KR100492454B1 - Catalyst and its manufacturing method - Google Patents

Catalyst and its manufacturing method Download PDF

Info

Publication number
KR100492454B1
KR100492454B1 KR1019960706220A KR19960706220A KR100492454B1 KR 100492454 B1 KR100492454 B1 KR 100492454B1 KR 1019960706220 A KR1019960706220 A KR 1019960706220A KR 19960706220 A KR19960706220 A KR 19960706220A KR 100492454 B1 KR100492454 B1 KR 100492454B1
Authority
KR
South Korea
Prior art keywords
catalyst
catalytically active
parts
active component
powder
Prior art date
Application number
KR1019960706220A
Other languages
Korean (ko)
Other versions
KR970702820A (en
Inventor
히데키 스기
후미오 사카이
고이치 와다
가즈오 시라이시
토시타케 코지마
아쯔시 우메지마
요시마사 세오
Original Assignee
니폰 가야꾸 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니폰 가야꾸 가부시끼가이샤 filed Critical 니폰 가야꾸 가부시끼가이샤
Priority to KR1019960706220A priority Critical patent/KR100492454B1/en
Publication of KR970702820A publication Critical patent/KR970702820A/en
Application granted granted Critical
Publication of KR100492454B1 publication Critical patent/KR100492454B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 고활성 및 높은 기계적 강도를 갖는 촉매 및 그의 제조방법에 관한 것이다. 본 발명에 따른 촉매는 주용 성분으로서 몰리브덴, 바나듐, 구리 및 안티몬을 포함한다. Cu-Kα선에 의한 촉매 활성 성분의 X-선 회절분석에서 22.2±0.3°(2θ)에서 최대 피크를 나타낸다.The present invention relates to a catalyst having high activity and high mechanical strength and a process for producing the same. The catalyst according to the invention comprises molybdenum, vanadium, copper and antimony as main components. X-ray diffraction analysis of the catalytically active component by Cu-Kα rays shows the maximum peak at 22.2 ± 0.3 ° (2θ).

Description

촉매 및 그의 제조방법Catalyst and its preparation method

본 발명은 촉매 및 그의 제조방법에 관한 것이다. 특히, 본 발명은 기체상에서 아크롤레인을 산소 분자로 촉매 산화함으로써 아크릴산의 제조에 적합한 촉매 및 그의 제조방법에 관한 것이다.The present invention relates to a catalyst and a method for producing the same. In particular, the present invention relates to a catalyst suitable for the production of acrylic acid by the catalytic oxidation of acrolein to oxygen molecules in the gas phase and a process for the preparation thereof.

기체상에서 아크롤레인의 촉매 산화에의해 아크릴산을 제조하기 위한 촉매는 일본특허 공고 제 41-1775(1996)호 및 동 제44-12129(1969)호에 기재되어 있다.Catalysts for producing acrylic acid by catalytic oxidation of acrolein in the gas phase are described in Japanese Patent Publication Nos. 41-1775 (1996) and 44-12129 (1969).

일본 특허출원 공개 제 47-8360호(1972)호에서는 주성분으로서 안티몬, 몰리브덴, 바나듐 및 텅스텐과 흔적량의 구리를 포함하는 촉매에 대해서 기재하고 있다. 또한 일본 특허출원 공개 제 48-96514호(1973)호에서는 주성분으로서 몰리브덴, 바나듐, 텅스텐 및 주석과 임의적으로는 안티몬 및/또는 구리를 포함하는 촉매에 대해서 기재하고 있다.Japanese Patent Application Laid-Open No. 47-8360 (1972) describes a catalyst containing antimony, molybdenum, vanadium and tungsten and trace amounts of copper as main components. In addition, Japanese Patent Application Laid-Open No. 48-96514 (1973) discloses a catalyst containing molybdenum, vanadium, tungsten and tin as the main components and optionally antimony and / or copper.

일본 특허출원 공개 제 51-11709호(1976)호, 제 52-23589호(1977)호, 제52-153889 (1977)호, 제 58-166939호(1983)호 및 제 3-218334(1991)호에서는 임의의 성분으로서 구리, 주석, 안티몬 및 크롬을 포함하는 촉매; 안티몬-니켈 화합물을 포함하는 촉매; 임의의 성분으로서 구리 및 안티몬을 포함하는 피복된 촉매; 임의의 성분으로서 구리 및 안티몬을 포함하는 피복된 고리 촉매; 및 고수율, 고생산성 촉매에 대해서 기재하고 있다. 이들 촉매중 일부는 상업적인 규모로 제조되고, 아크릴산의 제조에 사용되지만, 그 생산성은 항상 만족스럽지 못하다. 최근에는 아크릴산의 수요가 증가함에 따라 고생산성의 촉매에 대한 수요가 증가되어 왔다.Japanese Patent Application Publication Nos. 51-11709 (1976), 52-23589 (1977), 52-153889 (1977), 58-166939 (1983), and 3-218334 (1991). In the arc, a catalyst comprising as an optional component copper, tin, antimony and chromium; A catalyst comprising an antimony-nickel compound; Coated catalyst comprising copper and antimony as optional components; Coated ring catalyst comprising copper and antimony as optional components; And high yield and high productivity catalysts. Some of these catalysts are made on a commercial scale and used for the production of acrylic acid, but their productivity is not always satisfactory. Recently, as the demand for acrylic acid increases, the demand for high productivity catalysts has increased.

최근, 촉매의 단위 부피당 공급된 아크롤레인의 증가된 양("고부하 상태")이 기체 상에서 아크롤레인의 촉매 산화에 의해 아크릴산의 제조시 생산성을 증진시키는 데 사용되어 왔다. 아크롤레인의 산화반응은 발열반응이기 때문에, 아크롤레인의 증가된 양에 따라 증가된 열로 인해 고온 반점이 발생된다. 이들 고온 반점은 이를테면, 촉매 활성성분을 구성하는 요소로서 가장 자주 사용되는 몰리브덴의 혼입을 야기하는 경우가 있다.Recently, increased amounts of acrolein supplied per unit volume of catalyst (“high load state”) have been used to enhance productivity in the production of acrylic acid by catalytic oxidation of acrolein in gas phase. Since the oxidation reaction of acrolein is exothermic, hot spots occur due to increased heat with increasing amounts of acrolein. These hot spots sometimes lead to the incorporation of molybdenum, which is most often used as a constituent of the catalytically active component.

이 반응에서 사용된 촉매가 압축, 압출 또는 피복에 의해 제조되고, 촉매의 기계적 강도가 낮다면, 파괴되거나 벗겨진 촉매 활성 성분의 분말은 촉매로 충전될 때 반응 용기를 막히게 할 수 있어 반응 용기내의 압력이 비정상적으로 상승하게 된다. 그러므로, 압축, 압출 또는 피복된 촉매가 내마모성과 같은 우수한 기계적 강도를 갖는 것이 바람직하다.If the catalyst used in this reaction is produced by compression, extrusion or coating, and the mechanical strength of the catalyst is low, the powder of the broken or peeled off catalytically active component can clog the reaction vessel when filled with the catalyst and the pressure in the reaction vessel This rises abnormally. Therefore, it is desirable for the compressed, extruded or coated catalyst to have good mechanical strength, such as wear resistance.

발명의 개요Summary of the Invention

본 발명자들은 상기 조건을 만족하는 촉매를 제공하기 위해 연구한 결과 종래의 것에 비해 더 낮은 온도에서 더 높은 활성을 가지며, 더 높은 선택도 및 더 높은 기계적 강도(더 적은 마모)를 갖는 촉매를 발견하였다. 그 결과 본 발명을 완성하기에 이르렀다.The present inventors have studied to provide a catalyst that satisfies the above conditions and found a catalyst having higher activity at lower temperatures and having higher selectivity and higher mechanical strength (less wear) than the conventional one. . As a result, the present invention has been completed.

따라서, 본 발명은 다음을 제공한다.Accordingly, the present invention provides the following.

(1) 촉매 활성 성분이 다음 일반식(1)로 나타내는 조성을 갖는 촉매:(1) a catalyst having a composition in which the catalytically active component is represented by the following general formula (1):

Mo12VaWbCuCSbdXeYfZgOh (1)Mo 12 V a W b Cu C Sb d X e Y f Z g Oh (1)

상기식에서,In the above formula,

Mo, V, W, Cu, Sb 및 O는 각각 몰리브덴, 바나듐, 텅스텐, 구리, 안티몬 및 산소를 나타내고,Mo, V, W, Cu, Sb and O represent molybdenum, vanadium, tungsten, copper, antimony and oxygen, respectively

X는 알칼리 금속 및 탈륨으로 이루어진 군으로 부터 선택된 적어도 하나의 원소이고,X is at least one element selected from the group consisting of alkali metals and thallium,

Y는 마그네슘, 칼슘, 스트론튬, 바륨 및 아연으로 이루어진 군으로 부터 선택된 적어도 하나의 원소이고,Y is at least one element selected from the group consisting of magnesium, calcium, strontium, barium and zinc,

Z는 니오븀, 세륨, 주석, 크롬, 망간, 철, 코발트, 사마륨, 게르마늄, 티탄 및 비소로 이루어진 군으로 부터 선택된 적어도 하나의 원소이고,Z is at least one element selected from the group consisting of niobium, cerium, tin, chromium, manganese, iron, cobalt, samarium, germanium, titanium and arsenic,

a,b,c,d,e,f,g 및 h는 12개의 몰리브덴 원자 기준으로 0<a≤10, 0≤b≤10, 0<c≤6, 0<d≤10, 0≤e≤0.5, 0≤f≤1 및 0≤g<6의 원자비를 나타내고,a, b, c, d, e, f, g and h are 0 <a≤10, 0≤b≤10, 0 <c≤6, 0 <d≤10, 0≤e≤ based on 12 molybdenum atoms Atomic ratios of 0.5, 0 ≦ f ≦ 1, and 0 ≦ g <6;

h는 총 원자가를 만족하는 데 요구되는 산소 원자수이고,h is the number of oxygen atoms required to satisfy the total valence,

상기 촉매 활성 성분의 구리 Kα선에 의한 X-선 회절분석에서 있어서, 최대 피크가 22.2±0.3°(2θ:θ는 회절각)에서 나타난다.In the X-ray diffraction analysis by the copper Kα ray of the catalytically active component, the maximum peak appears at 22.2 ± 0.3 ° (2θ: θ is the diffraction angle).

(2) 촉매 활성 성분을 구성하는 금속원소(이하"촉매 활성 원소")나 그 화합물을 함유하는 수용액 또는 분산액을 건조한 후 그 건조된 분말을 소결함으로써 얻어진 분말을 포함하고, 상기 분말 5g 및 순수한 물 75g으로 된 혼합물의 전기 전도도는 5분 동안 교반한 후 측정할 때 100∼2,000 μs/cm인 상기 (1)에 따른 촉매;(2) a powder obtained by drying a metal element (hereinafter referred to as "catalytically active element") constituting a catalytically active component or an aqueous solution or dispersion containing the compound and then sintering the dried powder, the powder 5 g and pure water The electrical conductivity of the mixture of 75 g was 100-2,000 μs / cm as measured after stirring for 5 minutes, the catalyst according to (1) above;

(3) 건조 분말이 분무 건조에 의해 얻어지는, 상기 (2)에 따른 촉매;(3) the catalyst according to the above (2), wherein the dry powder is obtained by spray drying;

(4) 촉매 활성 원소나 그 화합물을 함유하는 수용액 또는 분산액이 안티몬 원으로서 삼산화안티몬과 물을 혼합함으로써 얻어지는 상기 (3)에 따른 촉매;(4) The catalyst according to the above (3), wherein an aqueous solution or dispersion containing a catalytically active element or a compound thereof is obtained by mixing antimony trioxide and water as an antimony source;

(5) 상기 (1) 내지 (4)중 어느 하나에 따른 촉매를 압축, 압출 또는 피복함으로서 얻어진 촉매, 여기서 직경 0.01~0.1 ㎛, 0.1~1 ㎛, 1~10 ㎛ 및 10∼200 ㎛를 갖는 기공의 부피는 촉매중에서 직경 0.01~200 ㎛을 갖는 기공의 총 부피 기준으로 각각 20%이하, 30%이하, 40%이상 및 50%이하이다;(5) a catalyst obtained by compressing, extruding or coating the catalyst according to any one of (1) to (4), wherein the catalyst has a diameter of 0.01 to 0.1 µm, 0.1 to 1 µm, 1 to 10 µm and 10 to 200 µm The pore volume is less than 20%, less than 30%, more than 40% and less than 50%, respectively, based on the total volume of pores having a diameter of 0.01-200 μm in the catalyst;

(6) 기체상에서 아크롤레인을 산소 분자로 촉매 산화시킴으로써 아크릴산의 제조에 사용하기 위한 상기 (1) 내지 (5)중 어느 하나에 따른 촉매;(6) the catalyst according to any one of (1) to (5) above for use in the production of acrylic acid by catalytic oxidation of acrolein to oxygen molecules in the gas phase;

(7) 하기 단계들을 포함하는, 상기 (1) 내지 (6)중 어느 하나에 따른 촉매를 제조하는 방법;(7) a process for producing a catalyst according to any one of (1) to (6), comprising the following steps;

(a) 촉매 활성 원소 또는 그 화합물을 함유하는 수용액 또는 분산액을 건조하여 건조된 분말을 제공하는 단계,(a) drying an aqueous solution or dispersion containing the catalytically active element or a compound thereof to provide a dried powder,

(b) 상기 단계(a)에서 얻어진 건조 분말을 소결하여 촉매 활성 성분 분말을 얻는 단계, 및(b) sintering the dry powder obtained in step (a) to obtain a catalytically active ingredient powder, and

(c) 텀블 과립형성기를 사용하여 상기 단계(b)에서 얻어진 촉매 활성 성분 분말로 담체를 피복하는 단계;(c) coating the carrier with the catalytically active ingredient powder obtained in step (b) using a tumble granulator;

(8) 단계(c)에서 보강재가 촉매 활성 성분의 분말과 함께 사용되는 상기(7)에 따른 방법;(8) the process according to (7) above, wherein the reinforcing material is used in step (c) with the powder of the catalytically active component;

(9) 단계(c)에서 결합제가 촉매 활성 성분의 분말과 함께 사용되는 상기 (7) 또는(8)에 따른 방법;(9) the process according to (7) or (8) above, wherein the binder is used in step (c) with a powder of the catalytically active component;

(10) 결합제가 디올 또는 트리올인 상기(9)에 따른 방법;(10) the method according to the above (9), wherein the binder is a diol or a triol;

(11) 트리올이 글리세린인 상기(10)에 따른 방법; 및(11) The method according to the above (10), wherein the triol is glycerin; And

(12) 보강재가 세라믹 섬유인 상기(8)에 따른 방법.(12) The method according to the above (8), wherein the reinforcing material is ceramic fiber.

제 1도는 실시예 1에서 얻어진 예비 소결된 과립의 X-선 회절 그래프를 나타내고,1 shows an X-ray diffraction graph of the pre-sintered granules obtained in Example 1,

제 2도는 실시예 1에서 얻어진 촉매의 X-선 회절 그래프를 나타낸다.2 shows an X-ray diffraction graph of the catalyst obtained in Example 1. FIG.

첨부 도면에서, 가로축과 세로축은 각각 2θ 및 cps를 나타낸다.In the accompanying drawings, the abscissa and ordinate represent 2θ and cps, respectively.

본 발명의 촉매에서, 일반식(1)로 나타낸 촉매 활성 성분중 각 원소의 원자비는 상기한 바와 같으며, 바람직하기로는 2≤a≤5, 0.2≤b≤2, 0.2≤c≤4, 0.3≤d≤5, 0≤e≤0.2, 0≤f≤0.5 및 0≤g≤3 이다.In the catalyst of the present invention, the atomic ratio of each element in the catalytically active component represented by the general formula (1) is as described above, preferably 2≤a≤5, 0.2≤b≤2, 0.2≤c≤4, 0.3 ≦ d ≦ 5, 0 ≦ e ≦ 0.2, 0 ≦ f ≦ 0.5, and 0 ≦ g ≦ 3.

본 발명의 촉매는 촉매 활성 성분을 구성하는 금속원소나 그 화합물을 함유하는 수용액 또는 분산액을 건조한 후, 그 건조된 분말을 소결한 다음, 그 소결된 분말을 임의적으로 성형함으로써 제조될 수 있다.The catalyst of the present invention can be prepared by drying a metal element constituting the catalytically active component or an aqueous solution or dispersion containing the compound, sintering the dried powder and then optionally molding the sintered powder.

본 발명에서 사용된 촉매 활성 원소의 화합물은 소결시 산화물로 전환될 수 있는 한 특별히 제한되지 않고 촉매 활성 원소의 염화물, 황산염, 질산염, 암모늄염 및 산화물이 있다. 사용될 수 있는 화합물의 예로는 몰리브덴 화합물로서 삼산화몰리브덴 및 몰리브덴산 또는 그 염; 바나듐 화합물로서 오산화바나듐, 황산 바나딜 및 바나듐 산 또는 그 염; 텅스텐 화합물로서 텅스텐산 또는 그 염; 구리 화합물로서 산화 구리, 황산구리, 질산구리 및 몰리브덴산 구리가 있다. 사용될 수 있는 안티몬 화합물의 예로는 삼산화안티몬, 오산화안티몬, 안티몬 아세테이트 및 삼염화 안티몬이 있다. 이들 안티몬 화합물 중에서, 삼산화 안티몬이 바람직하며 이는 화학적 처리없이 사용하는 것이 바람직하다. 이는, 이를테면 삼산화안티몬을 질산이나 황산과 같은 산, 과산화수소와 같은 산화제, 또는 알칼리와 접촉시킴으로써 물에 대한 삼산화안티몬의 분해나 분산을 용이하게 하기위한 어떠한 화학적 처리가 사용되지 않는다는 것을 의미한다. 삼산화안티몬은 미세 분말형태로 사용되는 것이 바람직하다.The compound of the catalytically active element used in the present invention is not particularly limited as long as it can be converted into an oxide upon sintering, and there are chlorides, sulfates, nitrates, ammonium salts and oxides of catalytically active elements. Examples of compounds that can be used include molybdenum trioxide and molybdic acid or salts thereof as the molybdenum compound; Vanadium compounds as vanadium pentoxide, vanadil sulfate and vanadium acid or salts thereof; Tungstic acid or salts thereof as tungsten compound; Copper compounds include copper oxide, copper sulfate, copper nitrate and copper molybdate. Examples of antimony compounds that can be used include antimony trioxide, antimony pentoxide, antimony acetate and antimony trichloride. Among these antimony compounds, antimony trioxide is preferred, which is preferably used without chemical treatment. This means that no chemical treatment is used to facilitate the decomposition or dispersion of antimony trioxide to water, such as by contacting antimony trioxide with an acid such as nitric acid or sulfuric acid, an oxidizing agent such as hydrogen peroxide, or an alkali. Antimony trioxide is preferably used in the form of a fine powder.

촉매 활성 원소의 화합물은 단독으로 또는 2이상 화합물의 혼합물로 사용될 수 있다.The compounds of the catalytically active element may be used alone or in a mixture of two or more compounds.

본 발명에 따른 촉매의 제조에서, 촉매 활성 원소 또는 그들의 화합물을 함유하는 수용액 또는 분산액을 먼저 제조한다. 이 수용액 또는 분산액은 이하 별도 규정이 없는 한 간단히 "슬러리 용액"이라 부른다. 본 발명에 따라, 슬러리 용액은 수용액이 바람직하다. 슬러리 용액중 각 촉매 활성 원소나 그 화합물의 함량은, 각 촉매 활성 원소의 원자비가 상기 규정된 범위 내에 있는 한 특별히 제한되지 않는다. 사용된 물의 양은 특히 제한되지 않으나, 모든 원소 및/또는 화합물들은 완전 용해되거나 또는 균일하게 혼합될 수 있다. 물의 양은 하기 건조 단계와 온도를 고려하여 적절히 결정될 수 있으며, 통상은 총 화합물의 100중량부 기준으로 200∼2,000 중량부이다. 물의 양이 너무 적으면 모든 화합물은 완전 용해되거나 또는 균일하게 혼합될 수 없다. 물이 너무 많으면 건조 단계의 에너지 비용을 증대시키거나 불완전한 건조등의 문제점을 가져올 수 있다.In the preparation of the catalyst according to the invention, an aqueous solution or dispersion containing catalytically active elements or their compounds is first prepared. This aqueous solution or dispersion is hereinafter simply referred to as "slurry solution" unless otherwise specified. According to the invention, the slurry solution is preferably an aqueous solution. The content of each catalytically active element or its compound in the slurry solution is not particularly limited as long as the atomic ratio of each catalytically active element is within the range specified above. The amount of water used is not particularly limited, but all elements and / or compounds may be completely dissolved or evenly mixed. The amount of water may be appropriately determined in consideration of the following drying step and temperature, and usually 200 to 2,000 parts by weight based on 100 parts by weight of the total compound. If the amount of water is too small, all compounds may not be completely dissolved or evenly mixed. Too much water can increase the energy cost of the drying step or cause problems such as incomplete drying.

그 다음, 균일하게 혼합된 슬러리 용액을 건조한다. 건조 방법은 슬러리 용액이 건조되고 분말 생성물이 얻어질 수 있는 한 특히 제한되지 않고 이를테면 드럼, 냉동 분무 건조법이 있다. 본 발명에서는 이들 방법중에서 분무건조가 바람직한 데, 그 이유는 슬러리 용액이 짧은 시간에 분말 상태로 건조되기 때문이다. 건조 온도는 슬러리 용액의 농도 및 공급 속도에 따라 달라질 수 있으며 건조기의 출구에서의 온도는 일반적으로 85∼130℃이다. 바람직하기로는, 건조된 분말의 평균 입경이 20∼60 ㎛가 되도록 건조하는 것이다.The homogeneously mixed slurry solution is then dried. The drying method is not particularly limited as long as the slurry solution can be dried and a powder product can be obtained, such as drum, freeze spray drying. In the present invention, spray drying is preferred among these methods because the slurry solution is dried in a powder state in a short time. The drying temperature may vary depending on the concentration and the feed rate of the slurry solution and the temperature at the outlet of the dryer is generally 85-130 ° C. Preferably, it is dried so that the average particle diameter of the dried powder may be 20-60 micrometers.

본 발명의 촉매는 건조된 분말을 200~600℃에서 1~15 시간 동안 소결한 다음, 임의적으로는 소결된 분말을 분쇄함으로써 얻어질 수 있고, 이는 하기 방법으로 성형되는 것이 바람직하다. 성형 단계가 실시될 때, 소결은 2단계, 즉 성형 단계 전의 예비소결 및 성형 단계 후의 후소결로 실시되는 것이 바람직하다. 소결 방법으로서는 어떠한 공지 방법을 이용할 수 도 있으며 특히 제한되지는 않는다.The catalyst of the present invention can be obtained by sintering the dried powder at 200 to 600 ° C. for 1 to 15 hours and then optionally grinding the sintered powder, which is preferably molded by the following method. When the molding step is carried out, the sintering is preferably carried out in two steps: presintering before the molding step and post sintering after the molding step. Any known method may be used as the sintering method, and is not particularly limited.

성형 단계를 이용하는 촉매의 제조방법이, 이를테면 하기와같이 실시된다. 예비 소결은 일반적으로 250~500℃, 바람직하기로는 300~450℃에서 1∼15 시간 동안, 바람직하기로는 3∼6 시간 동안 실시된다. 예비 소결 단계는 완전 성형된 촉매가 반응 용기에 채워질 때 촉매 활성 성분의 열화 및 벗겨짐을 방지한다. 즉, 성형된 촉매의 마모가 덜 된다.The process for producing the catalyst using the shaping step is carried out as follows. Presintering is generally carried out at 250 to 500 ° C., preferably at 300 to 450 ° C. for 1 to 15 hours, preferably for 3 to 6 hours. The presintering step prevents deterioration and flaking of the catalytically active component when the fully formed catalyst is filled into the reaction vessel. That is, the wear of the molded catalyst is less.

이와같이 예비 소결된 과립(이하 "예비 소결된 과립"이라 함)은 직접성형되거나 또는 임의적으로는 분쇄후 성형된다. 과립 또는 분말 5g과 순수한 물 75g의 혼합물을 0∼15℃에서 5분동안 교반한 후 측정할 때, 전기 전도도 100∼2,000 μs/cm, 바람직하기로는 500~1,500μs/cm를 나타내는 예비 소결된 과립 또는 임의적으로는 분쇄된 분말을 사용하는 경우, 매우 높은 활성과 낮은 마모성을 갖는 고성능 촉매를 얻게된다.Such pre-sintered granules (hereinafter referred to as "pre-sintered granules") are molded directly or optionally after grinding. Pre-sintered granules having an electrical conductivity of 100-2,000 μs / cm, preferably 500-1,500 μs / cm, as measured after stirring a mixture of 5 g of granules or powder and 75 g of pure water for 5 minutes at 0-15 ° C. Or optionally using a ground powder, a high performance catalyst with very high activity and low wear is obtained.

높은 촉매 활성을 갖는 촉매는 하기와 같은 예비 소결에 의해 얻어진다. 그러나, 바람직하기로는, 예비 소결된 과립은 성형후에 사용된다. 성형시에, 임의적으로는 결합제와 혼합된 예비 소결된 과립은 (A)압축되거나; (B)실리카 겔, 규조토 또는 알루미나 분말과 같은 성형 보조제와 혼합된 후, 구형 또는 고리형으로 압출되거나; 또는 (C)텀블 과립화등에 의해 직경 2.5~10mm의 탄화규소, 알루미나, 멀라이트 또는 알런덤과 같은 구형 담체에 피복될 수 있다.Catalysts having high catalytic activity are obtained by presintering as follows. Preferably, however, the pre-sintered granules are used after molding. In molding, the pre-sintered granules, optionally mixed with a binder, are (A) compressed; (B) is mixed with a molding aid, such as silica gel, diatomaceous earth or alumina powder, and then extruded into a spherical or cyclic shape; Or (C) a spherical carrier such as silicon carbide, alumina, mullite or alanderm having a diameter of 2.5 to 10 mm by tumble granulation or the like.

사용되는 결합제로는 물, 에탄올, 폴리비닐 알코올과 같은 고분자량 결합제, 및 수용성 실리카 졸 용액과 같은 무기 결합제가 있다. 에틸렌 글리콜과 같은 디올 및 글리세린과 같은 트리올을 포함하는 알코올이 바람직하게 사용되고, 특히 바람직하기로는 글리세린이다. 알코올은 직접 사용될 수 있지만, 10중량% 이상의 농도를 갖는 알코올 수용액이 고성능 촉매를 제공하는 데 유효하다.Binders used include water, high molecular weight binders such as ethanol, polyvinyl alcohol, and inorganic binders such as water soluble silica sol solutions. Alcohols comprising diols such as ethylene glycol and triols such as glycerin are preferably used, with glycerin being particularly preferred. Alcohol can be used directly, but aqueous alcohol solutions with a concentration of at least 10% by weight are effective for providing high performance catalysts.

사용된 결합제의 양은 일반적으로 예비 소결된 과립 100중량부를 기준으로 10~50중량부이다.The amount of binder used is generally 10 to 50 parts by weight based on 100 parts by weight of the presintered granules.

임의적으로는, 실리카 겔, 규조토 또는 알루미나 분말과 같은 성형 보조제를 사용할 수도 있다. 사용된 성형 보조제의 양은 일반적으로 예비 소결된 과립 100중량부를 기준으로 5∼60중량부이다. 또한, 세라믹 섬유 또는 휘스커와 같은 보강재는 촉매의 기계적 강도를 증진시키는 데 유용하다. 그러나, 티탄산카륨 휘스커 및 염기성 탄산마그네슘 휘스커와 같은 섬유는 촉매 성분과 반응성이 있기 때문에 바람직하지 못하다. 사용된 섬유의 양은 일반적으로 예비 소결된 과립 100중량부를 기준으로 1~30중량부이다.Optionally, molding aids such as silica gel, diatomaceous earth, or alumina powder may also be used. The amount of molding aid used is generally 5 to 60 parts by weight based on 100 parts by weight of presintered granules. In addition, reinforcements such as ceramic fibers or whiskers are useful for enhancing the mechanical strength of the catalyst. However, fibers such as carium titanate whiskers and basic magnesium carbonate whiskers are undesirable because they are reactive with catalyst components. The amount of fibers used is generally 1-30 parts by weight, based on 100 parts by weight of the pre-sintered granules.

성형 보조제 및 보강재가 사용될 때, 그들은 일반적으로 예비 소결된 과립과 함께 혼합된다. 결합제는 예비 소결된 과립과 함께 혼합되거나, 예비 소결된 과립의 첨가 전후 또는 동시에 성형기에 첨가될 수 있다.When molding aids and reinforcements are used, they are generally mixed with the pre-sintered granules. The binder may be mixed with the pre-sintered granules or added to the molding machine before, or simultaneously with, the addition of the pre-sintered granules.

성형법 중에서, 텀블 과립화(C)가 상기한 바와같이 바람직하다. 예를들면, 정지된 용기와 용기 바닥에 제공된 평면 또는 불균일한 디스크를 갖는 장치에 담체를 첨가한다. 디스크가 고속으로 회전될 때 담체를 반복된 회전 및 선회로 힘차게 교반한다. 결합제, 예비소결된 과립, 및 임의적인 성형 보조제와 보강재의 혼합물을 첨가하여 담체를 그 혼합물로 피복시킨다. 결합제는 (1)혼합물과 미리 혼합되거나, (2)혼합물의 첨가와 동시에 정지된 용기에 첨가되거나, (3)혼합물의 첨가후에 첨가되거나, 또는 (4)혼합물의 첨가전에 첨가되거나; 또는 (5)결합제와 혼합물 모두를 2이상의 부분으로 나누고 그 부분들을 상기 (2) 내지 (4)의 어떠한 조합으로 첨가된다. 방법(5)에서, 첨가 속도를 조절하기 위해 자동 공급기를 사용하는 것이 바람직하므로, 어떠한 혼합물도 용기 벽에 부착되지않거나 오직 혼합물로 이루어진 어떠한 덩어리도 형성되지 않는다.Among the molding methods, tumble granulation (C) is preferred as described above. For example, the carrier is added to a device having a stationary container and a flat or non-uniform disk provided at the bottom of the container. The carrier is vigorously stirred in repeated rotation and rotation as the disk is rotated at high speed. The carrier is covered with the mixture by the addition of a binder, presintered granules, and optional molding aid and reinforcement. The binder is (1) premixed with the mixture, (2) added to a stationary vessel simultaneously with the addition of the mixture, (3) added after the addition of the mixture, or (4) added before the addition of the mixture; Or (5) divide both the binder and the mixture into two or more portions and add those portions in any combination of (2) to (4) above. In method 5, it is preferable to use an automatic feeder to control the rate of addition, so that no mixture is attached to the vessel wall or no agglomerates of the mixture are formed.

방법(C)에서 사용될 수 있는 담체의 예로는 탄화규소, 알루미나, 멀라이트 및 알런덤과 같이 직경 2.5∼10mm를 갖는 구형 담체가 있다. 이들 담체중에서, 30∼50%의 공극률과 10∼30%의 흡수율을 갖는 것들이 바람직하게 사용된다. 담체는 일반적으로 예비소결된 과립과 담체의 총 중량에 대한 예비소결된 과립의 비가 10∼75중량%, 바람직하기로는 15~50중량%로 사용된다.Examples of carriers that can be used in method (C) include spherical carriers having a diameter of 2.5 to 10 mm, such as silicon carbide, alumina, mullite and alandeum. Among these carriers, those having a porosity of 30 to 50% and an absorption of 10 to 30% are preferably used. The carrier is generally used in a ratio of 10 to 75% by weight, preferably 15 to 50% by weight, of the presintered granules and the total weight of the carrier.

상기 방법(A) 내지 (C)에 의해 얻어진 예비소결된 과립의 성형품은 원통형의 경우에 직경 2∼10mm, 높이 3∼20mm를 갖는 것이 바람직하고, 구형인 경우에 직경 3~15mm를 갖는 것이 바람직하다.The molded article of the pre-sintered granules obtained by the above methods (A) to (C) preferably has a diameter of 2 to 10 mm and a height of 3 to 20 mm in the case of a cylindrical shape, and preferably has a diameter of 3 to 15 mm in the case of a spherical shape. Do.

촉매는 예비소결된 과립의 성형품을 후소결함으로써 얻어질 수 있다. 후 소결은 일반적으로 250∼500℃, 바람직하기로는 300∼450℃에서 1~50시간 실시된다. 본 발명에 따라, 후소결에 의해 얻어진 성형품(이하 "성형 촉매"라 함)은 촉매 활성 성분의 Cu-Kα선에 의한 X-선 회절분석에서 22.2±0.3°(2θ)에서 최대 피크를 나타내고, 이 최대 피크의 세기는 다른 피크의 세기에 비해 적어도 동일하거나, 바람직하기로는 1.6배 이상, 더욱 바람직하기로는 2배이상, 가장 바람직하기로는 4배 이상이다. 본 명세서에서 부호"2θ"는 X-선 회절분석에서 회절각(θ)의 이중치를 의미한다. 기타 피크는 22.2±0.3°이외의 2θ값에서 나타나고, 이를테면 ASTM(American Society for Testing Material) 카드 5-508, 21-569, 35-609 및 37-1445에 기재된 바와같이 산화몰리브덴으로 부터 생긴 피크뿐만아니라 산화몰리브덴이 본 발명의 촉매 활성 원소, 예를들면 바나듐, 텅스텐 및 안티몬중 적어도 하나 및 출발물질로서 사용된 촉매 활성 원소의 화합물로 일부 대체되는 화합물로 부터 생긴 피크를 포함할 수 있다. 성형촉매의 X-선 회절분석에서, 최대 피크는 종종 담체나 임의적인 보강재로서 사용된 알루미나로 부터 생길 수 있다. 이들 피크는 본 발명에서 고려되지 않는다. 상기한 바와같은 특수 X-선 회절 패턴을 갖는 성형 촉매를 얻기 위해서, 똑같은 방법으로 X-선 회절분석에서 후소결 다음에 얻어진 것들과 동일한 특성을 나타내는 예비소결된 과립을 사용하는 것이 바람직하다.The catalyst can be obtained by post sintering molded articles of presintered granules. Post-sintering is generally performed at 250-500 degreeC, Preferably it is 300 to 450 degreeC for 1 to 50 hours. According to the invention, the molded article obtained by post sintering (hereinafter referred to as "molding catalyst") exhibits a maximum peak at 22.2 ± 0.3 ° (2θ) in X-ray diffraction analysis by Cu-Kα rays of the catalytically active component, The intensity of this maximum peak is at least the same as that of the other peaks, preferably 1.6 times or more, more preferably 2 times or more, and most preferably 4 times or more. The symbol "2θ" in the present specification means a double value of the diffraction angle (θ) in the X-ray diffraction analysis. Other peaks appear at 2θ values other than 22.2 ± 0.3 °, as well as peaks from molybdenum oxide as described in American Society for Testing Material (ASTM) cards 5-508, 21-569, 35-609, and 37-1445. But may also include peaks resulting from compounds in which molybdenum oxide is partially replaced by a compound of the catalytically active element of the present invention, for example at least one of vanadium, tungsten and antimony and the catalytically active element used as starting material. In X-ray diffraction analysis of the molding catalyst, the maximum peak can often arise from alumina used as a carrier or optional reinforcement. These peaks are not considered in the present invention. In order to obtain a shaped catalyst having a special X-ray diffraction pattern as described above, it is preferable to use presintered granules which exhibit the same properties as those obtained after post sintering in X-ray diffraction analysis in the same manner.

본 발명에 따른 성형된 촉매에서, 직경 0.01~200㎛를 갖는 기공의 총부피가 0.01~1.0ml/g, 바람직하기로는 0.01∼0.4ml/g이고, 비표면적이 0.5~10m2/g, 바람직하기로는 1.0∼5.0m2/g인 것이 바람직하다. 기공 분포는 직경 0.01∼0.1㎛, 0.1~1㎛, 1∼10㎛ 및 10∼200㎛를 갖는 기공의 부피가 촉매중 직경 0.01~200㎛를 갖는 상기 기공의 총 부피를 기준으로 각각 20%이하, 30%이하, 40%이상 및 50%가 되도록 하는 것이 바람직하다.In the molded catalyst according to the present invention, the total volume of pores having a diameter of 0.01 to 200 μm is 0.01 to 1.0 ml / g, preferably 0.01 to 0.4 ml / g, and the specific surface area is 0.5 to 10 m 2 / g, preferably It is preferable that it is 1.0-5.0 m <2> / g below. The pore distribution is 20% or less based on the total volume of the pores having a diameter of 0.01 to 0.1 μm, 0.1 to 1 μm, 1 to 10 μm, and 10 to 200 μm, respectively, of the pores having a diameter of 0.01 to 200 μm in the catalyst. 30% or less, 40% or more, and 50% or less.

본 발명의 촉매는 종래의 것과 비교할 때 더 낮은 온도에서 더 높은 활성과 더 높은 아크릴산의 선택도를 가지므로 고부하 조건하의 반응에서도 사용될 수 있다. 또한, 촉매는 우수한 내마모성과 매우 훌륭한 상업적 가치가 있다.The catalyst of the present invention has higher activity and higher selectivity of acrylic acid at lower temperatures compared to the conventional one and thus can be used even in reactions under high load conditions. In addition, the catalyst has good wear resistance and very good commercial value.

본 발명은 다음 실시예와 비교예에서 더 상세히 설명되지만, 첨부된 청구범위의 정신을 벗어나지 않는한 본 발명이 다음 실시예에 한정되는 것이 아니다.The invention is described in more detail in the following examples and comparative examples, but the invention is not limited to the following examples without departing from the spirit of the appended claims.

다음 실시예와 비교예에서, 모든 부는 중량부이고, 아크롤레인 전환률(몰%), 아크릴산 선택도(몰%) 및 아크릴산 수율(%)은 각각 다음 식(2) 내지 (4)에 의해 정의된다:In the following examples and comparative examples, all parts are parts by weight, and the acrolein conversion (mol%), acrylic acid selectivity (mol%) and acrylic acid yield (%) are respectively defined by the following formulas (2) to (4):

(2) 아크롤레인 전환률(몰%) = (2) acrolein conversion (mol%) =

100 X (반응된 아크롤레인의 몰수)/(공급된 아크롤레인의 몰수)    100 X (moles of reacted acrolein) / (moles of supplied acrolein)

(3) 아크릴산 선택도(몰%) = (3) acrylic acid selectivity (mol%) =

100 X (생성된 아크릴산의 몰수)/(전환된 아크롤레인의 몰수)    100 X (moles of generated acrylic acid) / (moles of converted acrolein)

(4) 아크릴산 수율(%) = (4) acrylic acid yield (%) =

100 X (생성된 아크릴산의 몰수)/(공급된 아크롤레인의 몰수)    100 X (moles of generated acrylic acid) / (moles of supplied acrolein)

X-선 회절은 JDX-7F(JEOL LTD.제품) 또는 RINT-1100V(RIGAKU 제품)를 사용하여 측정되었다.X-ray diffraction was measured using JDX-7F (manufactured by JEOL LTD.) Or RINT-1100V (manufactured by RIGAKU).

기공 분포는 수은 기공 측정계 Poresizer 9320(MICROMERITICS 제품)을 사용하여 측정되었다.Pore distribution was measured using a mercury pore meter Poresizer 9320 (manufactured by MICROMERITICS).

내마모성은 내마모성 시험기(KAYAGAKI IRIKA KOGYO 제품)에 의해 측정되었다. 촉매 시료를 25 rpm에서 10분 동안 회전시킨 다음 2.36mm의 표준 체에 통과시켰다. 체에 남아있는 촉매의 중량을 측정하고, 다음 식(5)로 내마모성(중량%)을 측정하였다:Abrasion resistance was measured by a wear resistance tester (manufactured by KAYAGAKI IRIKA KOGYO). The catalyst sample was spun at 25 rpm for 10 minutes and then passed through a 2.36 mm standard sieve. The weight of the catalyst remaining in the sieve was measured, and the wear resistance (% by weight) was determined by the following equation (5):

(5)내마모성 (중량%) = (5) Wear resistance (% by weight) =

100 X (시료 중량-2.36mm체에서 잔류하는 촉매의 중량)/(시료 중량)    100 X (weight of catalyst remaining in sample weight-2.36 mm sieve) / (sample weight)

전기 전도도는 순수한 물 75g에 시료 5g을 분산시킨후, 5분 동안 교반한 다음, CM-20S(TOA Electonics Ltd. 제품)으로 전도도를 측정함으로써 결정되었다.Electrical conductivity was determined by dispersing 5 g of sample in 75 g of pure water, stirring for 5 minutes, and then measuring the conductivity with CM-20S (manufactured by TOA Electonics Ltd.).

실시예 1Example 1

교반 모터가 구비된 혼합 탱크(A)에 95℃의 탈이온수 600부와 텅스텐산암모늄 16.26부를 가하고 교반하였다. 그 다음, 암모늄 메타바나데이트 18.22g과 몰리브덴산암모늄 110부를 용해시켰다. 또한, 삼산화안티몬 분말 3.78부를 가하였다. 탈이온수 96부를 함유하는 혼합 탱크(B)에 황산 구리 15.56부를 용해시킨후, 그 용액을 혼합 탱크(A)에 가하여 슬러리 용액을 형성하였다. 건조기의 출구에서 온도가 약 100℃가 되도록 공급 속도를 조절하면서 분무 건조기에서 상기 슬러리 용액을 건조하였다. 그 결과 얻어진 과립을 실온의 노에 넣고 노의 온도를 시간당 약 60℃의 속도로 상승시켰다. 그 다음, 과립을 390℃에서 약 5시간 동안 예비 소결시켰다. 예비소결된 과립의 X-선 회절 분석에서 2θ값을 측정하였으며, 세기비가 100:23일때 22.2°에서 최대 피크 그리고 27.0°에서 두번째로 큰 피크가 관찰되었다. X-선 회절 분석에서 2θ값의 측정결과를 제1도에 나타냈다.600 parts of deionized water and 16.26 parts of ammonium tungstate were added and stirred to the mixing tank A with a stirring motor. Then, 18.22 g of ammonium metavanadate and 110 parts of ammonium molybdate were dissolved. Furthermore, 3.78 parts of antimony trioxide powder was added. After dissolving 15.56 parts of copper sulfate in the mixing tank (B) containing 96 parts of deionized water, the solution was added to the mixing tank (A) to form a slurry solution. The slurry solution was dried in a spray dryer while controlling the feed rate such that the temperature at the outlet of the dryer was about 100 ° C. The resulting granules were placed in a furnace at room temperature and the furnace temperature was raised at a rate of about 60 ° C. per hour. The granules were then presintered at 390 ° C. for about 5 hours. In the X-ray diffraction analysis of the pre-sintered granules, 2θ values were measured, and the maximum peak at 22.2 ° and the second largest peak at 27.0 ° were observed when the intensity ratio was 100: 23. Fig. 1 shows the measurement results of the 2θ values in the X-ray diffraction analysis.

예비소결된 과립을 볼밀에서 분쇄하여 분말(이하 "예비소결된 분말"이라함)을 얻었다. 예비소결된 분말의 전기 전도도는 1050 μs/cm이다. 텀블 과립 형성기에서, 담체상에 글리세린 20중량%수용액 2.4부를 뿌리면서 공극률 40%, 흡수율 19.8% 및 직경 4mm를 갖는 알런덤 담체 36부에 예비소결된 분말 12부를 도포하였다. 그 결과 성형된 제품을 실온의 노에 넣고 시간당 약 70℃의 속도로 온도를 상승시켰다. 그 다음, 그 제품을 390℃에서 5시간 동안 소결(후소결)시켜 본 발명의 촉매를 얻었다. 본 발명의 촉매에서 산소를 제외한 촉매 활성 성분은 다음의 원소 조성을 갖는다:The presintered granules were ground in a ball mill to obtain a powder (hereinafter referred to as "presintered powder"). The electrical conductivity of the presintered powder is 1050 μs / cm. In the tumble granulator, 12 parts of presintered powder were applied to 36 parts of an alandom carrier having a porosity of 40%, an absorption of 19.8%, and a diameter of 4 mm while spraying 2.4 parts of 20% by weight aqueous solution of glycerin on the carrier. As a result, the molded product was placed in a furnace at room temperature and the temperature was raised at a rate of about 70 ° C per hour. The product was then sintered (post sintered) at 390 ° C. for 5 hours to obtain the catalyst of the invention. The catalytically active component except for oxygen in the catalyst of the present invention has the following elemental composition:

Mo12V3W1.2Cu1.2Sb0.5 Mo 12 V 3 W 1.2 Cu 1.2 Sb 0.5

촉매상에서 X-선 회절분석을 실시하였다. 알런덤 담체로 부터 생긴 피크를 관찰하였지만, 기타 피크들은 예비소결된 과립에서 관찰된 것과 거의 동일하였다. X-선 회절분석에서 2θ값의 측정결과는 제 2도에 나타냈다.X-ray diffraction analysis was performed on the catalyst. The peaks from the alanthanum carrier were observed, but the other peaks were nearly identical to those observed in the presintered granules. The measurement result of 2θ value in X-ray diffraction analysis is shown in FIG.

촉매의 기공 분포를 측정하였다. 직경 0.01∼0.1㎛, 0.1~1㎛, 1∼10㎛ 및 10∼200㎛를 갖는 기공의 부피는 0.09 ml/g인 촉매중에서 직경 0.01∼200 ㎛을 갖는 기공의 총 부피 기준으로 각각 7%, 7%, 64% 및 22%이었다.The pore distribution of the catalyst was measured. The volume of pores having a diameter of 0.01 to 0.1 μm, 0.1 to 1 μm, 1 to 10 μm and 10 to 200 μm is 7%, respectively, based on the total volume of pores having a diameter of 0.01 to 200 μm in the catalyst having 0.09 ml / g, 7%, 64% and 22%.

그 촉매는 내마모성이 0.3중량%이고 비표면적이 2.2m2/g이었다.The catalyst had a wear resistance of 0.3% by weight and a specific surface area of 2.2 m 2 / g.

내경 21.4 mm인 반응 용기에, 촉매 30ml를 넣고 기체 반응 혼합물을 시간당 1800 SV[공간 속도=(단위시간당 기체의 부피)/(충전된 촉매의 부피)]로 공급하였다. 몰리브덴-비스무트 촉매를 사용하고 산소와 질소로 보충된 기체상에서 프로필렌의 촉매 산화에 의해 반응혼합물을 얻었다. 이 혼합물의 조성은 다음과 같았다:In a reaction vessel having an internal diameter of 21.4 mm, 30 ml of catalyst was placed and a gas reaction mixture was supplied at 1800 SV per hour [space velocity = (volume of gas per unit time) / (volume of charged catalyst)]. The reaction mixture was obtained by the catalytic oxidation of propylene in a gas phase supplemented with oxygen and nitrogen using a molybdenum-bismuth catalyst. The composition of this mixture was as follows:

반응 결과를 표 1에 나타냈다.The reaction results are shown in Table 1.

실시예 2Example 2

텀블 과립 형성기에서, 담체상에 글리세린 20중량%수용액 3부를 뿌리면서 공극률 34%, 흡수율 17% 및 직경 3.5mm를 갖는 알런덤 담체 36부에 실시예 1에서 얻어진 예비 소결된 분말 24부를 도포하였다. 그 결가 성형된 제품을 실온의 노에 넣고 시간당 약 70℃의 속도로 온도를 상승시켰다. 그 다음, 그 제품을 390℃에서 5시간 동안 소결시켜 본 발명의 촉매를 얻었다. 본 발명의 촉매에서 산소를 제외한 촉매 활성 성분은 다음의 원소 조성을 갖는다:In the tumble granulator, 24 parts of the presintered powder obtained in Example 1 were applied to 36 parts of an alandom carrier having a porosity of 34%, an absorption of 17%, and a diameter of 3.5 mm with 3 parts of a 20% by weight aqueous solution of glycerin on the carrier. The resulting molded article was placed in a furnace at room temperature and the temperature was raised at a rate of about 70 ° C per hour. The product was then sintered at 390 ° C. for 5 hours to obtain the catalyst of the present invention. The catalytically active component except for oxygen in the catalyst of the present invention has the following elemental composition:

Mo12V3W1.2Cu1.2Sb0.5 Mo 12 V 3 W 1.2 Cu 1.2 Sb 0.5

촉매의 기공 분포를 측정하였다. 직경 0.01∼0.1㎛, 0.1∼1㎛, 1∼10㎛ 및 10∼200㎛를 갖는 기공의 부피는 촉매중에서 직경 0.01~200 ㎛을 갖는 상기 기공의 총 부피 기준으로 각각 10%, 9%, 63% 및 18%이었다. 그 촉매는 내마모성이 0.5중량%이고 비표면적이 3.5m2/g이었다.The pore distribution of the catalyst was measured. The volume of pores having a diameter of 0.01 to 0.1 μm, 0.1 to 1 μm, 1 to 10 μm, and 10 to 200 μm was 10%, 9%, and 63, respectively, based on the total volume of the pores having a diameter of 0.01 to 200 μm in the catalyst. % And 18%. The catalyst had abrasion resistance of 0.5% by weight and a specific surface area of 3.5 m 2 / g.

그 촉매를 실시예 1에서와 같이 반응시켰고 그 결과를 표 1에 나타냈다.The catalyst was reacted as in Example 1 and the results are shown in Table 1.

실시예 3 내지 6Examples 3-6

실시예 3 내지 6에서 황산구리 5.19부, 10.37부, 23.33부 및 32.40부를 각각 사용한 것을 제외하고는 실시예 1에서와 동일한 과정을 반복하였다. 본 발명의 촉매중 산소를 제외한 촉매 활성 성분의 조성은 다음과 같았다:The same procedure as in Example 1 was repeated except that 5.19 parts, 10.37 parts, 23.33 parts and 32.40 parts of copper sulfate were used in Examples 3 to 6, respectively. The composition of the catalytically active component excluding oxygen in the catalyst of the present invention was as follows:

촉매의 촉매 활성 성분상에서 X-선 회절분석을 실시하고, 2θ값을 측정하였다. 각 촉매에서, 최대 피크는 본 발명의 특징인 22.2°에서 관찰되었다. 그러나, 산화 몰리브덴의 고유 피크는 매우 넓고 서로 중복되었다. 그 결과 날카로운 피크는 관찰되지 않았다. 이들 실시예에서 사용된 예비소결된 분말의 전기 전도도는 200~1400μs/cm이었다. 또한 이 촉매의 내마모성은 0.5%이하이었다.X-ray diffraction analysis was performed on the catalytically active component of the catalyst and the 2θ values were measured. In each catalyst, the maximum peak was observed at 22.2 °, which is a feature of the present invention. However, the inherent peaks of molybdenum oxide are very wide and overlap each other. As a result, no sharp peaks were observed. The electrical conductivity of the presintered powders used in these examples was 200-1400 μs / cm. Moreover, the wear resistance of this catalyst was 0.5% or less.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 1에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 1.

[표 1]TABLE 1

실시예 7 내지 10Examples 7-10

실시예 7 내지 10에서 삼산화 안티몬 2.27부, 7.56부, 15.13부 및 22.70부를 각각 사용한 것을 제외하고는 실시예 1에서와 동일한 과정을 반복하였다. 본 발명의 촉매 중 산소를 제외한 촉매 활성 성분의 조성은 다음과 같았다:The same procedure as in Example 1 was repeated except that 2.27 parts, 7.56 parts, 15.13 parts and 22.70 parts of antimony trioxide were used in Examples 7 to 10, respectively. The composition of the catalytically active component excluding oxygen in the catalyst of the present invention was as follows:

촉매의 촉매 활성 성분상에서 X-선 회절분석을 실시하고, 2θ값을 측정하였다. 각 촉매에서, 최대 피크는 본 발명의 특징인 22.2°에서 관찰되었다. 그러나, 산화 몰리브덴의 고유 피크는 매우 넓고 서로 중복되었다. 그 결과 날카로운 피크는 관찰되지 않았다. 이들 실시예에서 사용된 예비소결된 분말의 전기 전도도는 150∼1200μs/cm이었다. 이 촉매의 내마모성은 0.6%이하이었다.X-ray diffraction analysis was performed on the catalytically active component of the catalyst and the 2θ values were measured. In each catalyst, the maximum peak was observed at 22.2 °, which is a feature of the present invention. However, the inherent peaks of molybdenum oxide are very wide and overlap each other. As a result, no sharp peaks were observed. The electrical conductivity of the presintered powders used in these examples was 150-1200 μs / cm. Wear resistance of this catalyst was 0.6% or less.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 2에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 2.

실시예 11Example 11

교반 모터가 구비된 혼합 탱크(A)에 95℃의 탈이온수 600부와 텅스텐산암모늄 16.26부를 가하고 교반하였다. 그 다음, 암모늄 메타바나데이트 18.22부와 몰리브덴산 암모늄 110부를 용해시켰다. 또한, 삼산화안티몬 분말 3.78부를 가하였다. 탈이온수 96부를 함유하는 혼합 탱크(B)에 황산 구리 15.56부와 질산칼륨 1.05부를 용해시킨후, 그 용액을 혼합 탱크(A)에 가하여 슬러리 용액을 형성하였다.600 parts of deionized water and 16.26 parts of ammonium tungstate were added and stirred to the mixing tank A with a stirring motor. Then, 18.22 parts of ammonium metavanadate and 110 parts of ammonium molybdate were dissolved. Furthermore, 3.78 parts of antimony trioxide powder was added. After dissolving 15.56 parts of copper sulfate and 1.05 parts of potassium nitrate in the mixing tank (B) containing 96 parts of deionized water, the solution was added to the mixing tank (A) to form a slurry solution.

건조기의 출구 온도가 약 100℃가 되도록 공급 속도를 조절하면서 분무 건조기에서 상기 슬러리 용액을 건조하였다. 그 결과 얻어진 과립을 실온의 노에 넣고 노의 온도를 시간당 약 60℃의 속도로 상승시켰다. 그 다음, 과립을 390℃에서 약 5시간 동안 에비 소결시켜 예비소결된 과립을 얻었다.The slurry solution was dried in a spray dryer while controlling the feed rate so that the outlet temperature of the dryer was about 100 ° C. The resulting granules were placed in a furnace at room temperature and the furnace temperature was raised at a rate of about 60 ° C. per hour. The granules were then sintered at 390 ° C. for about 5 hours to obtain presintered granules.

텀블 과립 형성기에서, 담체상에 글리세린 20중량%수용액 2.4부를 뿌리면서 직경 4mm를 갖는 알런덤 담체 36부에, 볼밀내에서 예비소결된 과립을 분쇄하여 얻어진 예비 소결된 분말12부를 도포하였다. 그 결가 성형된 제품을 실온의 노에 넣고 시간당 약 70℃의 속도로 온도를 상승시켰다. 그 다음, 그 제품을 390℃에서 5시간 동안 소결시켜 본 발명의 촉매를 얻었다. 본 발명의 촉매에서 산소를 제외한 촉매 활성 성분은 다음의 원소 조성을 갖는다:In a tumble granulator, 12 parts of pre-sintered powder obtained by pulverizing the pre-sintered granules in a ball mill were applied to 36 parts of an alandom carrier having a diameter of 4 mm while sprinkling 2.4 parts of 20% by weight aqueous solution of glycerin on the carrier. The resulting molded article was placed in a furnace at room temperature and the temperature was raised at a rate of about 70 ° C per hour. The product was then sintered at 390 ° C. for 5 hours to obtain the catalyst of the present invention. The catalytically active component except for oxygen in the catalyst of the present invention has the following elemental composition:

Mo12V3W1.2Cu1.2Sb0.5K0.2 Mo 12 V 3 W 1.2 Cu 1.2 Sb 0.5 K 0.2

사용된 예비소결된 과립의 X-선 회절분석에서 2θ값을 측청한 결과 22.2°에서 최대 피크 및 26.7°에서 두번째로 큰 피크가 나타났고, 여기서 세기비는 100:28이었다, 촉매의 촉매 활성 성분에 대해서도 유사한 결과를 얻었다.X-ray diffraction analysis of the presintered granules used showed that the maximum value was observed at 22.2 ° and the second largest peak at 26.7 °, where the intensity ratio was 100: 28. Similar results were obtained for.

촉매의 기공 분포를 측정하였다. 직경 0.01~0.1㎛, 0.1~1㎛, 1~10㎛ 및 10~200㎛를 갖는 기공의 부피는 촉매중에서 직경 0.01∼200 ㎛을 갖는 기공의 총 부피 기준으로 각각 9%, 6%, 73% 및 12%이었다. 촉매의 내마모성이 0.3중량%이고 비표면적이 1.8m2/g이었다.The pore distribution of the catalyst was measured. The volume of pores having a diameter of 0.01 to 0.1 μm, 0.1 to 1 μm, 1 to 10 μm, and 10 to 200 μm is 9%, 6%, and 73%, respectively, based on the total volume of pores having a diameter of 0.01 to 200 μm in the catalyst. And 12%. The wear resistance of the catalyst was 0.3% by weight and the specific surface area was 1.8 m 2 / g.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 2에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 2.

실시예 12Example 12

질산칼륨 대신에 질산칼슘 2.45부가 사용된 것을 제외하고는 실시예 11에서와 동일한 과정을 반복하였다. 본 발명의 촉매중 산소를 제외한 촉매 활성 성분의 조성은 다음과 같았다:The same procedure as in Example 11 was repeated except that 2.45 parts of calcium nitrate was used instead of potassium nitrate. The composition of the catalytically active component excluding oxygen in the catalyst of the present invention was as follows:

Mo12V3W1.2Cu1.2Sb0.5Ca0.2 Mo 12 V 3 W 1.2 Cu 1.2 Sb 0.5 Ca 0.2

사용된 예비소결된 과립의 X-선 회절분석에서 2θ값을 측청한 결과 22.2°에서 최대 피크 및 27.3°에서 두번째로 큰 피크가 나타났고, 여기서 세기비는 100:36이었다. 본 발명에 따른 촉매의 촉매 활성 성분에 대해서도 유사한 결과를 얻었다.X-ray diffraction analysis of the presintered granules used showed that the 2θ value was the largest peak at 22.2 ° and the second largest peak at 27.3 °, where the intensity ratio was 100: 36. Similar results were obtained for the catalytically active components of the catalysts according to the invention.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 2에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 2.

실시예 13Example 13

교반 모터가 구비된 혼합 탱크(A)에 95℃의 탈이온수 600부와 텅스텐산암모늄 16.26부를 가하고 교반하였다. 그 다음, 암모늄 메타바나데이트 18.22부와 몰리브덴산 암모늄 110부를 용해시켰다. 또한, 삼산화안티몬 분말 3.78부를 가하였다. 20분 후, 산화 세륨 4.47부를 가하였다. 탈이온수 96부를 함유하는 혼합 탱크(B)에 질산 구리 15.05부를 용해시킨후, 그 용액을 혼합 탱크(A)에 가하여 슬러리 용액을 형성하였다.600 parts of deionized water and 16.26 parts of ammonium tungstate were added and stirred to the mixing tank A with a stirring motor. Then, 18.22 parts of ammonium metavanadate and 110 parts of ammonium molybdate were dissolved. Furthermore, 3.78 parts of antimony trioxide powder was added. After 20 minutes, 4.47 parts of cerium oxide was added. After dissolving 15.05 parts of copper nitrate in the mixing tank (B) containing 96 parts of deionized water, the solution was added to the mixing tank (A) to form a slurry solution.

건조기의 출구 온도가 약 100℃가 되도록 공급 속도를 조절하면서 분무 건조기에서 상기 슬러리 용액을 건조하였다. 그 결과 얻어진 과립을 실온의 노에 넣고 노의 온도를 시간당 약 60℃의 속도로 상승시켰다. 그 다음, 과립을 370℃에서 약 5시간 동안 예비 소결시켜 예비소결된 과립을 얻었다.The slurry solution was dried in a spray dryer while controlling the feed rate so that the outlet temperature of the dryer was about 100 ° C. The resulting granules were placed in a furnace at room temperature and the furnace temperature was raised at a rate of about 60 ° C. per hour. The granules were then presintered at 370 ° C. for about 5 hours to obtain presintered granules.

텀블 과립 형성기에서, 담체상에 글리세린 20중량%수용액 2.4부를 뿌리면서 직경4mm를 갖는 알런덤 담체 36부에, 볼밀내에서 예비소결된 과립을 분쇄하여 얻어진 예비 소결된 분말12부를 도포하였다. 그 결가 성형된 제품을 실온의 노에 넣고 시간당 약 70℃의 속도로 온도를 상승시켰다. 그 다음, 그 제품을 370℃에서 5시간 동안 소결시켜 본 발명의 촉매를 얻었다. 본 발명의 촉매에서 산소를 제외한 촉매 활성 성분은 다음의 원소 조성을 갖는다:In a tumble granulator, 12 parts of pre-sintered powder obtained by pulverizing the presintered granules in a ball mill were applied to 36 parts of an alandom carrier having a diameter of 4 mm while sprinkling 2.4 parts of 20% by weight aqueous solution of glycerin on the carrier. The resulting molded article was placed in a furnace at room temperature and the temperature was raised at a rate of about 70 ° C per hour. The product was then sintered at 370 ° C. for 5 hours to obtain the catalyst of the present invention. The catalytically active component except for oxygen in the catalyst of the present invention has the following elemental composition:

Mo12V3W1.2Cu1.2Sb0.5Ce0.5 Mo 12 V 3 W 1.2 Cu 1.2 Sb 0.5 Ce 0.5

사용된 예비소결된 과립의 X-선 회절분석에서 2θ값을 측청한 결과 22.2°에서 최대 피크 및 28.5°에서 두번째로 큰 피크가 나타났고, 여기서 세기비는 100:34이었다. 촉매의 촉매 활성 성분에 대해서도 유사한 결과를 얻었다.X-ray diffraction analysis of the presintered granules used showed that the 2θ value was the largest peak at 22.2 ° and the second largest peak at 28.5 °, with an intensity ratio of 100: 34. Similar results were obtained for the catalytically active component of the catalyst.

촉매의 기공 분포를 측정하였다. 직경 0.01~0.1㎛, 0.1∼1㎛, 1∼10㎛ 및 10∼200㎛를 갖는 기공의 부피는 촉매중에서 직경 0.01~200 ㎛을 갖는 기공의 총 부피 기준으로 각각 13%, 6%, 69% 및 12%이었다. 촉매의 내마모성은 0.3중량%이고 비표면적은 2.0m2/g이었다.The pore distribution of the catalyst was measured. The volume of pores having a diameter of 0.01 to 0.1 μm, 0.1 to 1 μm, 1 to 10 μm and 10 to 200 μm is 13%, 6% and 69%, respectively, based on the total volume of pores having a diameter of 0.01 to 200 μm in the catalyst. And 12%. The wear resistance of the catalyst was 0.3% by weight and the specific surface area was 2.0 m 2 / g.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 2에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 2.

[표 2]TABLE 2

실시예 14Example 14

산화세륨 대신에 산화니오븀 3.45부가 사용된 것을 제외하고는 실시예 13에서와 동일한 과정을 반복하였다. 본 발명의 촉매중 산소를 제외한 촉매 활성 성분의 조성은 다음과 같았다:The same procedure as in Example 13 was repeated except that 3.45 parts of niobium oxide was used instead of cerium oxide. The composition of the catalytically active component excluding oxygen in the catalyst of the present invention was as follows:

Mo12V3W1.2Cu1.2Sb0.5Nb0.5 Mo 12 V 3 W 1.2 Cu 1.2 Sb 0.5 Nb 0.5

사용된 예비소결된 과립의 X-선 회절분석에서 2θ값을 측청한 결과 22.2°에서 최대 피크 및 22.6°에서 두번째로 큰 피크가 나타났고, 여기서 세기비는 100:33이었다. 또한 산화니오븀의 작은 피크도 관찰되었다. 본 발명에 따른 촉매의 촉매 활성 성분에 대해서도 유사한 결과를 얻었다.X-ray diffraction analysis of the presintered granules used showed that the maximum value at 22.2 ° and the second largest peak at 22.6 ° were observed when the 2θ value was measured. Small peaks of niobium oxide were also observed. Similar results were obtained for the catalytically active components of the catalysts according to the invention.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 3에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 3.

실시예 15Example 15

교반 모터가 구비된 혼합 탱크(A)에 95℃의 탈이온수 600부와 텅스텐산암모늄 16.26부를 가하고 교반하였다. 그 다음, 암모늄 메타바나데이트 18.22부와 몰리브덴 산 암모늄 110부를 용해시켰다. 또한, 삼산화안티몬 분말 3.78부를 가하였다. 탈이온수 96부를 함유하는 혼합 탱크(B)에 황산 구리 15.56부, 질산칼륨 0.52부 및 질산마그네슘 2.66부를 용해시킨후, 그 용액을 혼합 탱크(A)에 가하여 슬러리 용액을 형성하였다.600 parts of deionized water and 16.26 parts of ammonium tungstate were added and stirred to the mixing tank A with a stirring motor. Then, 18.22 parts of ammonium metavanadate and 110 parts of ammonium molybdate were dissolved. Furthermore, 3.78 parts of antimony trioxide powder was added. After dissolving 15.56 parts of copper sulfate, 0.52 parts of potassium nitrate, and 2.66 parts of magnesium nitrate in a mixing tank (B) containing 96 parts of deionized water, the solution was added to the mixing tank (A) to form a slurry solution.

그 다음, 실시예 11의 과정을 반복하여 본 발명의 촉매를 얻었다. 본 발명의 촉매에서 산소를 제외한 촉매 활성 성분은 다음의 원소 조성을 갖는다:Then, the procedure of Example 11 was repeated to obtain the catalyst of the present invention. The catalytically active component except for oxygen in the catalyst of the present invention has the following elemental composition:

Mo12V3W1.2Cu1.2Sb0.5K0.1Mg0.2 Mo 12 V 3 W 1.2 Cu 1.2 Sb 0.5 K 0.1 Mg 0.2

사용된 예비소결된 과립의 X-선 회절분석에서 2θ값을 측청한 결과 22.2°에서 최대 피크 및 27.3°에서 두번째로 큰 피크가 나타났고, 여기서 세기비는 100:41이었다. 촉매의 촉매 활성 성분에 대해서도 유사한 결과를 얻었다.X-ray diffraction analysis of the presintered granules used showed that the 2θ value was the largest peak at 22.2 ° and the second largest peak at 27.3 °, where the intensity ratio was 100: 41. Similar results were obtained for the catalytically active component of the catalyst.

촉매의 기공 분포를 측정하였다. 직경 0.01~0.1㎛, 0.1~1㎛, 1∼10㎛ 및 10~200㎛를 갖는 기공의 부피는 촉매중에서 직경 0.01~200 ㎛을 갖는 기공의 총 부피 기준으로 각각 7%, 5%, 80% 및 8%이었다. 촉매의 내마모성은 0.6중량%이고 비표면적은 1.5m2/g이었다.The pore distribution of the catalyst was measured. The volume of pores having a diameter of 0.01 to 0.1 μm, 0.1 to 1 μm, 1 to 10 μm and 10 to 200 μm is 7%, 5% and 80%, respectively, based on the total volume of pores having a diameter of 0.01 to 200 μm in the catalyst. And 8%. The wear resistance of the catalyst was 0.6% by weight and the specific surface area was 1.5 m 2 / g.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 3에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 3.

실시예 16Example 16

교반 모터가 구비된 혼합 탱크(A)에 95℃의 탈이온수 600부와 텅스텐산암모늄 16.26부를 가하고 교반하였다. 그 다음, 암모늄 메타바나데이트 18.22부와 몰리브덴산 암모늄 110부를 용해시켰다. 또한, 삼산화안티몬 분말 3.78부를 가하였다. 20분 후, 산화주석 1.56부를 가하였다. 탈이온수 96부를 함유하는 혼합 탱크(B)에 황산 구리 15.56부, 질산나트륨 0.22부 및 질산 스트론튬 1.10부를 용해시킨후, 그 용액을 혼합 탱크(A)에 가하여 슬러리 용액을 형성하였다.600 parts of deionized water and 16.26 parts of ammonium tungstate were added and stirred to the mixing tank A with a stirring motor. Then, 18.22 parts of ammonium metavanadate and 110 parts of ammonium molybdate were dissolved. Furthermore, 3.78 parts of antimony trioxide powder was added. After 20 minutes, 1.56 parts of tin oxide was added. After dissolving 15.56 parts of copper sulfate, 0.22 parts of sodium nitrate, and 1.10 parts of strontium nitrate in a mixing tank (B) containing 96 parts of deionized water, the solution was added to the mixing tank (A) to form a slurry solution.

그 다음, 실시예 11의 과정을 반복하여 본 발명의 촉매를 얻었다. 본 발명의 촉매에서 산소를 제외한 촉매 활성 성분은 다음의 원소 조성을 갖는다:Then, the procedure of Example 11 was repeated to obtain the catalyst of the present invention. The catalytically active component except for oxygen in the catalyst of the present invention has the following elemental composition:

Mo12V3W1.2Cu1.2Sb0.5Na0.05Sr0.1Sn0.2 Mo 12 V 3 W 1.2 Cu 1.2 Sb 0.5 Na 0.05 Sr 0.1 Sn 0.2

사용된 예비소결된 과립의 X-선 회절분석에서 2θ값을 측정한 결과 22.2°에서 피크가 나타났으며 이는 본 발명의 특성이다. 그러나, 23~29°에서 산화 몰리브덴의 고유 피크는 거의 관찰되지 않았다. 촉매의 촉매 활성 성분에 대해서도 유사한 결과를 얻었다.X-ray diffraction analysis of the pre-sintered granules used showed a peak at 22.2 °, which is a characteristic of the present invention. However, little inherent peak of molybdenum oxide was observed at 23 to 29 °. Similar results were obtained for the catalytically active component of the catalyst.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 3에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 3.

실시예 17 및 18Examples 17 and 18

실시예 17 및 18에서 암모늄 메타바나데이트 12.15부 및 24.3부를 각각 사용한 것을 제외하고는 실시예 1에서와 동일한 과정을 반복하였다. 본 발명의 촉매중 산소를 제외한 촉매 활성 성분의 조성은 다음과 같았다:The same procedure as in Example 1 was repeated except that 12.15 parts and 24.3 parts of ammonium metavanadate were used in Examples 17 and 18, respectively. The composition of the catalytically active component excluding oxygen in the catalyst of the present invention was as follows:

실시예 17 Mo12V2W1.2Cu1.2Sb0.5 Example 17 Mo 12 V 2 W 1.2 Cu 1.2 Sb 0.5

실시예 18 Mo12V4W1.2Cu1.2Sb0.5 Example 18 Mo 12 V 4 W 1.2 Cu 1.2 Sb 0.5

사용된 예비소결된 과립의 X-선 회절분석을 실시하고, 2θ값을 측정하였다. 각 촉매에서, 피크는 본 발명의 특징인 22.2°에서 관찰되었다. 그러나, 23∼29°에서 산화몰리브덴의 고유 피크는 거의 관찰되지 않았다. 촉매의 촉매 활성 성분에 대해서도 유사한 결과를 얻었다.X-ray diffraction analysis of the presintered granules used was carried out and 2θ values were measured. In each catalyst, a peak was observed at 22.2 °, which is a feature of the present invention. However, inherent peaks of molybdenum oxide were hardly observed at 23 to 29 degrees. Similar results were obtained for the catalytically active component of the catalyst.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 3에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 3.

실시예 19 및 20Examples 19 and 20

실시예 19 및 20에서 텅스텐산 암모늄 6.78부 및 27.11부를 각각 사용한 것을 제외하고는 실시예 1에서와 동일한 과정을 반복하였다. 본 발명의 촉매중 산소를 제외한 촉매 활성 성분의 조성은 다음과 같았다:The same procedure as in Example 1 was repeated except that 6.78 parts and 27.11 parts of ammonium tungstate were used in Examples 19 and 20, respectively. The composition of the catalytically active component excluding oxygen in the catalyst of the present invention was as follows:

실시예 19 Mo12V3W0.5Cu1.2Sb0.5 Example 19 Mo 12 V 3 W 0.5 Cu 1.2 Sb 0.5

실시예 20 Mo12V3W2.0Cu1.2Sb0.5 Example 20 Mo 12 V 3 W 2.0 Cu 1.2 Sb 0.5

사용된 예비소결된 과립의 X-선 회절분석을 실시하고, 2θ값을 측정하였다. 실시예 19의 촉매에서, 피크는 본 발명의 특징인 22.1°에서 관찰된 반면, 산화 몰리브덴의 고유 피크는 관찰되지 않았다. 마찬가지로, 실시예 20의 촉매에서, 피크는 본 발명의 특징인 22.2°에서 관찰된 반면, 산화 몰리브덴의 고유 피크는 관찰되지 않았다. 촉매의 촉매 활성 성분에 대해서도 유사한 결과를 얻었다.X-ray diffraction analysis of the presintered granules used was carried out and 2θ values were measured. In the catalyst of Example 19, a peak was observed at 22.1 °, which is a feature of the present invention, while no inherent peak of molybdenum oxide was observed. Likewise, in the catalyst of Example 20, a peak was observed at 22.2 °, which is a feature of the present invention, while no inherent peak of molybdenum oxide was observed. Similar results were obtained for the catalytically active component of the catalyst.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 3에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 3.

[표 3]TABLE 3

실시예 21Example 21

실시예 1에서 얻어진 성형 제품이 440℃에서 약 2.5시간 동안 소결된 것을 제외하고는 실시예 1에서와 동일한 과정을 반복하였다. 본 발명의 촉매중 산소를 제외한 촉매 활성 성분의 조성은 다음과 같았다;The same procedure as in Example 1 was repeated except that the molded article obtained in Example 1 was sintered at 440 ° C. for about 2.5 hours. The composition of the catalytically active component excluding oxygen in the catalyst of the present invention was as follows;

Mo12V3W1.2Sb0.5Cu1.2 Mo 12 V 3 W 1.2 Sb 0.5 Cu 1.2

촉매중 촉매 활성 성분의 X-선 회절분석에서 2θ값을 측청한 결과 22.2°에서 최대 피크 및 23.3°에서 두번째로 큰 피크가 나타났고, 여기서 세기비는 100:41이었다. 촉매의 내마모성은 0.4 중량%이었다.X-ray diffraction analysis of the catalytically active component of the catalyst showed that the peak value at 22.2 ° and the second largest peak at 23.3 ° showed an intensity ratio of 100: 41. The wear resistance of the catalyst was 0.4% by weight.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 4에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 4.

실시예 22Example 22

실시예 1에서 얻어진 성형 제품이 480℃에서 약 1시간 동안 소결된 것을 제외하고는 실시예 1에서와 동일한 과정을 반복하였다. 본 발명의 촉매중 산소를 제외한 촉매 활성 성분의 조성은 다음과 같았다:The same procedure as in Example 1 was repeated except that the molded article obtained in Example 1 was sintered at 480 ° C. for about 1 hour. The composition of the catalytically active component excluding oxygen in the catalyst of the present invention was as follows:

Mo12V3W1.2Cu1.2Sb0.5 Mo 12 V 3 W 1.2 Cu 1.2 Sb 0.5

촉매중 촉매 활성 성분의 X-선 회절분석에서 2θ값을 측청한 결과 22.2°에서 최대 피크 및 23.0°에서 두번째로 큰 피크가 나타났고, 여기서 세기비는 100:60이었다. 촉매의 내마모성은 0.3 중량%이었다.X-ray diffraction analysis of the catalytically active component of the catalyst showed that the peak value at 22.2 ° and the second largest peak at 23.0 ° showed an intensity ratio of 100: 60. The wear resistance of the catalyst was 0.3% by weight.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 4에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 4.

실시예 23Example 23

실시예 1에서 얻어진 예비소결된 분말이 결합제로서 에틸렌 글리콜의 30중량% 수용액을 사용하여 성형된 것을 제외하고는 실시예 1에서와 동일한 과정을 반복하였다. 촉매에 대한 X-선 회절분석을 실시하였다. 알런덤 담체를 기본으로 한 알루미나의 몇몇 피크가 관찰되었을 지라도, 기타 피크들은 예비소결된 과립에 대해 관찰된 것과 유사하였다.The same procedure as in Example 1 was repeated except that the presintered powder obtained in Example 1 was molded using a 30 wt% aqueous solution of ethylene glycol as a binder. X-ray diffraction analysis was performed on the catalyst. Although several peaks of alumina based on alandeum carriers were observed, the other peaks were similar to those observed for presintered granules.

촉매의 기공 분포를 측정하였다. 직경 0.01∼0.1㎛, 0.1∼1㎛, 1∼10㎛ 및 10~200㎛를 갖는 기공의 부피는 촉매중에서 직경 0.01∼200 ㎛을 갖는 기공의 총 부피 기준으로 각각 11%, 10%, 67% 및 12%이었다. 촉매의 내마모성은 0.6중량%이고 비표면적은 2.2m2/g이었다.The pore distribution of the catalyst was measured. The volume of pores having a diameter of 0.01 to 0.1 μm, 0.1 to 1 μm, 1 to 10 μm and 10 to 200 μm is 11%, 10% and 67%, respectively, based on the total volume of pores having a diameter of 0.01 to 200 μm in the catalyst. And 12%. The wear resistance of the catalyst was 0.6% by weight and the specific surface area was 2.2 m 2 / g.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 4에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 4.

실시예 24Example 24

실시예 1에서 얻어진 예비소결된 분말 24부가 평균 섬유길이100 ㎛ 및 평균 섬유 직경 2.0 ㎛를 갖는 실리카-알루미나 1.2부와 혼합되었다. 텀블 과립 형성기에서, 담체상에 글리세린 20중량%수용액 3부를 뿌리면서 공극률 34%, 흡수율 17% 및 직경 3.5mm를 갖는 알런덤 담체 34.8부에 상기 혼합물을 도포하였다. 노의 온도를 실온에서 시간당 약 70℃의 속도로 온도를 상승시키면서, 390℃에서 2.5시간동안 소결시켜 촉매를 얻었다.24 parts of the presintered powder obtained in Example 1 were mixed with 1.2 parts of silica-alumina having an average fiber length of 100 μm and an average fiber diameter of 2.0 μm. In the tumble granulator, the mixture was applied to 34.8 parts of an alandom carrier having a porosity of 34%, a water absorption of 17%, and a diameter of 3.5 mm while sprinkling 3 parts of a 20% by weight aqueous solution of glycerin on the carrier. The furnace was sintered at 390 ° C. for 2.5 hours while raising the temperature at room temperature at a rate of about 70 ° C. per hour to obtain a catalyst.

촉매의 기공 분포를 측정하였다. 직경 0.1∼10㎛, 1∼10㎛ 및 10~200㎛를 갖는 기공의 부피는 촉매중에서 직경 0.01~200 ㎛을 갖는 기공의 총 부피 기준으로 각각 11%, 72% 및 17%이었다. 촉매의 내마모성은 0.1중량%이었다.The pore distribution of the catalyst was measured. The volume of pores having a diameter of 0.1 to 10 μm, 1 to 10 μm and 10 to 200 μm was 11%, 72% and 17%, respectively, based on the total volume of pores having a diameter of 0.01 to 200 μm in the catalyst. The wear resistance of the catalyst was 0.1% by weight.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 4에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 4.

실시예 25Example 25

실시예 1에서 얻어진 예비소결된 분말 22부와 탄화규소 휘스커 1부, 글리세린 20중량% 수용액 5부 및 공극률 34%, 흡수율 17% 및 직경 3.5mm를 갖는 알런덤 담체 66부와의 혼합물 23부가 사용된 것을 제외하고는 실시예 24에서와 동일한 과정을 반복하여 본 발명의 촉매를 얻었다.23 parts of the pre-sintered powder obtained in Example 1, 1 part of silicon carbide whisker, 5 parts of 20% by weight aqueous solution of glycerin and 34 parts of porosity, 17 parts of water absorption and 66 parts of alanthanum carrier having a diameter of 3.5 mm are used. The catalyst of the present invention was obtained by repeating the same procedure as in Example 24 except for the above.

촉매의 기공 분포를 측정하였다. 직경 0.1∼1㎛, 1~10㎛ 및 10∼200㎛를 갖는 기공의 부피는 촉매중에서 직경 0.01∼200 ㎛을 갖는 기공의 총 부피 기준으로 각각 15%, 73% 및 12%이었다. 촉매의 내마모성은 0.2중량%이었다.The pore distribution of the catalyst was measured. The volumes of pores having 0.1-1 μm, 1-10 μm and 10-200 μm in diameter were 15%, 73% and 12%, respectively, based on the total volume of pores having a diameter of 0.01-200 μm in the catalyst. The wear resistance of the catalyst was 0.2% by weight.

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 4에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 4.

[표 4]TABLE 4

비교예 1Comparative Example 1

삼산화 안티몬이 사용되지 않는 것을 제외하고는 실시예 1에서와 동일한 과정을 반복하여 촉매를 얻었다. 본 발명의 촉매중 산소를 제외한 촉매 활성 성분의 조성은 다음과 같았다:The catalyst was obtained by repeating the same procedure as in Example 1 except that antimony trioxide was not used. The composition of the catalytically active component excluding oxygen in the catalyst of the present invention was as follows:

Mo12V3W1.2Cu1.2 Mo 12 V 3 W 1.2 Cu 1.2

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 5에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 5.

비교예 2Comparative Example 2

산화구리가 사용되지 않는 것을 제외하고는 실시예 1에서와 동일한 과정을 반복하여 촉매를 얻었다. 본 발명의 촉매중 산소를 제외한 촉매 활성 성분의 조성은 다음과 같았다:The catalyst was obtained by repeating the same procedure as in Example 1 except that copper oxide was not used. The composition of the catalytically active component excluding oxygen in the catalyst of the present invention was as follows:

Mo12V3W1.2Sb0.5 Mo 12 V 3 W 1.2 Sb 0.5

촉매를 실시예 1에서 처럼 반응시켰다. 그 결과를 표 5에 나타냈다.The catalyst was reacted as in Example 1. The results are shown in Table 5.

[표 5]TABLE 5

상기 결과로 부터, 본 발명의 촉매는 종래의 촉매보다 약 10~70℃에서 높은 반응 선택도를 나타낸다는 것을 알 수 있다.From the above results, it can be seen that the catalyst of the present invention exhibits higher reaction selectivity at about 10 to 70 ° C. than the conventional catalyst.

발명의 배경Background of the Invention

Claims (12)

촉매 활성 성분이 하기 일반식(1)로 나타내는 조성을 가지며;The catalytically active component has a composition represented by the following general formula (1); 상기 식에서,Where Mo, V, W, Cu, Sb 및 O는 각각 몰리브덴, 바나듐, 텅스텐, 구리, 안티몬 및 산소를 나타내고,Mo, V, W, Cu, Sb and O represent molybdenum, vanadium, tungsten, copper, antimony and oxygen, respectively X는 알칼리 금속 및 탈륨으로 이루어진 군으로 부터 선택된 적어도 하나의 원소이고,X is at least one element selected from the group consisting of alkali metals and thallium, Y는 마그네슘, 칼슘, 스트론튬, 바륨 및 아연으로 이루어진 군으로 부터 선택된 적어도 하나의 원소이고,Y is at least one element selected from the group consisting of magnesium, calcium, strontium, barium and zinc, Z는 니오븀, 세륨, 주석, 크롬, 망간, 철, 코발트, 사마륨, 게르마늄, 티탄 및 비소로 이루어진 군으로 부터 선택된 적어도 하나의 원소이고,Z is at least one element selected from the group consisting of niobium, cerium, tin, chromium, manganese, iron, cobalt, samarium, germanium, titanium and arsenic, a,b,c,d,e,f,g 및 h는 12개의 몰리브덴 원자 기준으로 0<a≤10, 0≤b≤10, 0<c≤6, 0<d≤10, 0≤e≤0.5, 0≤f≤1 및 0≤g<6의 원자비를 나타내고,a, b, c, d, e, f, g and h are 0 <a≤10, 0≤b≤10, 0 <c≤6, 0 <d≤10, 0≤e≤ based on 12 molybdenum atoms Atomic ratios of 0.5, 0 ≦ f ≦ 1, and 0 ≦ g <6; h는 총 원자가를 만족하는 데 요구되는 산소 원자수임)h is the number of oxygen atoms required to satisfy the total valence) 구리 Kα선에 의한 상기 촉매 활성 성분의 X-선 회절분석에서 있어서, 최대 피크가 22.2±0.3°(2θ:θ는 회절각)에서 나타나는 촉매를 제공하기 위하여,In the X-ray diffraction analysis of the catalytically active component by copper Kα rays, to provide a catalyst in which the maximum peak appears at 22.2 ± 0.3 ° (2θ: θ is the diffraction angle), (a) 촉매 활성 성분을 구성하는 금속원소(이하, "촉매 활성 원소"라 함) 또는 그 화합물을 함유하는 수용액 또는 분산액을 분무 건조하여 건조된 분말을 제공하는 단계,(a) spray drying an aqueous solution or dispersion containing a metal element constituting the catalytically active component (hereinafter referred to as " catalytically active element ") or a compound thereof to provide a dried powder, (b) 상기 단계(a)에서 얻어진 건조 분말을 소결하여 촉매 활성 성분 분말을 얻는 단계, 및(b) sintering the dry powder obtained in step (a) to obtain a catalytically active ingredient powder, and (c) 텀블 과립 형성기를 사용하여 상기 단계(b)에서 얻어진 촉매 활성 성분 분말로 담체를 피복하는 단계를 포함하는 촉매 제조 방법.(c) coating the carrier with the catalytically active ingredient powder obtained in step (b) using a tumble granulator. 제 1항에 있어서, 단계(c)에서 보강재가 촉매 활성 성분의 분말과 함께 사용되는 방법.The process of claim 1 wherein the reinforcing material is used in step (c) with a powder of the catalytically active component. 제 1항 또는 제 2항에 있어서, 단계(c)에서 결합제가 촉매 활성 성분의 분말과 함께 사용되는 방법.The process according to claim 1 or 2, wherein the binder in step (c) is used together with a powder of the catalytically active component. 제 3항에 있어서, 결합제가 디올 또는 트리올인 방법.The method of claim 3 wherein the binder is a diol or a triol. 제 4항에 있어서, 트리올이 글리세린인 방법.The method of claim 4 wherein the triol is glycerin. 제 2항에 있어서, 보강재가 세라믹 섬유인 방법.The method of claim 2 wherein the reinforcing material is ceramic fiber. 촉매 활성 성분이 하기 일반식(1)로 나타내는 조성을 가지며,The catalytically active component has a composition represented by the following general formula (1), (상기 식에서,(Wherein Mo, V, W, Cu, Sb 및 O는 각각 몰리브텐, 바나듐, 텅스텐, 구리, 안티몬 및 산소를 나타내고,Mo, V, W, Cu, Sb and O represent molybdenum, vanadium, tungsten, copper, antimony and oxygen, respectively X는 알칼리 금속 및 탈륨으로 이루어진 군으로 부터 선택된 적어도 하나의 원소이고,X is at least one element selected from the group consisting of alkali metals and thallium, Y는 마그네슘, 칼슘, 스트론튬, 바륨 및 아연으로 이루어진 군으로 부터 선택된 적어도 하나의 원소이고,Y is at least one element selected from the group consisting of magnesium, calcium, strontium, barium and zinc, Z는 니오븀, 세륨, 주석, 크롬, 망간, 철, 코발트, 사마륨, 게르마늄, 티탄 및 비소로 이루어진 군으로 부터 선택된 적어도 하나의 원소이고,Z is at least one element selected from the group consisting of niobium, cerium, tin, chromium, manganese, iron, cobalt, samarium, germanium, titanium and arsenic, a,b,c,d,e,f,g 및 h는 12개의 몰리브덴 원자 기준으로 0<a≤10, 0≤b≤10, 0<c≤6, 0<d≤10, 0≤e≤0.5, 0≤f≤1 및 0≤g<6의 원자비를 나타내고,a, b, c, d, e, f, g and h are 0 <a≤10, 0≤b≤10, 0 <c≤6, 0 <d≤10, 0≤e≤ based on 12 molybdenum atoms Atomic ratios of 0.5, 0 ≦ f ≦ 1, and 0 ≦ g <6; h는 총 원자가를 만족하는 데 요구되는 산소 원자수임)h is the number of oxygen atoms required to satisfy the total valence) 구리 Kα선에 의한 상기 촉매 활성 성분의 X-선 회절분석에서 있어서, 최대 피크가 22.2±0.3°(2θ:θ는 회절각)에서 나타나는 촉매를 제공하기 위하여,In the X-ray diffraction analysis of the catalytically active component by copper Kα rays, to provide a catalyst in which the maximum peak appears at 22.2 ± 0.3 ° (2θ: θ is the diffraction angle), (a) 촉매 활성 원소 또는 그 화합물을 함유하는 수용액 또는 분산액을 분무 건조하여 건조된 분말을 제공하는 단계, 및(a) spray drying an aqueous solution or dispersion containing the catalytically active element or a compound thereof to provide a dried powder, and (b) 상기 단계(a)에서 얻어진 건조 분말을 소결하여 촉매 활성 성분 분말을 얻는 단계를 포함하는 촉매 제조 방법.(b) sintering the dry powder obtained in step (a) to obtain a catalyst active ingredient powder. 제 7항에 있어서, 상기 단계(b)에서 얻어진 건조 분말 5g 및 순수한 물 75g으로 된 혼합물을 5분 동안 교반한 후 측정한 전기 전도도가 100~2,000 μs/cm인 촉매 제조방법.The method according to claim 7, wherein the electrical conductivity measured after stirring the mixture of 5 g of dry powder and 75 g of pure water obtained in step (b) for 5 minutes is 100-2,000 μs / cm. 제 8항에 있어서, 촉매 활성 원소 또는 그 화합물을 함유하는 수용액 또는 분산액이 안티몬 원으로서 삼산화안티몬과 물을 혼합함으로써 얻어지는 촉매 제조 방법.The method for producing a catalyst according to claim 8, wherein an aqueous solution or dispersion containing a catalytically active element or a compound thereof is obtained by mixing antimony trioxide and water as an antimony source. 제 7항 내지 제 9 항 중 어느 하나에 있어서, 상기 촉매가 기체상에서 아크롤레인을 산소 분자로 촉매 산화시킴으로써 아크릴산의 제조에 사용하기 위한 촉매 제조방법.10. The process according to claim 7, wherein the catalyst is used for the production of acrylic acid by catalytic oxidation of acrolein to oxygen molecules in the gas phase. 촉매 중 직경 0.01~200 ㎛을 갖는 기공의 총 부피 기준으로 하여, 직경 0.01~0.1 ㎛를 갖는 기공의 부피가 20%이하이고, 직경 0.1~1 ㎛를 갖는 기공의 부피가 30%이하이며, 1∼10 ㎛를 갖는 기공의 부피가 40%이상이고, 10∼200 ㎛를 갖는 기공의 부피가 50%이하인 촉매를 제공하기 위하여, 제 7항 내지 9항 중 어느 하나에 따른 촉매 제조 방법에 따라 얻어진 촉매를 압축, 압출 또는 피복하는 단계를 포함하는 촉매 제조 방법.Based on the total volume of pores having a diameter of 0.01 to 200 μm in the catalyst, the volume of the pores having a diameter of 0.01 to 0.1 μm is 20% or less, the volume of the pores having a diameter of 0.1 to 1 μm is 30% or less, 1 In order to provide a catalyst having a volume of pores having ˜10 μm of at least 40% and a volume of pores having 10 to 200 μm of at most 50%, obtained according to the catalyst preparation method according to any one of claims 7 to 9. A method of making a catalyst comprising the step of compressing, extruding or coating the catalyst. 제 11항에 있어서, 기체상에서 아크롤레인을 산소 분자로 촉매 산화시킴으로써 아크릴산의 제조에 사용하기 위한 촉매 제조 방법.12. The process of claim 11 for use in the production of acrylic acid by catalytic oxidation of acrolein to oxygen molecules in the gas phase.
KR1019960706220A 1995-03-03 1996-03-01 Catalyst and its manufacturing method KR100492454B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960706220A KR100492454B1 (en) 1995-03-03 1996-03-01 Catalyst and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP95-68951 1995-03-03
JP96-63947 1996-02-27
KR1019960706220A KR100492454B1 (en) 1995-03-03 1996-03-01 Catalyst and its manufacturing method

Publications (2)

Publication Number Publication Date
KR970702820A KR970702820A (en) 1997-06-10
KR100492454B1 true KR100492454B1 (en) 2005-08-31

Family

ID=43669961

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960706220A KR100492454B1 (en) 1995-03-03 1996-03-01 Catalyst and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100492454B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190046853A (en) * 2016-09-14 2019-05-07 닛뽄 가야쿠 가부시키가이샤 Catalyst for the production of acrylic acid and method for producing acrylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190046853A (en) * 2016-09-14 2019-05-07 닛뽄 가야쿠 가부시키가이샤 Catalyst for the production of acrylic acid and method for producing acrylic acid
KR102367621B1 (en) * 2016-09-14 2022-02-24 닛뽄 가야쿠 가부시키가이샤 Catalyst for producing acrylic acid and method for producing acrylic acid

Also Published As

Publication number Publication date
KR970702820A (en) 1997-06-10

Similar Documents

Publication Publication Date Title
US5959143A (en) Catalysts and process for the preparation thereof
KR101649767B1 (en) Method for producing geometric catalyst moulded bodies
KR101642163B1 (en) Method for producing geometric catalyst moulded bodies
KR100764758B1 (en) Catalyst
KR20040045496A (en) Method for Producing Ammoxidation Catalyst
CA2172259A1 (en) Catalyst based on oxides of fe, co, bi and mo
JP3371112B2 (en) Iron / antimony-containing metal oxide catalyst composition and method for producing the same
JPH0247264B2 (en)
JP2004509051A (en) Method for producing multiphase multimetal oxide materials
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP3342794B2 (en) Method for producing supported catalyst for synthesis of methacrolein and methacrylic acid
KR100492454B1 (en) Catalyst and its manufacturing method
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
JP4157362B2 (en) Composite oxide catalyst and method for producing the same
JP4253176B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid
JP5378041B2 (en) Method for producing composite oxide catalyst for acrylonitrile synthesis
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
CN110052265A (en) The oxidation of aldehydes catalyst and preparation method thereof for preparing methacrylic acid of metering system
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP4236415B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
CN107282059B (en) Catalyst for producing acrylic acid
JP7347283B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7375638B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7468292B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120507

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130503

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee