KR100491965B1 - Dielectric material using reactive dendrimer and starburst compound and process for manufacturing thin film formed of the same - Google Patents

Dielectric material using reactive dendrimer and starburst compound and process for manufacturing thin film formed of the same Download PDF

Info

Publication number
KR100491965B1
KR100491965B1 KR10-2000-0053707A KR20000053707A KR100491965B1 KR 100491965 B1 KR100491965 B1 KR 100491965B1 KR 20000053707 A KR20000053707 A KR 20000053707A KR 100491965 B1 KR100491965 B1 KR 100491965B1
Authority
KR
South Korea
Prior art keywords
thin film
starburst
low dielectric
dendrimer
dielectric material
Prior art date
Application number
KR10-2000-0053707A
Other languages
Korean (ko)
Other versions
KR20020020503A (en
Inventor
이문호
오원태
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR10-2000-0053707A priority Critical patent/KR100491965B1/en
Publication of KR20020020503A publication Critical patent/KR20020020503A/en
Application granted granted Critical
Publication of KR100491965B1 publication Critical patent/KR100491965B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/307Other macromolecular compounds

Abstract

본 발명은 저유전재료 및 그 제조방법에 관한 것으로서, 하기 화학식 1의 유기치환체를 갖는 실란화합물(organosilane)을 말단으로 갖는 덴드리머(dendrimer) 또는 스타버스트(starburst)를 포함하는 저유전재료, 상기 저유전재료를 합성하는 방법 및 상기 저유전재료를 이용하여 초저유전박막을 제조하는 방법을 제공하고 있다:BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low dielectric material and a method for manufacturing the same, wherein the low dielectric material includes a dendrimer or a starburst having an organosilane having an organic substituent of Formula 1 A method of synthesizing a dielectric material and a method of manufacturing an ultra low dielectric film using the low dielectric material is provided.

[화학식 1][Formula 1]

(R1O)m(R2)nSiR3.(R 1 O) m (R 2 ) n SiR 3 .

상기 식에서, m+n=3이고 m은 1, 2 또는 3이며, R1과 R2는 서로 독립적으로 C1-C10 지방족 알킬 그룹이며, R3는 비닐, 할로겐, 알콕시, 니트로, 니트릴, 아민, 아크릴옥시 또는 에폭시기 치환체를 말단으로 갖는 탄화수소이다.Wherein m + n = 3 and m is 1, 2 or 3, R 1 and R 2 are independently of each other a C 1 -C 10 aliphatic alkyl group, R 3 is vinyl, halogen, alkoxy, nitro, nitrile, It is a hydrocarbon which has a terminal amine, an acryloxy, or an epoxy group substituent.

Description

반응성 덴드리머와 스타버스트 화합물을 이용한 유전재료 및 박막 제조방법{Dielectric material using reactive dendrimer and starburst compound and process for manufacturing thin film formed of the same}Dielectric material using reactive dendrimer and starburst compound and process for manufacturing thin film formed of the same}

본 발명은 저유전재료 및 이를 이용한 초저유전박막 제조방법에 관한 것으로서, 보다 상세하게는, 정보전달, 정보처리 및 정보저장용 기기의 핵심부품에 사용되는 고성능 집적회로를 제조할 수 있는 저유전재료 및 이를 이용하여 초저유전박막을 제조하는 방법에 관한 것이다.The present invention relates to a low dielectric material and a method for manufacturing an ultra low dielectric thin film using the same, and more particularly, a low dielectric material capable of manufacturing high performance integrated circuits used in key components of information transmission, information processing, and information storage devices. And it relates to a method for producing an ultra low dielectric thin film using the same.

최근 전자업계에는 다층구조를 갖는 집적회로의 밀도, 예들 들면 메모리와 논리 칩들을 증가시켜, 회로의 수행능력을 증가시키고 비용을 절감하는 요구가 계속되고 있다. 이러한 목표를 달성하기 위하여, 칩크기를 계속적으로 줄이고 이?ㅆ으며 이와 동시에 절연체의 유전상수를 낮출 수 있는 새로운 저유전재료를 개발하려는 노력을 배가하고 있다. 현재 사용되고 있는 유전물질은 실리콘 다이옥사이드로서 유전상수는 대략 3.5∼4.0이다. 이 물질은 반도체제조공정과 관련된 처리과정의 다양한 화학적, 열적 처리 과정을 견딜 수 있을 만큼 강한 물리적 성질 및 열안정성을 갖고 있다.In recent years, the electronic industry continues to increase the density of integrated circuits having a multilayer structure, for example, memory and logic chips, thereby increasing the performance of the circuit and reducing costs. To achieve this goal, we are continually reducing our chip size and at the same time doubling our efforts to develop new low-k materials that can lower the dielectric constant of insulators. Currently used dielectric material is silicon dioxide with a dielectric constant of approximately 3.5 to 4.0. The material has strong physical properties and thermal stability that can withstand the various chemical and thermal processes involved in the semiconductor manufacturing process.

그러나, 최근의 다층구조를 갖는 고성능 집적회로는 도체로서 전도성이 뛰어나고 값이 비교적 저렴한 구리를 선정하고 저유전물질로는 유전상수 2.5 이하를 만족할 수 있는 신소재를 필요로 하고 있다. 집적회로의 크기가 점차로 작아짐에 따라, 신호지연과 크로스토크 현상은 디바이스 성능향상에 있어 지대한 장애를 유발한다. 신호지연과 크로스토크 문제를 해결하기 위해 저유전 특성을 갖는 유전물질의 연구개발이 활발히 진행되고 있다.However, recently, high performance integrated circuits having a multilayered structure need to select copper having excellent conductivity as a conductor and having a relatively low value, and a new material capable of satisfying a dielectric constant of 2.5 or less as a low dielectric material. As integrated circuits become smaller in size, signal delays and crosstalk phenomena cause significant obstacles in improving device performance. In order to solve the signal delay and crosstalk problems, research and development of dielectric materials having low dielectric properties are being actively conducted.

상기 문제점을 해결하기 위하여, 전세계적으로 실리케이트계 및 나노기공 실리케이트계, 방향족계 고분자, 불소화 방향족 고분자계, 유기-무기 복합재료 등을 대상으로 유전체 재료 개발을 위한 많은 연구가 진행되고 있다. 초저유전재료 개발은 2.5 이하의 유전율 구현 외에도 반도체 제조공정과 반도체 내구성에 요구되는 열안정성, 기계적 성질, 켐-멕 폴리싱(chem-mech polishing) 적합성, 에칭(etching) 특성, 계면적찹성, 전기적 특성 등의 확보가 이루어져야 한다.  In order to solve the above problems, a lot of researches for the development of dielectric materials have been conducted worldwide for silicate-based and nanoporous silicate-based, aromatic polymers, fluorinated aromatic polymers, and organic-inorganic composite materials. The development of ultra-low dielectric materials, in addition to the realization of dielectric constant of 2.5 or less, the thermal stability, mechanical properties, chem-mech polishing suitability, etching characteristics, interfacial adhesion and electrical characteristics required for semiconductor manufacturing process and semiconductor durability The back should be secured.

따라서, 본 발명이 이루고자 하는 기술적 과제는 반도체 제조공정과 반도체 내구성에 요구되는 제반 특성이 우수하면서 낮은 유전율을 가지는 저유전재료를 제공하는 것이다. Therefore, the technical problem to be achieved by the present invention is to provide a low dielectric material having excellent dielectric properties and low dielectric constant required for semiconductor manufacturing processes and semiconductor durability.

본 발명이 이루고자 하는 다른 기술적 과제는 이러한 저유전재료를 제조하는 방법 및 이를 이용하여 초저유전박막을 제조하는 방법을 제시하는 것이다.Another technical problem to be achieved by the present invention is to propose a method of manufacturing such a low dielectric material and a method of manufacturing an ultra low dielectric thin film using the same.

본 발명은 상기 기술적 과제를 달성하기 위하여, 하기 화학식 1의 유기치환체를 갖는 실란화합물을(organosilane) 말단으로 갖는 덴드리머(dendrimer) 또는 스타버스트(starburst)를 포함하는 유전재료를 제공한다:The present invention provides a dielectric material including a dendrimer or starburst having an organosilane terminal having an organosilane having an organic substituent of Formula 1 to achieve the above technical problem:

[화학식 1][Formula 1]

(R1O)m(R2)nSiR3.(R 1 O) m (R 2 ) n SiR 3 .

상기 식에서, m+n=3이고 m은 1, 2 또는 3이며, R1과 R2는 서로 독립적으로 C1-C10 지방족 알킬 그룹이며, R3는 비닐, 할로겐, 알콕시, 니트로, 니트릴, 아민, 아크릴옥시 또는 에폭시기 치환체를 말단으로 갖는 탄소수 1 내지 10의 알킬기이다.Wherein m + n = 3 and m is 1, 2 or 3, R 1 and R 2 are independently of each other a C 1 -C 10 aliphatic alkyl group, R 3 is vinyl, halogen, alkoxy, nitro, nitrile, It is a C1-C10 alkyl group which has an amine, an acryloxy, or an epoxy group substituent at the terminal.

상기 덴드리머는 폴리아미도아민(poly(amidoamine)) 또는 폴리프로필렌이민The dendrimer is polyamidoamine (poly (amidoamine)) or polypropyleneimine

(polypropyleneimine)) 덴드리머인 것이 바람직하다.(polypropyleneimine)) It is preferable that it is a dendrimer.

상기 스타버스트는 폴리(ε-카프로락톤) 스타버스트{poly(ε-carprolactone) starburst} 인 것이 바람직하다.The starburst is preferably a poly (ε-carprolactone) starburst.

상기 R1과 R2는 서로 독립적으로 메틸, 에틸, 프로필, 부틸, 펜틸, 이소프로필 및 이소부틸기 중에서 선택되는 어느 하나인 것이 바람직하다.R 1 and R 2 are each independently selected from methyl, ethyl, propyl, butyl, pentyl, isopropyl and isobutyl groups.

상기 유기치환체를 갖는 실란화합물은 3-아크릴옥시프로필 트리메톡시실란 (3-acryloxypropyl trimethoxysilane), 3-아크릴옥시프로필 메틸디메톡시실란(3-acryloxypropyl methyldimethoxysilane), 3-아크릴옥시프로필 디메틸메톡시실란 (3-acryloxypropyl dimethylmethoxysilane), 3-아크릴옥시프로필 메틸비스(트리메틸실록시) 실란(3-acryloxypropyl methylbis(trimethylsiloxy)silane), 3-글리시독시프로필 트리메톡시 실란(3-glycidoxypropyl trimethoxysilane), 3-글리시독시프로필 메틸디메톡시 실란(3-glycidoxypropyl methyldimethoxysilane), 3-글리시독시프로필 메틸디에톡시 실란(3-gylcidoxypropyl methyldiethoxysilane), 3-글리시독시프로필 디메틸에톡시 실란(3-gylcidoxypropyl dimethylethoxysilane) 또는 3-글리시독시프로필 메틸비스(트리메틸실록시) 실란(3-glycidoxypropyl methylbis(trimethylsiloxy)silane)인 것이 바람직하다.The silane compound having the organic substituent is 3-acryloxypropyl trimethoxysilane, 3-acryloxypropyl methyldimethoxysilane, 3-acryloxypropyl dimethylmethoxysilane ( 3-acryloxypropyl dimethylmethoxysilane, 3-acryloxypropyl methylbis (trimethylsiloxy) silane, 3-glycidoxypropyl trimethoxysilane, 3-glycidoxypropyl trimethoxysilane 3-glycidoxypropyl methyldimethoxysilane, 3-glycidoxypropyl methyldiethoxysilane, 3-glycidoxypropyl methyldiethoxysilane, 3-gylcidoxypropyl dimethylethoxysilane or 3-glycidoxypropyl methyldimethoxysilane Preference is given to glycidoxypropyl methylbis (trimethylsiloxy) silane (3-glycidoxypropyl methylbis (trimethylsiloxy) silane).

상기 폴리아미도아민 또는 폴리프로필렌이민 덴드리머는 폴리프로필렌이민 테트라아민(DAB-Am-4, polypropyleneimine tetraamine), 폴리프로필렌이민 옥타아민(DAB-Am-8, polypropyleneimine octaamine) 또는 폴리프로필렌이민 헥사데카아민(DAB-Am-16, polypropyleneimine hexadecaamine) 인 것이 바람직하다.The polyamidoamine or polypropyleneimine dendrimer is polypropyleneimine tetraamine (DAB-Am-4, polypropyleneimine tetraamine), polypropyleneimine octaamine (DAB-Am-8, polypropyleneimine octaamine) or polypropyleneimine hexadecaamine (DAB -Am-16, polypropyleneimine hexadecaamine).

상기 폴리(ε-카프로락톤) 스타버스트는 지방족 코어를 갖는 3-, 4- 또는 6-가지의 폴리(ε-카프로락톤) 스타버스트(3-, 4- or 6-arm poly(ε-carprolactone starburst) 또는 방향족 코어를 갖는 3-, 4-, 또는 6-가지의 폴리(ε-카프로락톤) 스타버스트인 것이 바람직하다.The poly (ε-caprolactone) starburst is a 3-, 4- or 6-poly (ε-caprolactone) starburst (3-, 4- or 6-arm poly (ε-carprolactone starburst) having an aliphatic core. Or 3-, 4-, or 6-poly (ε-caprolactone) starburst with an aromatic core.

도 1을 참조하면, 상기 덴드리머와 스타버스트는 아민 또는 히드록시(hydroxy) 기를 말단으로 갖는 아미도아민(amidoamine) 덴드리머 또는 스타버스트 고분자 코어를 반응성 말단기를 갖는 실란화랍물과 함께 당량비를 조절하여 메탄올, 에탄올, 테트라하이드로퓨란, 메틸에틸케톤, 메틸이소부틸케톤 또는 디메틸포름아마이드와 같은 용매에 넣어 혼합한 후, 질소분위기의 상온에서 교반하여 반응시킨 후, 용매 및 반응부산물을 제거하고 상온에서 감압하여 건조 하여 얻을 수 있다.Referring to FIG. 1, the dendrimer and the starburst have an amidoamine dendrimer or a starburst polymer core having an amine or hydroxy group as a terminal, and a silage of the silane compound having a reactive end group together with an equivalent ratio. After mixing in a solvent such as methanol, ethanol, tetrahydrofuran, methyl ethyl ketone, methyl isobutyl ketone, or dimethyl formamide, and then reacting by stirring at room temperature in a nitrogen atmosphere, the solvent and reaction by-products are removed and the pressure is reduced at room temperature. It can be obtained by drying.

상기 실란 화합물은 나노기공을 형성할 수 있는 반응성 말단기를 가지는 것을 특징으로 하며, 상기 덴드리머 또는 스타버스트는 지방족 에스테르, 에테르 및 아미드를 기본 화학구조로 하여, 전체적인 분자모양이 구형이 되고 그 크기가 1-100nm가 되며 200-450oC 범위에서 열분해가 일어날 수 있도록 가지의 갯수와 분자량을 조절하여 설계 및 합성한 화합물을 의미한다. 분자량은 100에서 10,000 정도 범위의 값을 갖고 말단은 아민 또는 알코올기로 구성되어 있는 것이 바람직하다.The silane compound is characterized in that it has a reactive end group capable of forming nanopores, the dendrimer or starburst has a basic chemical structure of aliphatic esters, ethers and amides, the overall molecular shape is spherical and the size It refers to a compound designed and synthesized by adjusting the number and the molecular weight of the branches to be 1-100nm and pyrolysis in the range of 200-450 o C. The molecular weight preferably has a value in the range of 100 to 10,000 and the terminal is composed of an amine or alcohol group.

본 발명에 의한 저유전재료를 제조하는 방법은 a) 유기치환체를 갖는 실란화합물을 말단으로 갖는 덴드리머 또는 스타버스트와 테트라알콕시실란을 9.9:0.1 내지 0.1:9.9의 중량비로 혼합하는 단계, b) 전체 알콕시 농도에 대하여 0.1 내지 1.0 당량의 증류수를 가하여 용매 속에서 졸-겔 반응시키는 단계를 포함한다.Method for producing a low dielectric material according to the present invention comprises the steps of a) mixing a dendrimer or starburst having a silane compound having an organic substituent terminal and tetraalkoxysilane in a weight ratio of 9.9: 0.1 to 0.1: 9.9, b) the whole Adding 0.1 to 1.0 equivalents of distilled water relative to the alkoxy concentration to perform a sol-gel reaction in a solvent.

상기 b) 단계에서 사용한 증류수의 0.1-0.5 당량에 해당하는 염산 또는 암모니아를 각각 산 또는 염기 촉매로서 첨가, 혼합하여 용매속에서 졸-겔 반응시켜는 단계를 더 포함할 수도 있다.Hydrochloric acid or ammonia corresponding to 0.1-0.5 equivalents of the distilled water used in step b) may be further added and mixed as an acid or base catalyst, followed by sol-gel reaction in a solvent.

상기 테트라알콕시실란은 테트라메톡시실란(TMOS) 또는 테트라에톡시실란 (TEOS) 인 것이 바람직하다.The tetraalkoxysilane is preferably tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS).

상기 용매는 메탄올, 에탄올, 테트라하이드로퓨란(THF), 디메틸포름아마이드 (DMF), 메틸에틸케톤 또는 메틸이소부틸케톤(MIBK) 이 바람직하다.The solvent is preferably methanol, ethanol, tetrahydrofuran (THF), dimethylformamide (DMF), methyl ethyl ketone or methyl isobutyl ketone (MIBK).

또한 본 발명은 상기 저유전재료를 이용하여 나노기공이 형성된 초저유전박막을 제조하는 방법을 제공한다 (도 2). In another aspect, the present invention provides a method for producing an ultra-low dielectric film having nano-pores using the low dielectric material (Fig. 2).

하기 실시예 1-6에서와 같이 제조한 저유전물질을 테트라메톡시실란이나 테트라에톡시실란과 10:0에서부터 0.1:9.9의 중량비까지 혼합하여 적당량의 메틸이소부틸케톤용매에 녹인 후, 상온에서 강하게 교반시키며 용액속의 알콕시 농도에 대하여 0.1에서 1.0 당량까지의 적절한 량의 증류수를 서서히 넣어준다. 이와 함께 사용한 증류수의 0.1-0.5 당량에 해당하는 염산 또는 암모니아를 각각 산 또는 염기 촉매로써 함께 사용할 수 있다. 2시간 정도 반응시킨 후 용액의 용매(MIBK)를 가하거나 증발시키면서 농도를 조정하여 사용하기 전까지 밀봉하여 냉장보관하는 것이 바람직하다. 적당한 농도의 저유전물질 용액은 깨끗이 세척한 실리콘 기질위에 0.2μm 폴리테트라플로로에틸렌(PTFE) 필터를 사용하여 불순물을 제거할 수 있다.The low dielectric material prepared as in Example 1-6 was mixed with tetramethoxysilane or tetraethoxysilane to a weight ratio of 10: 0 to 0.1: 9.9, dissolved in an appropriate amount of methyl isobutyl ketone solvent, and then at room temperature. Stir vigorously and slowly add an appropriate amount of distilled water from 0.1 to 1.0 equivalent to the alkoxy concentration in the solution. Hydrochloric acid or ammonia corresponding to 0.1-0.5 equivalents of distilled water used together can be used together as an acid or base catalyst, respectively. After reacting for about 2 hours, the solution is preferably refrigerated and sealed until the concentration of the solvent (MIBK) is added or evaporated before use. Moderate concentrations of low dielectric material solutions can be removed using a 0.2 μm polytetrafluoroethylene (PTFE) filter on a clean silicon substrate.

초저유전박막의 제조는 a) 상기 저유전재료를 기질에 도포하는 단계, b) 50oC에서 3-5시간 정도 건조하는 단계, c) 질소분위기에서 250oC-300oC까지 온도를 서서히 올리고 2시간 동안 경화시키는 단계, d) 다시 400oC-500oC까지 온도를 서서히 올린 후, 2시간 동안 열분해하여 나노기공을 형성시키는 단계, e) 온도를 상온까지 서서히 낮추는 단계를 포함한다.The preparation of the ultra low dielectric thin film may include a) applying the low dielectric material to a substrate, b) drying at 50 ° C. for 3-5 hours, and c) slowly decreasing the temperature from 250 ° C. to 300 ° C. in a nitrogen atmosphere. And curing for 2 hours, d) gradually increasing the temperature to 400 ° C.-500 ° C., then pyrolyzing for 2 hours to form nanopores, and e) slowly lowering the temperature to room temperature.

상기 초저유전박막 제조방법에 의하여 집적회로칩세트(integrated circuit chip set) 디바이스를 제조할 수 있다. An integrated circuit chip set device can be manufactured by the ultralow dielectric film manufacturing method.

이하에서는 실시예를 참조하면서 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명의 이해를 돕기위해 예시적으로 제공된 것으로, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. The following examples are provided by way of example to help understanding of the present invention, but the scope of the present invention is not limited thereto.

<실시예 1><Example 1>

반응성 실란을 치환체로 갖는 덴드리머 고분자(A1)의 합성Synthesis of Dendrimer Polymer (A1) Having Reactive Silane as Substituent

폴리프로필렌이민 옥타아민 덴드리머(DAB-Am-8, Aldrich) 를 진공상태에서 60oC로 하루 동안 건조시켰다. 건조한 질소 분위기의 반응기에 무수 메탄올 (anhydrous MeOH) 10mL 를 넣고, 여기에 DAB-Am-8 덴드리머 1.94g (1.50 mmol) 을 넣은 후 잘 저어주었다. 반응기의 온도를 25oC로 유지하면서 3-아크릴옥시프로필 트리메톡시실란 5.62g(23.98 mmol) 을 천천히 가한 후, 24시간 동안 반응시켰다.Polypropyleneimine octaamine dendrimer (DAB-Am-8, Aldrich) was dried in vacuo at 60 ° C. for one day. 10 mL of anhydrous methanol (anhydrous MeOH) was added to a reactor in a dry nitrogen atmosphere, and 1.94 g (1.50 mmol) of DAB-Am-8 dendrimer was added thereto, followed by stirring well. 5.62 g (23.98 mmol) of 3-acryloxypropyl trimethoxysilane was slowly added while maintaining the temperature of the reactor at 25 ° C., and then reacted for 24 hours.

반응이 종결되면 먼저 건조한 질소를 불어주면서 메탄올을 말린 후, 핵자기 공명 스펙트럼(NMR)을 사용하여 생성물(A1)을 확인하고 그의 양을 계산하였다. 생성물은 거의 정량적으로 만들어지며 7.52g 을 얻었다. When the reaction was terminated, the methanol was first dried with blowing nitrogen, and then nuclear magnetic resonance spectrum (NMR) was used to identify the product (A1) and calculate the amount thereof. The product was made almost quantitative and yielded 7.52 g.

1H-NMR(δ, TMS): 3.99(t, 32H, methylene), 3.53(s, 144H, methoxy), 2.73(t, 16H, methylene), 2.40(m, 36H, methylene), 1.67(m, 56H, methylene), 1.35(m, 4H, methylene), 0.63(m, 32H, methylene). 1 H-NMR (δ, TMS): 3.99 (t, 32H, methylene), 3.53 (s, 144H, methoxy), 2.73 (t, 16H, methylene), 2.40 (m, 36H, methylene), 1.67 (m, 56H, methylene), 1.35 (m, 4H, methylene), 0.63 (m, 32H, methylene).

<실시예 2><Example 2>

반응성 실란을 치환체로 갖는 덴드리머 고분자(A2)의 합성Synthesis of Dendrimer Polymer (A2) Having Reactive Silane as Substituent

폴리프로필렌이민 옥타아민 덴드리머를 진공상태에서 60oC로 하루동안 건조시켰다. 건조한 질소 분위기의 반응기에 무수 메탄올 10mL 를 넣고, 여기에 DAB-Am-8 덴드리머 1.94g(1.50 mmol)을 넣은 후 잘 저어주었다. 반응기의 온도를 25oC로 유지하면서 3-글리시독시프로필 트리메톡시실란 5.67g(23.99 mmol)을 천천히 가한 후, 24시간동안 반응시켰다.The polypropyleneimine octaamine dendrimer was dried at 60 ° C. in vacuo for one day. 10 mL of anhydrous methanol was added to a reactor in a dry nitrogen atmosphere, and 1.94 g (1.50 mmol) of DAB-Am-8 dendrimer was added thereto, followed by stirring well. 5.67 g (23.99 mmol) of 3-glycidoxypropyl trimethoxysilane was slowly added while maintaining the temperature of the reactor at 25 ° C., followed by reaction for 24 hours.

반응이 종결되면 먼저 건조한 질소를 불어주면서 메탄올을 말린 후, 진공상태에서 완전히 건조시켰다. 생성물의 무게를 측정하여 수율을 구하고, 핵자기 공명 스펙트럼을 사용하여 생성물(A2) 의 양을 계산하였다. 생성물은 거의 정량적으로 만들어지며 7.59g을 얻었다. At the end of the reaction, methanol was first dried by blowing dry nitrogen and then completely dried under vacuum. The yield was obtained by weighing the product, and the amount of product (A2) was calculated using nuclear magnetic resonance spectra. The product was made almost quantitative and yielded 7.59 g.

<실시예 3><Example 3>

반응성 실란을 치환체로 갖는 스타버스트 화합물(B1)의 합성Synthesis of Starburst Compound (B1) Having Reactive Silane as Substituent

4-가지 폴리(ε-카프로락톤) 스타버스트 화합물 (4-arm PCL)을 진공상태에서 60oC로 하루 동안 건조시켰다. 건조한 질소 분위기의 반응기에 무수 메탄올 10 mL 를 넣고, 여기에 4-arm PCL 스타버스트 화합물 4.35g(1.00 mmol)을 넣은 후 잘 저어주었다. 반응기의 온도를 25oC로 유지하면서 3-아크릴옥시프로필 트리메톡시실란 0.94g(4.00 mmol)을 천천히 가한 후, 24시간 동안 반응시켰다.Four kinds of poly (ε-caprolactone) starburst compound (4-arm PCL) were dried in vacuo at 60 ° C. for one day. 10 mL of anhydrous methanol was added to a reactor in a dry nitrogen atmosphere. 4.35 g (1.00 mmol) of 4-arm PCL starburst compound was added thereto, followed by stirring well. 0.94 g (4.00 mmol) of 3-acryloxypropyl trimethoxysilane was slowly added while maintaining the temperature of the reactor at 25 ° C., followed by reaction for 24 hours.

반응이 종결되면 먼저 건조한 질소를 불어 주면서 메탄올을 말린 후, 진공상태에서 완전히 건조시켰다. 생성물의 무게를 측정하여 수율을 구하고, 핵자기 공명 스페트럼을 사용하여 생성물(B1) 의 양을 계산하였다. 생성물은 거의 정량적으로 만들어지며 5.25g을 얻었다. When the reaction was terminated, methanol was first dried by blowing dry nitrogen, and then completely dried under vacuum. The yield was obtained by weighing the product, and the amount of product (B1) was calculated using nuclear magnetic resonance spectrum. The product was made almost quantitative and yielded 5.25 g.

1H-NMR(δ, TMS): 4.0(m, methylene), 3.54(s, methoxy), 2.28(m, methylene), 1.83(m, methylene), 1.62(m, methylene), 1.38(m, methylene), 0.65(m, methylene). 1 H-NMR (δ, TMS): 4.0 (m, methylene), 3.54 (s, methoxy), 2.28 (m, methylene), 1.83 (m, methylene), 1.62 (m, methylene), 1.38 (m, methylene ), 0.65 (m, methylene).

<실시예 4><Example 4>

반응성 실란을 치환체로 갖는 스타버스트 화합물(B2)의 합성Synthesis of Starburst Compound (B2) Having Reactive Silane as Substituent

4-가지 폴리(ε-카프로락톤) 스타버스트 화합물을 진공상태에서 60oC로 하루동안 건조시켰다. 건조한 질소 분위기의 반응기에 무수 메탄올 10 mL 를 넣고, 여기에 4-arm PCL 스타버스트 화합물 4.35g(1.00 mmol)을 넣은 후 잘 저어주었다. 반응기의 온도를 25oC로 유지하면서 3-글리시독시프로필 트리메톡시실란 0.94g(4.00 mmol)을 천천히 가한 후, 24시간 동안 반응시켰다.The four poly (ε-caprolactone) starburst compounds were dried in vacuo at 60 ° C. for one day. 10 mL of anhydrous methanol was added to a reactor in a dry nitrogen atmosphere. 4.35 g (1.00 mmol) of 4-arm PCL starburst compound was added thereto, followed by stirring well. 0.94 g (4.00 mmol) of 3-glycidoxypropyl trimethoxysilane was slowly added while maintaining the temperature of the reactor at 25 ° C., followed by reaction for 24 hours.

반응이 종결되면 먼저 건조한 질소를 불어 주면서 메탄올을 말린 후, 진공상태에서 완전히 건조시켰다. 생성물의 무게를 측정하여 수율을 구하고, 핵자기 공명 스페트럼을 상용하여 생성물(B2) 의 양을 계산하였다. 생성물은 거의 정량적으로 만들어지며 5.24g을 얻었다. When the reaction was terminated, methanol was first dried by blowing dry nitrogen, and then completely dried under vacuum. The yield was obtained by measuring the weight of the product, and the nuclear magnetic resonance spectrum was used to calculate the amount of the product (B2). The product was made almost quantitative and yielded 5.24 g.

<실시예 5>Example 5

반응성 실란을 치환체로 갖는 스타버스트 화합물(B3)의 합성Synthesis of Starburst Compound (B3) Having Reactive Silane as Substituent

6-가지 폴리(ε-카프로락톤) 스타버스트 화합물(6-arm PCL)을 진공상태에서 60oC로 하루 동안 건조시켰다. 건조한 질소 분위기의 반응기에 무수 메탄올 10mL 를 넣고, 여기에 6-arm PCL 스타버스트 화합물 4.19g(1.00 mmol)을 넣은 후, 잘 저어주었다. 반응기의 온도를 25oC로 유지하면서 3-아크릴옥시프로필 트리메톡시실란 1.405g(6.00 mmol)을 천천히 가한 후, 24시간 동안 반응시켰다.Six-branched poly (ε-caprolactone) starburst compound (6-arm PCL) was dried in vacuo at 60 ° C. for one day. 10 mL of anhydrous methanol was added to a reactor in a dry nitrogen atmosphere, 4.19 g (1.00 mmol) of 6-arm PCL starburst compound was added thereto, followed by stirring well. 1.405 g (6.00 mmol) of 3-acryloxypropyl trimethoxysilane was slowly added while maintaining the temperature of the reactor at 25 ° C., and reacted for 24 hours.

반응이 종결되면 먼저 건조한 질소를 불어주면서 메탄올을 말린 후, 진공상태에서 완전히 건조시켰다. 생성물의 무게를 측정하여 수율을 구하고, 핵자기 공명 스펙트럼을 사용하여 생성물(B3) 의 양을 계산하였다. 생성물은 거의 정량적으로 만들어지며 5.56g을 얻었다.At the end of the reaction, methanol was first dried by blowing dry nitrogen and then completely dried under vacuum. The yield was obtained by weighing the product, and the amount of product (B3) was calculated using nuclear magnetic resonance spectra. The product was made almost quantitative and yielded 5.56 g.

<실시예 6><Example 6>

반응성 실란을 치환체로 갖는 스타버스트 화합물(B4)의 합성Synthesis of Starburst Compound (B4) Having Reactive Silane as Substituent

6-가지 폴리(ε-카프로락톤) 스타버스트 화합물(6-arm PCL)을 진공상태에서 60oC로 하루동안 건조시켰다. 건조한 질소 분위기의 반응기에 무수 메탄올 10mL 를 넣고, 여기에 6-arm PCL 스타버스트 화합물 4.19g(1.00 mmol)을 넣은 후, 잘 저어주었다. 반응기의 온도를 25oC로 유지하면서 3-글리시독시프로필 트리메톡시실란 1.42g(6.00 mmol)을 천천히 가한 후, 24시간 동안 반응시켰다.Six-branched poly (ε-caprolactone) starburst compound (6-arm PCL) was dried in vacuo at 60 ° C. for one day. 10 mL of anhydrous methanol was added to a reactor in a dry nitrogen atmosphere, 4.19 g (1.00 mmol) of 6-arm PCL starburst compound was added thereto, followed by stirring well. 1.42 g (6.00 mmol) of 3-glycidoxypropyl trimethoxysilane was slowly added while maintaining the temperature of the reactor at 25 ° C., followed by reaction for 24 hours.

반응이 종결되면 먼저 건조한 질소를 불어주면서 메탄올을 말린 후, 진공상태에서 완전히 건조시켰다. 생성물의 무게를 측정하여 수율을 구하고, 핵자기 공명 스펙트럼을 사용하여 생성물(B4) 의 양을 계산하였다. 생성물은 거의 정량적으로 만들어지며 5.60g을 얻었다. At the end of the reaction, methanol was first dried by blowing dry nitrogen and then completely dried under vacuum. The yield was obtained by weighing the product, and the amount of product (B4) was calculated using nuclear magnetic resonance spectra. The product was made almost quantitative and yielded 5.60 g.

<실시예 7><Example 7>

반응성 실란을 치환체로 갖는 덴드리머 화합물(A1)로부터 제조한 초저유전박막의 재료Material of ultra-low dielectric film prepared from dendrimer compound (A1) having reactive silane as a substituent

실시예 1에서 제조한 덴드리머 화합물 A1 1.05g을 테트라에톡시실란 0.45g과 혼합하여 15mL의 메틸이소부틸케톤 용매에 녹인 후, 상온에서 강하게 교반시키며 증류수 0.3g을 서서히 넣어주었다. 10분 정도 반응시킨 후, 용액에 건조한 질소를 불어주어 A1과 TEOS의 중량이 전체용액의 15 중량비가 될때까지 증발시켰다. 이렇게 준비한 저유전물질 용액은 0.2 μm 폴리테트라플로로에틸렌(PTFE) 필터를 사용하여 불순물을 제거한 후 깨끗이 세척한 실리콘 기질 위에 도포하였다. 용액의 농도와 스핀코팅 속도를 조절하여 기질에 도포한 저유전물질박막의 두께를 조절하였다. 제조한 박막은 50oC에서 5시간동안 건조시킨 후, 질소분위기에서 300oC까지 온도를 2oC/분의 속도로 가열하여 2시간 동안 경화시켰다. 그리고 다시 450oC까지 온도를 2oC/분의 속도로 올린 후, 2시간 동안 열분해시키며 나노기공을 형성시켰다. 이후 온도를 상온까지 서서히 낮추어 초저유전박막재료를 제조하였다.1.05 g of the dendrimer compound A1 prepared in Example 1 was mixed with 0.45 g of tetraethoxysilane, dissolved in 15 mL of methyl isobutyl ketone solvent, vigorously stirred at room temperature, and 0.3 g of distilled water was slowly added thereto. After reacting for about 10 minutes, dry nitrogen was blown to the solution and evaporated until the weight of A1 and TEOS was 15 weight ratio of the total solution. The low dielectric material solution thus prepared was applied to a clean silicon substrate after removing impurities using a 0.2 μm polytetrafluoroethylene (PTFE) filter. The thickness of the low dielectric material film applied to the substrate was controlled by controlling the concentration of the solution and the spin coating speed. The prepared thin film was dried at 50 ° C. for 5 hours and then cured for 2 hours by heating the temperature up to 300 ° C. at a rate of 2 ° C./min in a nitrogen atmosphere. Then, the temperature was increased to 450 ° C. at a rate of 2 ° C./min, and pyrolyzed for 2 hours to form nanopores. Since the temperature was gradually lowered to room temperature, an ultra low dielectric thin film material was prepared.

<실시예 8><Example 8>

반응성 실란을 치환체로 갖는 덴드리머 화합물(A2)로부터 제조한 초저유전박막의 재료Material of ultra-low dielectric film prepared from dendrimer compound (A2) having reactive silane as a substituent

실시예 2에서 제조한 덴드리머 화합물 A2 1.05g을 테트라에톡시실란 0.45g과 혼합하여 15mL의 메틸이소부틸케톤 용매에 녹인 후, 상온에서 강하게 교반시키며 증류수 0.3g을 서서히 넣어주었다. 10분 정도 반응시킨 후, 용액에 건조한 질소를 불어주어 A2과 TEOS의 중량이 전체용액의 15 중량비가 될때까지 증발시켰다. 이렇게 준비한 저유전물질 용액은 0.2 μm 폴리테트라플로로에틸렌 필터를 사용하여 불순물을 제거한 후 깨끗이 세척한 실리콘 기질 위에 도포하였다. 용액의 농도와 스핀코팅 속도를 조절하여 기질에 도포한 저유전물질박막의 두께를 조절하였다. 제조한 박막은 50oC에서 5시간 동안 건조시킨 후, 질소분위기에서 300oC까지 온도를 2oC/분의 속도로 가열하여 2시간 동안 경화시켰다. 그리고 다시 450oC까지 온도를 2oC/분의 속도로 가열한 후, 2시간동안 열분해시키며 나노기공을 형성시켰다. 이후 온도를 상온까지 서서히 낮추어 초저유전박막재료를 제조하였다.1.05 g of the dendrimer compound A2 prepared in Example 2 was mixed with 0.45 g of tetraethoxysilane, dissolved in 15 mL of methyl isobutyl ketone solvent, vigorously stirred at room temperature, and 0.3 g of distilled water was slowly added thereto. After reacting for about 10 minutes, dry nitrogen was blown to the solution and evaporated until the weight of A2 and TEOS was 15 weight ratio of the total solution. The low dielectric material solution thus prepared was applied to a clean silicon substrate after removing impurities using a 0.2 μm polytetrafluoroethylene filter. The thickness of the low dielectric material film applied to the substrate was controlled by controlling the concentration of the solution and the spin coating speed. The thin film was dried at 50 ° C. for 5 hours, and then cured for 2 hours by heating the temperature up to 300 ° C. at a rate of 2 ° C./min in a nitrogen atmosphere. And again heated to a temperature of 450 ° C at a rate of 2 ° C / min, and then pyrolyzed for 2 hours to form nanopores. Since the temperature was gradually lowered to room temperature, an ultra low dielectric thin film material was prepared.

<실시예 9>Example 9

반응성 실란을 치환체로 갖는 스타버스트 화합물 (B1)로부터 제조한 초저유전박막의 재료Material of ultra-low dielectric film prepared from starburst compound (B1) having reactive silane as substituent

실시예 3에서 제조한 스타버스트 화합물 B1 1.05g을 테트라에톡시실란 0.45g과 혼합하여 15mL의 메틸이소부틸케톤 용매에 녹인 후, 상온에서 강하게 교반시키며 증류수 0.3g을 서서히 넣어주었다. 10분 정도 반응시킨 후, 용액에 건조한 질소를 불어주어 B1과 TEOS의 중량이 전체용액의 15 중량비가 될때까지 증발시켰다. 이렇게 준비한 저유전물질 용액은 0.2 μm 폴리테트라플로로에틸렌 필터를 사용하여 불순물을 제거한 후 깨끗이 세척한 실리콘 기질 위에 도포하였다. 용액의 농도와 스핀코팅 속도를 조절하여 기질에 도포한 저유전물질박막의 두께를 조절하였다. 제조한 박막은 50oC에서 5시간 동안 건조시킨 후, 질소 분위기에서 300oC까지 온도를 2oC/분의 속도로 가열하여 2시간 동안 경화시켰다. 그리고 다시 450oC까지 온도를 2oC/분의 속도로 올린 후, 2시간 동안 열분해시키며 나노기공을 형성시켰다. 이후 온도를 상온까지 서서히 낮추어 초저유전박막재료를 제조하였다.1.05 g of the starburst compound B1 prepared in Example 3 was mixed with 0.45 g of tetraethoxysilane and dissolved in 15 mL of methyl isobutyl ketone solvent. Then, 0.3 g of distilled water was slowly added while stirring vigorously at room temperature. After reacting for about 10 minutes, dry nitrogen was blown to the solution and evaporated until the weight of B1 and TEOS was 15 weight ratio of the total solution. The low dielectric material solution thus prepared was applied to a clean silicon substrate after removing impurities using a 0.2 μm polytetrafluoroethylene filter. The thickness of the low dielectric material film applied to the substrate was controlled by controlling the concentration of the solution and the spin coating speed. The thin film was dried at 50 ° C. for 5 hours and then cured for 2 hours by heating the temperature to 300 ° C. at a rate of 2 ° C./min in a nitrogen atmosphere. Then, the temperature was increased to 450 ° C. at a rate of 2 ° C./min, and pyrolyzed for 2 hours to form nanopores. Since the temperature was gradually lowered to room temperature, an ultra low dielectric thin film material was prepared.

<실시예 10><Example 10>

반응성 실란을 치환체로 갖는 스타버스트 화합물(B2)로부터 제조한 초저유전박막의 재료Material of ultra-low dielectric film prepared from starburst compound (B2) having reactive silane as substituent

실시예 4에서 제조한 스타버스트 화합물 B2 1.05g을 테트라에톡시실란 0.45g과 혼합하여 15mL의 메틸이소부틸케톤 용매에 녹인 후, 상온에서 강하게 교반시키며 증류수 0.3g을 서서히 넣어주었다. 10분 정도 반응시킨 후, 용액에 건조한 질소를 불어주어 B2와 TEOS의 중량이 전체용액의 15 중량비가 될때까지 증발시켰다. 이렇게 준비한 저유전물질 용액은 0.2 μm 폴리테트라플로로에틸렌 필터를 사용하여 불순물을 제거한 후 깨끗이 세척한 실리콘 기질 위에 도포하였다. 용액의 농도와 스핀코팅 속도를 조절하여 기질에 도포한 저유전물질박막의 두께를 조절하였다. 제조한 박막은 50oC에서 5시간 동안 건조시킨 후, 질소 분위기에서 300oC까지 온도를 2oC/분의 속도로 가열하여 2시간 동안 경화시켰다. 그리고 다시 450oC까지 온도를 2oC/분의 속도로 올린 후, 2시간 동안 열분해시키며 나노기공을 형성시켰다. 이후 온도를 상온까지 서서히 낮추어 초저유전박막재료를 제조하였다.1.05 g of Starburst Compound B2 prepared in Example 4 was mixed with 0.45 g of tetraethoxysilane, dissolved in 15 mL of methyl isobutyl ketone solvent, and stirred slowly at room temperature, and 0.3 g of distilled water was slowly added thereto. After reacting for about 10 minutes, dry nitrogen was blown to the solution and evaporated until the weight of B2 and TEOS was 15% by weight of the total solution. The low dielectric material solution thus prepared was applied to a clean silicon substrate after removing impurities using a 0.2 μm polytetrafluoroethylene filter. The thickness of the low dielectric material film applied to the substrate was controlled by controlling the concentration of the solution and the spin coating speed. The thin film was dried at 50 ° C. for 5 hours and then cured for 2 hours by heating the temperature to 300 ° C. at a rate of 2 ° C./min in a nitrogen atmosphere. Then, the temperature was increased to 450 ° C. at a rate of 2 ° C./min, and pyrolyzed for 2 hours to form nanopores. Since the temperature was gradually lowered to room temperature, an ultra low dielectric thin film material was prepared.

<실시예 11><Example 11>

반응성 실란을 치환체로 갖는 스타버스트 화합물(B3)로부터 제조한 초저유전박막의 재료Material of ultra-low dielectric film prepared from starburst compound (B3) having reactive silane as substituent

실시예 5에서 제조한 스타버스트 화합물 B3 1.05g을 테트라에톡시실란 0.45g과 혼합하여 15mL의 메틸이소부틸케톤 용매에 녹인 후, 상온에서 강하게 교반시키며 증류수 0.3g을 서서히 넣어주었다. 10분 정도 반응시킨 후, 용액에 건조한 질소를 불어주어 B3와 TEOS의 중량이 전체용액의 15 중량비가 될때까지 증발시켰다. 이렇게 준비한 저유전물질 용액은 0.2 μm 폴리테트라플로로에틸렌 필터를 사용하여 불순물을 제거한 후 깨끗이 세척한 실리콘 기질 위에 도포하였다. 용액의 농도와 스핀코팅 속도를 조절하여 기질에 도포한 저유전물질박막의 두께를 조절하였다. 제조한 박막은 50oC에서 5시간 동안 건조시킨 후, 질소 분위기에서 300oC까지 온도를 2oC/분의 속도로 가열하여 2시간 동안 경화시켰다. 그리고 다시 450oC까지 온도를 2oC/분의 속도로 올린 후 2시간 동안 열분해시키며 나노기공을 형성시켰다. 이후 온도를 상온까지 서서히 낮추어 초저유전박막재료를 제조하였다.1.05 g of the starburst compound B3 prepared in Example 5 was mixed with 0.45 g of tetraethoxysilane and dissolved in 15 mL of methyl isobutyl ketone solvent. Then, 0.3 g of distilled water was added slowly with vigorous stirring at room temperature. After reacting for about 10 minutes, dry nitrogen was blown to the solution and evaporated until the weight of B3 and TEOS was 15% by weight of the total solution. The low dielectric material solution thus prepared was applied to a clean silicon substrate after removing impurities using a 0.2 μm polytetrafluoroethylene filter. The thickness of the low dielectric material film applied to the substrate was controlled by controlling the concentration of the solution and the spin coating speed. The thin film was dried at 50 ° C. for 5 hours and then cured for 2 hours by heating the temperature to 300 ° C. at a rate of 2 ° C./min in a nitrogen atmosphere. Then, the temperature was increased to 450 ° C. at a rate of 2 ° C./min and pyrolyzed for 2 hours to form nanopores. Since the temperature was gradually lowered to room temperature, an ultra low dielectric thin film material was prepared.

<실시예 12><Example 12>

반응성 실란을 치환체로 갖는 스타버스트 화합물(B4)로부터 제조한 초저유전박막의 재료Material of ultra-low dielectric film prepared from starburst compound (B4) having reactive silane as substituent

실시예 6에서 제조한 스타버스트 화합물 B4 1.05g을 테트라에톡시실란 0.45g과 혼합하여 15mL의 메틸이소부틸케톤 용매에 녹인 후, 상온에서 강하게 교반시키며 증류수 0.3g을 서서히 넣어주었다. 10분 정도 반응시킨 후, 용액에 건조한 질소를 불어주어 B4와 TEOS의 중량이 전체용액의 15 중량비가 될때까지 증발시켰다. 이렇게 준비한 저유전물질 용액은 0.2 μm 폴리테트라플로로에틸렌 필터를 사용하여 불순물을 제거한 후 깨끗이 세척한 실리콘 기질 위에 도포하였다. 용액의 농도와 스핀코팅 속도를 조절하여 기질에 도포한 저유전물질박막의 두께를 조절하였다. 제조한 박막은 50oC에서 5시간 동안 건조시킨 후, 질소분위기에서 300oC까지 온도를 2oC/분의 속도로 가열하여 2시간 동안 경화시켰다. 그리고 다시 450oC까지 온도를 2oC/분의 속도로 올린 후, 2시간 동안 열분해시키며 나노기공을 형성시켰다. 이후 온도를 상온까지 서서히 낮추어 초저유전박막재료를 제조하였다.1.05 g of the starburst compound B4 prepared in Example 6 was mixed with 0.45 g of tetraethoxysilane, dissolved in 15 mL of methyl isobutyl ketone solvent, and vigorously stirred at room temperature, and 0.3 g of distilled water was slowly added thereto. After reacting for about 10 minutes, dry nitrogen was blown to the solution and evaporated until the weight of B4 and TEOS was 15% by weight of the total solution. The low dielectric material solution thus prepared was applied to a clean silicon substrate after removing impurities using a 0.2 μm polytetrafluoroethylene filter. The thickness of the low dielectric material film applied to the substrate was controlled by controlling the concentration of the solution and the spin coating speed. The thin film was dried at 50 ° C. for 5 hours, and then cured for 2 hours by heating the temperature up to 300 ° C. at a rate of 2 ° C./min in a nitrogen atmosphere. Then, the temperature was increased to 450 ° C. at a rate of 2 ° C./min, and then pyrolyzed for 2 hours to form nanopores. Since the temperature was gradually lowered to room temperature, an ultra low dielectric thin film material was prepared.

상기 실시예 7 내지 12의 유전재료를 이용하여 유전율을 측정한 결과, 1.80 내지 2.50의 값을 나타냈고, 열안정성은 500℃ 이상으로 우수하였다. As a result of measuring the dielectric constant using the dielectric materials of Examples 7 to 12, a value of 1.80 to 2.50 was shown, and thermal stability was excellent at 500 ° C or higher.

본 발명에 의한 유전재료는 반응성 실란화합물을 말단으로 갖는 덴드리머 또는 스타버스트와 테트라알콕시실란 혼합조성물을 제조하고, 이것을 이용하여 기질위에 박막을 제조한 후, 열분해를 통하여 나노기공을 형성함으로써 상기 박막의 유전율이 2.5 이하인 초저유전특성을 구현할 수 있게 된다.In the dielectric material according to the present invention, a dendrimer or a starburst and a tetraalkoxysilane mixed composition having a reactive silane compound as a terminal is prepared, a thin film is prepared on a substrate, and then nanopores are formed by pyrolysis. Ultra low dielectric constant of 2.5 or less dielectric constant can be realized.

도 1은 반응성 실란을 치환체로 갖는 덴드리머 또는 스타버스트 화합물의 합성과정을 도식적으로 보여준다.1 schematically shows the synthesis of dendrimers or starburst compounds with reactive silanes as substituents.

도 2는 나노기공을 갖는 초저유전박막의 제조과정을 도식적으로 보여준다.2 schematically shows the manufacturing process of an ultra low dielectric thin film having nanopores.

Claims (13)

하기 화학식 1을 갖는, 3-아크릴옥시프로필 트리메톡시실란, 3-아크릴옥시프로필 메틸디메톡시실란, 3-아크릴옥시프로필 디메틸메톡시실란, 3-아크릴옥시프로필 메틸비스(트리메틸실록시) 실란, 3-글리시독시프로필 트리메톡시실란, 3-글리시독시프로필 메틸디메톡시실란, 3-글리시독시프로필 메틸디에톡시실란, 3-글리시독시프로필 디메틸에톡시실란 및 3-글리시독시프로필 메틸비스(트리메틸실록시)실란으로 이루어진 군으로부터 선택된 유기치환체를 갖는 실란화합물을 말단으로 갖는 폴리아미도아민 또는 폴리프로필렌이민 덴드리머, 또는 폴리(ε-카프로락톤) 스타버스트 및 테트라알콕시실란을 99:1 내지 1:99의 중량비로 포함하는 집적회로의 저유전 박막 형성용 조성물.3-acryloxypropyl trimethoxysilane, 3-acryloxypropyl methyldimethoxysilane, 3-acryloxypropyl dimethylmethoxysilane, 3-acryloxypropyl methylbis (trimethylsiloxy) silane having the following formula (1), 3-glycidoxypropyl trimethoxysilane, 3-glycidoxypropyl methyldimethoxysilane, 3-glycidoxypropyl methyldiethoxysilane, 3-glycidoxypropyl dimethylethoxysilane and 3-glycidoxypropyl Polyamidoamine or polypropyleneimine dendrimer having a silane compound having an organic substituent selected from the group consisting of methylbis (trimethylsiloxy) silane, or poly (ε-caprolactone) starburst and tetraalkoxysilane 99: 1 Composition for forming a low-k dielectric thin film of an integrated circuit comprising a weight ratio of 1:99. [화학식 1][Formula 1] (R1O)m(R2)nSiR3.(R 1 O) m (R 2 ) n SiR 3 . 상기 식에서, m+n=3이고 m은 1, 2 또는 3이며, R1과 R2는 서로 독립적으로 메틸, 에틸, 프로필, 부틸, 펜틸, 이소프로필 및 이소부틸기 중에서 선택되는 어느 하나이고, R3는 비닐, 할로겐, 알콕시, 니트로, 니트릴, 아민, 아크릴옥시 또는 에폭시기 치환체를 말단으로 갖는 탄소수 1 내지 10의 알킬기이다.Wherein m + n = 3 and m is 1, 2 or 3, R 1 and R 2 are each independently selected from methyl, ethyl, propyl, butyl, pentyl, isopropyl and isobutyl groups, R 3 is an alkyl group having 1 to 10 carbon atoms having a vinyl, halogen, alkoxy, nitro, nitrile, amine, acryloxy or epoxy group substituent at the terminal. 삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서, 상기 폴리아미도아민 또는 폴리프로필렌이민 덴드리머는 폴리프로필렌이민 테트라아민, 폴리프로필렌이민 옥타아민 및 폴리프로필렌이민 헥사데카아민으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 집적회로의 저유전 박막 형성용 조성물.The low dielectric thin film of claim 1, wherein the polyamidoamine or polypropyleneimine dendrimer is selected from the group consisting of polypropyleneimine tetraamine, polypropyleneimine octaamine, and polypropyleneimine hexadecaamine. Formation composition. 제1항에 있어서, 상기 폴리(ε-카프로락톤) 스타버스트는 지방족 코어를 갖는 3-, 4-, 6-가지의 폴리(ε-카프로락톤) 스타버스트, 방향족 코어를 갖는 3-, 4-, 및 6-가지의 폴리(ε-카프로락톤) 스타버스트로 이루어진 군으로부터 선택된 것을 특징으로 하는 집적회로의 저유전 박막 형성용 조성물.The poly (ε-caprolactone) starburst of claim 1, wherein the poly (ε-caprolactone) starburst is a 3-, 4-, 6-poly (ε-caprolactone) starburst having an aliphatic core, 3-, 4- having an aromatic core And 6-poly (ε-caprolactone) starburst, the composition for forming a low-k dielectric thin film of an integrated circuit. a) 유기치환체를 갖는 실란화합물을 말단으로 갖는 덴드리머 또는 스타버스트와 테트라알콕시실란을 99:1 내지 1:99의 중량비로 혼합하는 단계; 및a) mixing a dendrimer or starburst having a silane compound having an organic substituent as a terminal and tetraalkoxysilane in a weight ratio of 99: 1 to 1:99; And b) 전체 알콕시 농도에 대하여 0.1 내지 1.0 당량의 증류수를 가하여 용매 속에서 졸-겔 반응시키는 단계를 포함하는 제1항 내지 제7항 중 어느 한 항에 따른 집적회로의 저유전 박막 형성용 조성물의 제조방법.b) sol-gel reaction in a solvent by adding 0.1 to 1.0 equivalents of distilled water with respect to the total alkoxy concentration of the composition for forming a low dielectric thin film of the integrated circuit according to any one of claims 1 to 7. Manufacturing method. 제8항에 있어서, 상기 b) 단계에서 사용한 증류수의 0.1 내지 0.5 당량에 해당하는 염산 또는 암모니아를 각각 산 또는 염기 촉매로서 첨가, 혼합하여 용매 속에서 졸-겔 반응시키는 단계를 더 포함하는 것을 특징으로 하는 방법.The method of claim 8, further comprising the step of sol-gel reaction in a solvent by adding and mixing hydrochloric acid or ammonia corresponding to 0.1 to 0.5 equivalents of the distilled water used in step b) as an acid or a base catalyst, respectively. How to. 제8항에 있어서, 상기 테트라알콕시실란은 테트라메톡시실란 또는 테트라에톡시실란인 것을 특징으로 하는 방법. The method of claim 8, wherein the tetraalkoxysilane is tetramethoxysilane or tetraethoxysilane. 제8항에 있어서, 상기 용매는 메탄올, 에탄올, 테트라하이드로퓨란, 디메틸포름아마이드, 메틸에틸케톤 또는 메틸이소부틸케톤인 것을 특징으로 하는 방법.The method of claim 8, wherein the solvent is methanol, ethanol, tetrahydrofuran, dimethylformamide, methyl ethyl ketone or methyl isobutyl ketone. a) 제1항 내지 제7항 중 어느 한 항에 따른 조성물을 기질에 도포하는 단계;a) applying a composition according to any one of claims 1 to 7 to a substrate; b) 50℃에서 3 내지 5시간 동안 건조하는 단계;b) drying at 50 ° C. for 3-5 hours; c) 질소분위기에서 250℃ 내지 300℃의 온도로 서서히 가열하여 2시간 동안 경화시켜 상기 기질 상에 박막을 형성하는 단계;c) slowly heating to a temperature of 250 ° C. to 300 ° C. in a nitrogen atmosphere to cure for 2 hours to form a thin film on the substrate; d) 400℃ 내지 500℃까지 서서히 가열한 후, 2시간 동안 열분해하여 상기 박막 내에 나노기공을 형성시키는 단계; 및d) slowly heating to 400 ° C. to 500 ° C., followed by pyrolysis for 2 hours to form nanopores in the thin film; And e) 상온까지 서서히 냉각시키는 단계를 포함하는 집적회로의 저유전 박막의 제조방법.e) a method of manufacturing a low dielectric thin film of an integrated circuit comprising the step of gradually cooling to room temperature. 제12항의 방법에 의하여 제조된 저유전 박막을 포함하는 집적회로.An integrated circuit comprising a low dielectric thin film manufactured by the method of claim 12.
KR10-2000-0053707A 2000-09-09 2000-09-09 Dielectric material using reactive dendrimer and starburst compound and process for manufacturing thin film formed of the same KR100491965B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0053707A KR100491965B1 (en) 2000-09-09 2000-09-09 Dielectric material using reactive dendrimer and starburst compound and process for manufacturing thin film formed of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0053707A KR100491965B1 (en) 2000-09-09 2000-09-09 Dielectric material using reactive dendrimer and starburst compound and process for manufacturing thin film formed of the same

Publications (2)

Publication Number Publication Date
KR20020020503A KR20020020503A (en) 2002-03-15
KR100491965B1 true KR100491965B1 (en) 2005-05-27

Family

ID=19688408

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0053707A KR100491965B1 (en) 2000-09-09 2000-09-09 Dielectric material using reactive dendrimer and starburst compound and process for manufacturing thin film formed of the same

Country Status (1)

Country Link
KR (1) KR100491965B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100650617B1 (en) 2005-07-06 2006-11-29 재단법인 포항산업과학연구원 Pore generator, process for preparing the same, and process for preparing low dielectric thin layer using the same
US9694512B2 (en) 2011-09-07 2017-07-04 Ehwa Diamond Industrial Co., Ltd. Brazing bond type diamond tool with excellent cuttability and method of manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515583B1 (en) * 2002-06-27 2005-09-20 주식회사 엘지화학 Organic silicate polymer and insulation film comprising the same
KR100493855B1 (en) * 2002-12-12 2005-06-08 삼성전자주식회사 Siloxane-Based Resin and Method for Forming a Low Dielectric Patterned Film by Using the Same
KR100554157B1 (en) * 2003-08-21 2006-02-22 학교법인 포항공과대학교 Organosilicate polymer composites having the low dielectric chracteristics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100650617B1 (en) 2005-07-06 2006-11-29 재단법인 포항산업과학연구원 Pore generator, process for preparing the same, and process for preparing low dielectric thin layer using the same
US9694512B2 (en) 2011-09-07 2017-07-04 Ehwa Diamond Industrial Co., Ltd. Brazing bond type diamond tool with excellent cuttability and method of manufacturing the same

Also Published As

Publication number Publication date
KR20020020503A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
JP5082258B2 (en) Organosilicon compound and polymer compound having cage silicon skeleton
KR100382702B1 (en) Method for preparing organic silicate polymer
KR100554157B1 (en) Organosilicate polymer composites having the low dielectric chracteristics
TWI254057B (en) Covalently bonded polyhedral oligomeric silsesquioxane/polyimide nanocomposites and process for synthesizing the same
KR100491965B1 (en) Dielectric material using reactive dendrimer and starburst compound and process for manufacturing thin film formed of the same
KR100578737B1 (en) Preparation of star-shaped polymers containing reactive end groups and polymer composite film having low dielectric constant using the same
US7459549B2 (en) Composition for preparing nanoporous material
US7910664B2 (en) Radially multi-branched polymer and porous film using the same
US7517917B2 (en) Composition for preparing nanoporous material comprising calixarene derivative
US20040096398A1 (en) Siloxane-based resin and method of forming an insulating film between interconnect layers of a semiconductor device using the same
US20110152488A1 (en) Mononuclear star-branched polymer dielectric material
KR102161847B1 (en) Composition for preparing low temperature-curing organic/inorganic polymer complex used for semiconductor insulator film and use thereof
Huang et al. Fluorinated intrinsic low-k materials at high frequency with good dielectric performance and excellent hydrophobicity
KR100397372B1 (en) Dielectric material with a small dielectric constant including polyhedral oligomeric silsesquioxane and process for manufacturing dielectric thin film with a extremely small dielectric constant using the same
KR100650617B1 (en) Pore generator, process for preparing the same, and process for preparing low dielectric thin layer using the same
KR100378253B1 (en) Low dielectric material and process for its manufacture
KR102140776B1 (en) Organic-inorgainc hybrid polyimide including ladder-like polysilsesquioxane and method for manufacturing the same
US20070027225A1 (en) Composition for preparing porous dielectric thin films
KR100824037B1 (en) Porogen composition for preparing dielectric insulating film, coating composition for dielectric insulating film, method for preparing dielectric insulating film by using the same, and dielectric film prepared therefrom
KR100504431B1 (en) Low dielectric film formation method using vapor phase silicification process
JP2022049915A (en) Composition for low-dielectric-constant and highly heat-resistant substrate
KR101179839B1 (en) Porphyrin-embedded SiOC thin film and method of preparing the same
KR100327156B1 (en) Polyimidated Sol-Gel Precursor, Sol-Gel Monomer with Void, and Organic-Inorganic Composite Insulating Low Dielectric Material with Void Introduced Which is Prepared from Them
JP2003257962A (en) Composition for forming film, method of forming film, and insulation film of semiconductor device
KR20130037407A (en) Insulating materials for semiconductor devices and semiconductor device comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20030327

Effective date: 20050228

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100430

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee