히 설명해 보기로 한다. 본 발명에 따른 GaN계 레이저 다이오드는, 기판, 예컨대 사파이어 기판(21) 위에 n-GaN 컨택층(22), n-AlGaN 크래드층(23), InGaN 활성층(24), p-AlGaN 크래드층(25), p-GaN 컨택층(26) 및 p형으로 도핑된 p-다이아몬드막(27)이 순차적으로 형성된 구조를 갖는다.Referring to Figure 2 will be described in more detail the GaN-based laser diode according to the present invention. The GaN-based laser diode according to the present invention includes an n-GaN contact layer 22, an n-AlGaN cladding layer 23, an InGaN active layer 24, and a p-AlGaN cladding layer on a substrate such as a sapphire substrate 21. (25), the p-GaN contact layer 26 and the p-diamond film 27 doped in a p-type are sequentially formed.

상기 사파이어 기판(21)은 부도체이므로, n-금속 전극(28)은 n-GaN 컨택층(22)의 일부를 노출시킨 후, 이 노출 부분에 형성되며, p-금속 전극(29)은 p-다이아몬드막(27) 위에 형성된다.Since the sapphire substrate 21 is an insulator, the n-metal electrode 28 is formed on the exposed portion after exposing a portion of the n-GaN contact layer 22, and the p-metal electrode 29 is p- It is formed on the diamond film 27.

상기 n-GaN 컨택층(22)은 n-금속 전극(28)과의 접촉 저항을 줄이기 위한 층이다. 상기 n-AlGaN 크래드층(23) 및 p-AlGaN 크래드층(25)은 InGaN 활성층(24)과 이종 접합되어 있으며, 이 이종 접합된 물질들간의 에너지 밴드갭 차에 의해 양자 우물이 형성된다. 상기 p-GaN 컨택층(25)은 p-다이아몬드막(27)을 통해서 소자 내부로 흘러 들어오는 전류가 더 잘 흐르도록 돕는다.The n-GaN contact layer 22 is a layer for reducing contact resistance with the n-metal electrode 28. The n-AlGaN cladding layer 23 and the p-AlGaN cladding layer 25 are heterogeneously bonded to the InGaN active layer 24, and a quantum well is formed by the energy band gap difference between the heterobonded materials. . The p-GaN contact layer 25 helps the current flowing into the device through the p-diamond layer 27 to flow better.

본 발명의 특징부인 p-다이아몬드막(27)은 p-금속 전극(29)과의 접촉 저항을 줄여 전류가 소자 내부로 쉽게 흐르도록 하기 위하여 형성된 층이다. 다이아몬드는 그 성질상 p형으로의 도핑이 용이하여 p-금속 전극(29)과의 접촉 저항을 쉽게 감소시킬 수 있다. 또한, 상기 접촉 저항이 감소됨에 따라 구동 전압을 낮출 수 있으며, 구동 전압이 낮아짐에 따라 p-금속 전극(29)과의 접촉면에서 발생되는 열도 줄어든다. 더욱이, 다이아몬드는 열전도도가 매우 높으므로, p-금속 전극(29)과의 접촉면에서 열이 발생하더라도 이 발생하는 열은 p-다이아몬드막(27)을 통하여 외부로 쉽게 방출된다.The p-diamond film 27, which is a feature of the present invention, is a layer formed to reduce the contact resistance with the p-metal electrode 29 so that current easily flows into the device. Diamond can be easily doped into the p-type by its nature, so that the contact resistance with the p-metal electrode 29 can be easily reduced. In addition, as the contact resistance is reduced, the driving voltage can be lowered, and as the driving voltage is lowered, heat generated at the contact surface with the p-metal electrode 29 is reduced. Moreover, since diamond has a very high thermal conductivity, even if heat is generated at the contact surface with the p-metal electrode 29, the generated heat is easily released to the outside through the p-diamond film 27.

이와 같은 p-다이아몬드막(27)은 p-GaN 컨택층(26) 위에 다이아몬드를 p형으로 도핑시키면서 적층하여 형성시킨다. 즉, 소정의 다이아몬드 증착 장비를 사용하여 p-GaN 컨택층(26) 위에 다이아몬드를 증착시키면서 p타입 도핑을 수행하며, 이 때 다이아몬드 박막(27)을 증착시키기 위해 기판 온도를 올려도, GaN의 성장 온도는 약 1000℃ 정도로 다이아몬드 성장 온도보다 높으므로, GaN에는 영향이 없다. 더욱이, p-다이아몬드막(27)은 p-금속 전극과의 접촉 저항을 줄여 전류가 소자 내부로 쉽게 흐르도록 하기 위한 층이므로 그 질(quality)은 소자의 동작에 영향을 미치지 않는다.The p-diamond film 27 is formed by stacking the p-diamond film 27 while doping the p-GaN contact layer 26 in a p-type. That is, p-type doping is performed by depositing diamond on the p-GaN contact layer 26 using a predetermined diamond deposition equipment, and at this time, even if the substrate temperature is increased to deposit the diamond thin film 27, the growth temperature of GaN is increased. Is higher than the diamond growth temperature at about 1000 ° C., so GaN is not affected. In addition, since the p-diamond film 27 is a layer for reducing the contact resistance with the p-metal electrode so that current easily flows into the device, its quality does not affect the operation of the device.

이상의 설명에서와 같이 본 발명에 따른 GaN계 레이저 다이오드에 의하면, p-GaN 컨택층 위에 금속 전극과 접촉되도록 p형으로 도핑된 다이아몬드막을 형성시킴으로써, 금속 전극과의 접촉 저항을 줄이고, 이에 따라 구동 전압도 낮출 수 있어서 금속 전극과의 접촉면에서의 열 발생을 줄일 수 있다. 더욱이, 다이아몬드는 열전도도가 높으므로, 금속 전극과의 접촉면에서 발생되는 열도 쉽게 외부로 방출된다.According to the GaN laser diode according to the present invention as described above, by forming a p-type doped diamond film on the p-GaN contact layer to be in contact with the metal electrode, thereby reducing the contact resistance with the metal electrode, thereby driving voltage It can also be lowered to reduce heat generation at the contact surface with the metal electrode. Moreover, since diamond has high thermal conductivity, heat generated at the contact surface with the metal electrode is also easily released to the outside.

도 1은 종래의 GaN계 레이저 다이오드의 단면도,1 is a cross-sectional view of a conventional GaN-based laser diode,

그리고 도 2는 본 발명에 따른 GaN계 레이저 다이오드의 단면도이다.2 is a cross-sectional view of a GaN laser diode according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1, 21...기판 2, 22...n-GaN 컨택층 1, 21 ... substrate 2, 22 ... n-GaN contact layer

3, 23...n-AlGaN 크래드층 4, 24...InGaN 활성층3, 23 ... n-AlGaN cladding layer 4, 24 ... InGaN active layer

5, 25...p-AlGaN 크래드층 6, 26...p-GaN 컨택층5, 25 ... p-AlGaN cladding layer 6, 26 ... p-GaN contact layer

27...p-다이아몬드막 28...n-금속 전극 27 ... p-diamond film 28 ... n-metal electrode

29...p-금속 전극 29 ... p-metal electrode

Claims (1)

기판 위에 n-GaN 컨택층, n-AlGaN 크래드층, InGaN 활성층, p-AlGaN 크래드층, p-GaN 컨택층이 순차적으로 형성된 GaN계 레이저 다이오드에 있어서,In a GaN laser diode in which an n-GaN contact layer, an n-AlGaN clad layer, an InGaN active layer, a p-AlGaN clad layer, and a p-GaN contact layer are sequentially formed on a substrate, 상기 p-GaN 컨택층 위에 p형으로 도핑된 다이아몬드막이 형성된 것을 특징으로 하는 GaN계 레이저 다이오드.And a p-type doped diamond film is formed on the p-GaN contact layer.
KR1019980000684A 1998-01-13 1998-01-13 Gan laser diode KR100493145B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980000684A KR100493145B1 (en) 1998-01-13 1998-01-13 Gan laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980000684A KR100493145B1 (en) 1998-01-13 1998-01-13 Gan laser diode

Publications (2)

Publication Number Publication Date
KR19990065411A KR19990065411A (en) 1999-08-05
KR100493145B1 true KR100493145B1 (en) 2005-08-05

Family

ID=37303996

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980000684A KR100493145B1 (en) 1998-01-13 1998-01-13 Gan laser diode

Country Status (1)

Country Link
KR (1) KR100493145B1 (en)

Also Published As

Publication number Publication date
KR19990065411A (en) 1999-08-05

Similar Documents

Publication Publication Date Title
US6169296B1 (en) Light-emitting diode device
US6855959B2 (en) Nitride based semiconductor photo-luminescent device
JP2014207476A (en) Semiconductor laser structure
US11217722B2 (en) Hybrid growth method for III-nitride tunnel junction devices
JP3293996B2 (en) Semiconductor device
JP2007066981A (en) Semiconductor device
JP2010021576A (en) Method of manufacturing semiconductor device
JPH05102595A (en) Laser diode array and manufacture thereof
FR2743945A1 (en) SEMICONDUCTOR LASER AND METHOD FOR MANUFACTURING SUCH A LASER
JP4288030B2 (en) Semiconductor structure using group III nitride quaternary material system
JP5907210B2 (en) Manufacturing method of semiconductor device
JPH07176826A (en) Gallium nitride compound semiconductor laser element
JPH04213878A (en) Semiconductor light-emitting element
JP2002324913A (en) Iii nitride semiconductor and method of manufacturing the same, and semiconductor device and method of manufacturing the same
JPH11284280A (en) Semiconductor laser device, its manufacture and manufacture of iii-v compound semiconductor element
JP3763701B2 (en) Gallium nitride semiconductor light emitting device
US20230006426A1 (en) Group iii-n light emitter electrically injected by hot carriers from auger recombination
KR100493145B1 (en) Gan laser diode
JPH09246670A (en) Group-iii nitride semiconductor light emitting element
JPH11224957A (en) Nitride group semiconductor light-emitting element and manufacture thereof
JPH09232681A (en) Nitride compd. semiconductor optical device
CN116435428A (en) III-nitride semiconductor photoelectric device structure and preparation method thereof
KR950011996B1 (en) Laser diode manufacturing method
JP2022152859A (en) semiconductor laser
CN115621390A (en) AlGaN ultraviolet light-emitting tube and laser with p-NiO as cover layer and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100429

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee