KR100490835B1 - Catalyst supporting transition metal for oxidation decomposition of chloride based organic compound, method for preparing the same, and method for removing chloride based organic compound using the same - Google Patents

Catalyst supporting transition metal for oxidation decomposition of chloride based organic compound, method for preparing the same, and method for removing chloride based organic compound using the same Download PDF

Info

Publication number
KR100490835B1
KR100490835B1 KR10-2002-0057018A KR20020057018A KR100490835B1 KR 100490835 B1 KR100490835 B1 KR 100490835B1 KR 20020057018 A KR20020057018 A KR 20020057018A KR 100490835 B1 KR100490835 B1 KR 100490835B1
Authority
KR
South Korea
Prior art keywords
catalyst
based organic
oxide
chlorine
weight
Prior art date
Application number
KR10-2002-0057018A
Other languages
Korean (ko)
Other versions
KR20040025176A (en
Inventor
이준원
조규호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR10-2002-0057018A priority Critical patent/KR100490835B1/en
Publication of KR20040025176A publication Critical patent/KR20040025176A/en
Application granted granted Critical
Publication of KR100490835B1 publication Critical patent/KR100490835B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8659Removing halogens or halogen compounds
    • B01D53/8662Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 폐기물 소각로 및 각종 산업공정의 배기가스를 통하여 배출되는 염소계 유기화합물을 높은 활성으로 분해하여 제거할 수 있는 산화분해 반응용 촉매에 관한 것으로, a) 이산화티탄 담체 100 중량부에 b) 촉매성분으로 ⅰ) 세륨 산화물 또는 철 산화물 0.01 내지 0.1 중량부; ⅱ) 바나듐 산화물 3 내지 13 중량부; 및 ⅲ) 텅스텐 산화물 3 내지 13 중량부가 담지된 담지 촉매를 포함하는 염소계 유기화합물의 산화분해반응용 촉매와 이의 제조방법 및 이를 이용한 배기가스에 함유된 염소계 유기화합물의 제거방법을 제공한다.The present invention relates to a catalyst for oxidative decomposition reaction which can decompose and remove chlorine-based organic compounds discharged through waste incinerator and exhaust gas of various industrial processes with high activity, a) 100 parts by weight of titanium dioxide carrier b) catalyst Iii) 0.01 to 0.1 parts by weight of cerium oxide or iron oxide; Ii) 3 to 13 parts by weight of vanadium oxide; And iii) a catalyst for oxidative decomposition reaction of a chlorine-based organic compound including a supported catalyst having 3 to 13 parts by weight of tungsten oxide, a method for preparing the same and a method for removing the chlorine-based organic compound contained in the exhaust gas using the same.

Description

전이금속이 담지된 염소계 유기화합물의 산화분해 반응용 촉매와 이의 제조방법 및 이를 이용한 염소계 유기화합물의 제거방법{CATALYST SUPPORTING TRANSITION METAL FOR OXIDATION DECOMPOSITION OF CHLORIDE BASED ORGANIC COMPOUND, METHOD FOR PREPARING THE SAME, AND METHOD FOR REMOVING CHLORIDE BASED ORGANIC COMPOUND USING THE SAME}Catalysts for oxidative decomposition reaction of chlorine-based organic compounds supported with transition metals and preparation methods thereof and methods for removing chlorine-based organic compounds using the same, and methods for removing chlorine-based organic compounds using the same, AND METHOD FOR PREPARING THE SAME REMOVING CHLORIDE BASED ORGANIC COMPOUND USING THE SAME}

본 발명은 폐기물 소각로 및 각종 산업공정의 배기가스를 통하여 배출되는 염소계 유기화합물을 높은 활성으로 분해하여 제거할 수 있는 산화분해 반응용 촉매와 이의 제조방법 및 이를 이용한 배기가스에 함유된 염소계 유기화합물의 제거방법에 관한 것이다.The present invention provides a catalyst for oxidative decomposition reaction which can decompose and remove chlorine-based organic compounds discharged through waste incinerator and exhaust gas of various industrial processes with high activity, a method for preparing the same, and chlorine-based organic compounds contained in exhaust gas using the same. It relates to a removal method.

다이옥신을 포함한 염소계 유기화합물을 제거하는 방법은 2차 소각법, 저주파 방전법, 플라즈마 분해법, 활성탄 또는 소석회 흡착법, 및 촉매 분해법 등이 알려져 있다.As a method of removing chlorine-based organic compounds including dioxins, secondary incineration, low frequency discharge, plasma decomposition, activated carbon or slaked adsorption, catalytic decomposition and the like are known.

상기 2차 소각법은 800 ℃ 이상의 고온에서 재소각을 통하여 염소계 유기화합물을 제거하는 것으로 고온을 유지하기 위해 많은 에너지가 소비되고 연소시 부식성의 염소가스를 생성하므로 소각실 내벽에 손상을 줄 수 있는 문제점이 있다. The secondary incineration method removes chlorine-based organic compounds through re-incineration at a high temperature of 800 ° C. or higher, and consumes a lot of energy to maintain a high temperature and generates corrosive chlorine gas during combustion, which may damage the inner wall of the incineration chamber. There is a problem.

상기 저주파 방전법은 배기가스에 포함된 분진을 처리하는 전기 집진기에 설비를 설치하므로 간편하나 배기가스 내에 타고남은 탄소화합물이나 방향족 화합물이 있는 경우 내부에서 역반응을 일으켜 다이옥신이 생성될 수 있는 문제점이 있다.The low frequency discharge method is simple because the equipment is installed in an electric dust collector that processes the dust contained in the exhaust gas. However, when there are carbon compounds or aromatic compounds in the exhaust gas, there is a problem that dioxin may be generated by causing a reverse reaction inside. .

상기 플라즈마 분해법은 배기가스 내 염소계 유기화합물의 농도가 낮을 경우 에너지 손실이 매우 커서 처리된 배기가스를 가스터빈과 같은 설비를 이용하여 에너지로 회수하여 경제성을 맞추어야 하며 아직 중대형 소각로에 적용할만한 플라즈마 기술이 상업화되어 있지 않다.The plasma decomposition method has a high energy loss when the concentration of chlorine-based organic compounds in the exhaust gas is low, so the treated exhaust gas must be recovered as energy using facilities such as gas turbines to meet economical efficiency, and there is still a plasma technology applicable to medium and large incinerators. It is not commercialized.

상기 활성탄 또는 소석회를 이용하는 흡착법은 배기가스 내의 염소계 유기화합물의 농도가 낮은 경우 공간속도를 감소시키거나 시설을 매우 크게 하여야 높은 효율을 보이며 흡착후 재처리가 필요한 문제점이 있다.In the adsorption method using activated carbon or slaked lime, when the concentration of the chlorine-based organic compound in the exhaust gas is low, the space velocity must be reduced or the facility must be made very large to show high efficiency and there is a problem that reprocessing after adsorption is required.

상기 촉매 분해법은 배기가스를 일정온도에서 촉매와 접촉시켜 염소계 유기화합물을 제거하는 것으로 신설 소각로 및 기존 소각로의 개량에 공통적으로 적용이 가능하고 재처리가 필요하지 않아 효율성 및 경제성이 우수한 방법이다.The catalytic decomposition method removes chlorine-based organic compounds by contacting the exhaust gas with a catalyst at a constant temperature, which is commonly applicable to the improvement of new incinerators and existing incinerators, and does not require retreatment.

일반적으로 다이옥신을 포함한 염소계 유기화합물을 분해하기 위한 촉매는 NOx 제거용 선택적 촉매 환원법(Selective catalytic reduction)의 촉매에서 발전하였기 때문에, 초기에는 바나듐 및/또는 텅스텐 산화물을 이산화티탄에 담지한 촉매가 주류를 이루었다. 최근에는 산화분해반응에 대한 활성을 더욱 향상시키면서 일산화탄소(CO), 염소가스와 같은 2차 독성물질의 생성을 억제하기 위하여 귀금속 산화물 및/또는 몰리브덴(Mo), 크롬(Cr)과 같은 전이금속 산화물을 첨가하고 있다.In general, catalysts for decomposing chlorine-based organic compounds including dioxins have been developed from the catalyst of selective catalytic reduction for NO x removal, and thus, catalysts supporting vanadium and / or tungsten oxide in titanium dioxide are mainly mainstream. Achieved. Recently, noble metal oxides and / or transition metal oxides such as molybdenum (Mo) and chromium (Cr) to further enhance the activity for oxidative decomposition reactions and to suppress the generation of secondary toxic substances such as carbon monoxide (CO) and chlorine gas. Is being added.

그러나 백금 및 팔라듐과 같은 귀금속 산화물은 분해반응에 의해 생성된 HCl 및 Cl의 피독에 매우 약한 것으로 알려져 있다(문헌: Applied Catalysis B : Environmental, vol 8, pp 107-121, 1996). 따라서 피독에 의한 활성감소를 방지하기 위해서는 결정구조를 크게 하여야 하며 담체에 담지해서 사용할 때에는 0.3 중량% 이상이 적절한 것으로 보고되어 있다(문헌 : Catalysis Today, vol 54, pp 107~, 1999). 또한 일본공개특허공보 제7-75720호는 귀금속의 함량을 0.01∼3 중량%, 바람직하게는 0.1∼1 중량%를 사용하였으며, 이 범위보다 낮은 경우에는 염소계 유기화합물에 대한 분해활성이 낮아지는 것으로 보고하였다. 또한 이 특허의 실시예에서는 0.5 중량%의 백금 또는 팔라듐 산화물을 사용하였다. 그러나 귀금속은 고가이므로 다량으로 촉매에 사용하면 경제성이 낮아지는 문제점이 있다.However, noble metal oxides such as platinum and palladium are known to be very susceptible to poisoning of HCl and Cl produced by decomposition reactions (Applied Catalysis B: Environmental, vol 8, pp 107-121, 1996). Therefore, in order to prevent the decrease of activity by poisoning, the crystal structure should be large and 0.3 wt% or more is reported to be appropriate when used on a carrier (Catalysis Today, vol 54, pp 107 ~, 1999). In addition, Japanese Laid-Open Patent Publication No. 7-75720 used a noble metal in an amount of 0.01 to 3% by weight, preferably 0.1 to 1% by weight. If it is lower than this range, the decomposition activity for chlorine-based organic compounds is lowered. Reported. Also in the examples of this patent 0.5% by weight of platinum or palladium oxide was used. However, the precious metal is expensive, there is a problem that the economic efficiency is lowered when used in a large amount.

미국특허 제5,430,230호에서는 바나듐 산화물-텅스텐 산화물이 담지된 이산화티탄 촉매에 Pt, Pd와 같은 귀금속 및 Cr, Mn, Cu 등과 같은 전이금속 산화물을 담지하여 1,2-디클로로벤젠(1,2-dichlorobenzene)의 분해반응에 적용한 결과 귀금속 산화물을 담지한 촉매는 바나듐 산화물-텅스텐 산화물이 담지된 이산화티탄 촉매에 비하여 분해활성이 향상되었으나 전이금속 산화물만을 담지한 촉매의 경우에는 거의 효과가 없었다. 그러나 귀금속 산화물은 분해반응에 의해 생성된 HCl 이나 Cl2에 의하여 피독되기 쉬우며 고가이므로 가능하면 전이금속 산화물의 사용이 요구된다.US Pat. No. 5,430,230 discloses 1,2-dichlorobenzene by supporting a vanadium oxide-tungsten oxide supported titanium dioxide catalyst with noble metals such as Pt and Pd and transition metal oxides such as Cr, Mn and Cu. As a result of application to the decomposition reaction of), the catalytic activity of the noble metal oxide was improved compared to the titanium dioxide catalyst loaded with the vanadium oxide-tungsten oxide, but the catalyst having only the transition metal oxide had little effect. However, the noble metal oxide is easily poisoned by HCl or Cl 2 produced by the decomposition reaction and is expensive, and therefore, the use of transition metal oxide is required if possible.

본 발명은 상기 종래기술의 문제점을 고려하여, 전이금속을 소량 담지하면서도 염소계 유기화합물의 산화분해반응에 높은 활성을 가지며, 경제성이 우수한 염소계 유기화합물의 산화분해반응용 촉매 및 그의 제조방법을 제공하는 것이다.The present invention is to provide a catalyst for oxidative decomposition reaction of chlorine-based organic compounds having a high activity in the oxidative decomposition reaction of chlorine-based organic compounds, while carrying a small amount of the transition metal, and excellent economical efficiency and a method for preparing the same. will be.

본 발명의 또 다른 목적은 염소계 유기화합물의 산화분해반응을 높은 효율로 제거할 수 있으며, 저가의 촉매를 사용하여 경제적인 염소계 유기화합물의 제거방법을 제공하는 것이다.It is still another object of the present invention to provide an economical method for removing chlorine-based organic compounds by removing oxidative decomposition reactions of chlorine-based organic compounds with high efficiency and using a low cost catalyst.

본 발명은 상기 목적을 달성하기 위하여,The present invention to achieve the above object,

a) 이산화티탄 담체 100 중량부에a) to 100 parts by weight of a titanium dioxide carrier

b) 촉매성분으로b) as a catalyst component

ⅰ) 세륨 산화물 또는 철 산화물 0.01 내지 0.1 중량부;    Iii) 0.01 to 0.1 parts by weight of cerium oxide or iron oxide;

ⅱ) 바나듐 산화물 3 내지 13 중량부; 및   Ii) 3 to 13 parts by weight of vanadium oxide; And

ⅲ) 텅스텐 산화물 3 내지 13 중량부   Iii) 3 to 13 parts by weight of tungsten oxide

가 담지된 담지 촉매   Supported catalyst

를 포함하는 염소계 유기화합물의 산화분해반응용 촉매를 제공한다.It provides a catalyst for the oxidative decomposition reaction of chlorine-based organic compounds comprising a.

또한 본 발명은 이산화티탄 담체에 세륨 산화물 또는 철 산화물, 바나듐 산화물, 및 텅스텐 산화물이 담지된 염소계 유기화합물의 산화분해반응용 촉매의 제조방법에 있어서,In addition, the present invention is a method for producing a catalyst for oxidative decomposition reaction of chlorine-based organic compounds in which cerium oxide or iron oxide, vanadium oxide, and tungsten oxide are supported on a titanium dioxide carrier,

a) 이산화티탄 분말을 바나듐산화물 전구체 수용액, 및 텅스텐산화물 전구체 수용액의 혼합 수용액에 함침시키고, 건조한 후, 소성하여 바나듐산화물과 텅스텐산화물이 담지된 담지 촉매를 제조하는 단계; 및a) impregnating the titanium dioxide powder into a mixed aqueous solution of an aqueous solution of vanadium oxide precursor and an aqueous solution of tungsten oxide precursor, drying and calcining to prepare a supported catalyst carrying vanadium oxide and tungsten oxide; And

b) 상기 a)단계의 담지 촉매를 질산 세륨(Ce(NO3)3·6H2O), 또는 질산 철(Fe(NO3)3·9H2O) 수용액에 함침시키고, 건조한 후, 소성하여 바나듐산화물, 텅스텐산화물, 및 세륨 또는 철의 전이금속 산화물이 담지된 담지 촉매를 제조하는 단계b) The supported catalyst of step a) is impregnated with an aqueous solution of cerium nitrate (Ce (NO 3 ) 3 .6H 2 O) or iron nitrate (Fe (NO 3 ) 3 .9H 2 O), dried and calcined. Preparing a supported catalyst on which vanadium oxide, tungsten oxide, and transition metal oxide of cerium or iron are supported;

를 포함하는 염소계 유기화합물의 산화분해반응용 촉매의 제조방법을 제공한다.It provides a method for producing a catalyst for oxidative decomposition reaction of chlorine-based organic compounds comprising a.

또한 본 발명은 염소계 유기화합물을 함유하는 배기가스를 고온에서 산화분해반응시켜서 제거하는 배기가스에 함유된 염소계 유기화합물의 제거 방법에 있어서,In addition, the present invention is a method for removing chlorine-based organic compounds contained in the exhaust gas to remove the exhaust gas containing the chlorine-based organic compound by oxidative decomposition at high temperature,

염소계 유기화합물을 함유하는 배기가스를 Exhaust gas containing chlorine-based organic compounds

ⅰ) 이산화티탄 담체 100 중량부에Iii) 100 parts by weight of a titanium dioxide carrier

ⅱ) 촉매성분으로Ii) as a catalyst component

ㄱ) 세륨 산화물 또는 철 산화물 0.01 내지 0.1 중량부;     A) 0.01 to 0.1 parts by weight of cerium oxide or iron oxide;

ㄴ) 바나듐 산화물 3 내지 13 중량부; 및    B) 3 to 13 parts by weight of vanadium oxide; And

ㄷ) 텅스텐 산화물 3 내지 13 중량부    C) 3 to 13 parts by weight of tungsten oxide

가 담지된 담지 촉매와 접촉시키는 단계Contacting with supported catalyst

를 포함하는 배기가스에 함유된 염소계 유기화합물의 제거 방법을 제공한다.It provides a method for removing chlorine-based organic compounds contained in the exhaust gas comprising a.

이하에서 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 바나듐 및 텅스텐 촉매 성분과 함께 세륨 또는 철과 같은 전이금속을 소량 담지한 촉매가 염소계 유기화합물의 산화분해에서 높은 활성을 나타냄을 확인하고 본 발명을 완성하게 되었다.The present invention has confirmed that the catalyst having a small amount of a transition metal such as cerium or iron together with the vanadium and tungsten catalyst components exhibits high activity in oxidative decomposition of chlorine-based organic compounds.

본 발명은 이를 위하여, 세륨 산화물 또는 철 산화물 0.01 내지 0.1 중량부, 바나듐 산화물 3 내지 13 중량부, 및 텅스텐 산화물 3 내지 13 중량부가 이산화티탄 담체 100 중량부에 담지된 산화분해반응에 대한 높은 활성을 나타내며, 저가의 전이금속이 담지되어 경제적인 염소계 유기화합물의 산화분해반응용 촉매와 그의 제조방법 및 이를 이용한 염소계 유기화합물 제거 방법을 제공하는 것이다.To this end, the present invention provides a high activity against oxidative decomposition reaction supported by 0.01 to 0.1 parts by weight of cerium oxide or iron oxide, 3 to 13 parts by weight of vanadium oxide, and 3 to 13 parts by weight of tungsten oxide on 100 parts by weight of a titanium dioxide carrier. The present invention provides a catalyst for oxidative decomposition reaction of chlorine-based organic compounds, a method for preparing the same, and a method for removing chlorine-based organic compounds using the same, in which a low-cost transition metal is supported.

본 발명의 염소계 유기화합물의 산화분해반응용 촉매에 사용되는 담체는 폐기물 소각로 및 각종 산업공정의 배기가스에는 미량의 황산화물이 포함되어 있는 경우가 많으므로 황산화물의 피독에 강한 이산화티탄을 담체로 사용한다. 특히 아나타제(anatase) 결정을 적어도 70 중량% 함유하고, 비표면적이 50 내지 150 m2/g인 이산화티탄 분말이 촉매성분의 분산 및 비표면적의 감소방지를 위하여 바람직하다. 일반적으로 아나타제 결정이 75 중량%이며 표면적이 50 m2/g인 대구사(Degussa)의 P25가 알려져 있으나, 최근에는 아나타제로만 구성되어 있으면서 표면적이 100 m2/g 이상인 이산화티탄이 생산되고 있어 촉매성분 담지시 분산도를 향상시킬 수 있다.The carrier used for the catalyst for oxidative decomposition reaction of the chlorine-based organic compound of the present invention is a waste incinerator and exhaust gas of various industrial processes often contain a small amount of sulfur oxides, so the titanium dioxide resistant to poisoning of sulfur oxides as a carrier use. Particularly, titanium dioxide powder containing at least 70% by weight of anatase crystals and having a specific surface area of 50 to 150 m 2 / g is preferable for the dispersion of the catalyst component and the reduction of the specific surface area. Generally, Degussa P25 with 75 wt% of anatase crystals and a surface area of 50 m 2 / g is known, but recently, titanium dioxide having a surface area of 100 m 2 / g or more, which is composed only of anatase, has been produced. The dispersity can be improved when the component is supported.

본 발명의 염소계 유기화합물의 산화분해용 촉매는 상기 이산화티탄 담체에 촉매성분의 하나로 세륨 산화물 또는 철 산화물의 전이금속 산화물을 소량 담지하고 있다. 본 발명의 세륨 산화물은 산소 축적(oxygen storage) 기능을 가지고 있으며, 철 산화물은 고온에서 보다 높은 활성을 보인다. 따라서 본 발명에 사용되는 세륨 산화물 또는 철 산화물과 같은 전이금속 산화물은 바나듐 산화물, 및 텅스텐 산화물과 함께 이산화티탄 담체에 담지되어 조촉매 역할을 하게 되며, 그 결과 염소계 유기화합물의 산화분해반응에 대한 높은 활성을 나타내게 된다.In the catalyst for oxidative decomposition of the chlorine-based organic compound of the present invention, a small amount of transition metal oxide of cerium oxide or iron oxide is supported on the titanium dioxide carrier as one of the catalyst components. The cerium oxide of the present invention has an oxygen storage function, and the iron oxide shows higher activity at high temperatures. Therefore, the transition metal oxide such as cerium oxide or iron oxide used in the present invention is supported on the titanium dioxide carrier together with vanadium oxide and tungsten oxide to act as a promoter, resulting in high oxidative decomposition of chlorine-based organic compounds. It will show activity.

이와 같이 본 발명의 염소계 유기화합물의 산화분해용 촉매의 촉매성분으로 상기 이산화티탄 담체에 담지되는 세륨 산화물 또는 철 산화물은 염소계 유기화합물에 대하여 높은 활성을 제공하기 위하여 담체인 이산화티탄 100 중량부에 대하여 0.01 내지 0.1 중량부가 담지되는 것이 바람직하다.As such, cerium oxide or iron oxide supported on the titanium dioxide carrier as a catalyst component of the catalyst for oxidative decomposition of the chlorine-based organic compound of the present invention is based on 100 parts by weight of titanium dioxide as a carrier to provide high activity to the chlorine-based organic compound. It is preferable that 0.01 to 0.1 parts by weight are supported.

본 발명의 염소계 유기화합물의 산화분해용 촉매의 또 하나의 촉매성분으로 상기 이산화티탄 담체에 담지되는 바나듐 산화물은 오랫동안 부분산화 반응용 촉매로 인식되어 왔지만, 바나듐 산화물을 이산화티탄에 담지하면 활성이 매우 우수한 완전산화 반응용 촉매가 된다. 이는 이산화티탄의 반도체적 성질과 바나듐의 d-오비탈(d-orbital) 내의 전자와의 상호관계와 연관이 있거나 이산화티탄에 담지시 분산도가 매우 높으며 완전산화 반응에 유리한 결정구조를 형성하기 때문인 것으로 추정하고 있다. 그러나 바나듐 산화물이 담지된 이산화티탄은 고온에서 불안정한 상태로 이산화티탄의 구조가 아나타제(anatase)에서 루타일(rutile)로 전환되면서 표면적의 감소가 일어나기 쉬우며, 특히 바나듐 산화물이 V2O5 구조일 때 촉진된다.Vanadium oxide supported on the titanium dioxide carrier as another catalyst component of the catalyst for oxidative decomposition of chlorine-based organic compounds of the present invention has long been recognized as a catalyst for partial oxidation reaction, but when vanadium oxide is supported on titanium dioxide, its activity is very high. It is an excellent catalyst for complete oxidation reaction. This may be due to the semiconductor properties of titanium dioxide and the correlation between electrons in d-orbital of vanadium or because of its high dispersibility when supported on titanium dioxide and the formation of crystal structures favorable for complete oxidation. Estimate. However, vanadium oxide-carrying titanium dioxide is unstable at high temperatures, and the structure of titanium dioxide is easily converted from anatase to rutile, thereby reducing the surface area. Particularly, vanadium oxide has a V 2 O 5 structure. When promoted.

따라서 바나듐이 +4가의 이온상태로 존재하도록 하여 이산화티탄에 담지되도록 하는 것이 바람직하다. 예를 들면 바나듐 산화물 전구체로 바나듐산 암모늄(NH4VO3)을 옥살산(C2H2O4) 수용액에 용해시킨 바나듐 함침 용액을 제조한 후, 이 용액에 이산화티탄을 함침시켜 바나듐 산화물을 이산화티탄 담체에 담지시키도록 하는 것이다. 옥살산 수용액에 바나듐산 암모늄을 용해시키면 초기 진한 노랑색의 용액은 시간이 지남에 따라 녹색을 거쳐 진한 파랑색으로 변화되며, 이때 용액속의 바나듐은 V+5 (VO2+) 에서 V+4 (VO+2) 로 전환된다.Therefore, it is preferable to allow vanadium to exist in a + tetravalent ionic state to be supported on titanium dioxide. For example, after preparing a vanadium impregnation solution in which ammonium vanadate (NH 4 VO 3 ) is dissolved in an oxalic acid (C 2 H 2 O 4 ) solution as a vanadium oxide precursor, the solution is impregnated with titanium dioxide to dissolve the vanadium oxide. It is to be supported on a titanium carrier. When ammonium vanadate is dissolved in an aqueous solution of oxalic acid, the initial dark yellow solution changes from green to dark blue over time, and the vanadium in the solution changes from V +5 (VO 2+ ) to V +4 (VO +). 2 ) is switched to.

이와 같이 본 발명의 염소계 유기화합물의 산화분해용 촉매의 촉매성분으로 상기 이산화티탄 담체에 담지되는 바나듐 산화물은 염소계 유기화합물에 대하여 높은 활성을 제공하기 위하여 담체인 이산화티탄 100 중량부에 대하여 3 내지 13 중량부가 담지되는 것이 바람직하다.As such, the vanadium oxide supported on the titanium dioxide carrier as a catalyst component of the catalyst for oxidative decomposition of the chlorine-based organic compound of the present invention is 3 to 13 parts by weight based on 100 parts by weight of titanium dioxide, which is a carrier to provide high activity to the chlorine-based organic compound. It is preferable that a weight part is supported.

본 발명의 염소계 유기화합물의 산화분해용 촉매의 또 하나의 촉매성분으로 상기 이산화티탄 담체에 담지되는 텅스텐 산화물은 고온에서 이산화티탄에 일어날 수 있는 표면적 감소와 루타일 구조로의 전환을 억제하며 염소계 유기화합물을 분해할 때 생성되는 HCl 및 배기가스에 포함된 황산화물에 의한 피독을 억제한다. 텅스텐 산화물이 분해반응에 참여하는 가에 대해서는 명확하게 규명되지는 않지만 본 발명에서 제공되는 산화분해 반응조건에서는 반응성을 향상시키는 것으로 나타난다.As another catalyst component of the catalyst for oxidative decomposition of the chlorine-based organic compound of the present invention, tungsten oxide supported on the titanium dioxide carrier suppresses surface area reduction and conversion into rutile structure that may occur in titanium dioxide at high temperature, It inhibits poisoning by sulfur oxides contained in the exhaust gas and HCl generated when decomposing the compound. It is not clearly understood whether tungsten oxide participates in the decomposition reaction, but it appears to improve the reactivity under the oxidative decomposition reaction conditions provided in the present invention.

이와 같이 본 발명의 염소계 유기화합물의 산화분해용 촉매의 촉매성분으로 상기 이산화티탄 담체에 담지되는 텅스텐 산화물은 염소계 유기화합물에 대하여 높은 활성을 제공하기 위하여 담체인 이산화티탄 100 중량부에 대하여 3 내지 13 중량부가 담지되는 것이 바람직하다.As such, the tungsten oxide supported on the titanium dioxide carrier as the catalyst component of the catalyst for oxidative decomposition of the chlorine-based organic compound of the present invention is 3 to 13 parts by weight based on 100 parts by weight of titanium dioxide, which is a carrier to provide high activity to the chlorine-based organic compound. It is preferable that a weight part is supported.

본 발명의 세륨 산화물 또는 철 산화물, 바나듐 산화물, 및 텅스텐 산화물을 담지한 이산화티탄 담체의 촉매는 다양한 방법으로 제조될 수 있으나, 먼저 바나듐산화물 및 텅스텐 산화물을 이산화티탄 담체에 담지한 후, 세륨 산화물 또는 철 산화물의 전이금속 산화물을 담체에 담지하는 것이 바람직하다.The catalyst of the cerium oxide or iron oxide, vanadium oxide, and titanium dioxide carrier carrying tungsten oxide of the present invention may be prepared by various methods, but first, vanadium oxide and tungsten oxide are supported on the titanium dioxide carrier, followed by cerium oxide or It is preferable to support a transition metal oxide of iron oxide on a carrier.

구체적으로는 이산화티탄 분말을 바나듐산화물 전구체 수용액, 및 텅스텐산화물 전구체 수용액의 혼합 수용액에 함침시키고, 건조한 후, 소성하여 바나듐산화물과 텅스텐산화물이 이산화티탄 담체에 담지된 담지 촉매(V-W 계 이산화티탄 촉매)를 제조한 후, 제조된 V-W 계 이산화티탄 촉매를 질산세륨, 또는 질산철 수용액에 함침시키고, 건조한 후, 소성하여 최종적으로 바나듐산화물, 텅스텐산화물, 및 세륨 또는 철의 전이금속 산화물이 이산화티탄 담체에 담지된 V-W-전이금속계 담지 촉매를 제조하는 것이다.Specifically, the titanium dioxide powder is impregnated into a mixed aqueous solution of a vanadium oxide precursor aqueous solution and a tungsten oxide precursor aqueous solution, dried, and then calcined to carry a supported catalyst in which vanadium oxide and tungsten oxide are supported on a titanium dioxide carrier (VW-based titanium dioxide catalyst). After the preparation, the prepared VW-based titanium dioxide catalyst was impregnated with cerium nitrate or iron nitrate aqueous solution, dried, and then calcined to finally convert vanadium oxide, tungsten oxide, and transition metal oxide of cerium or iron to the titanium dioxide carrier. It is to prepare a supported VW-transition metal-based supported catalyst.

더욱 구체적인 예를 들면,More specific example

ⅰ) 바나듐산 암모늄(NH4VO3)을 옥살산(C2H2O4) 수용액에 용해시키는 단계;V) dissolving ammonium vanadate (NH 4 VO 3 ) in an aqueous solution of oxalic acid (C 2 H 2 O 4 );

ⅱ) 상기 옥살산 바나듐 수용액에 텅스텐산 암모늄((NH4)10W12O 415H2O) 수용액을 첨가하여 혼합하는 단계;Ii) adding and mixing an aqueous solution of ammonium tungstate ((NH 4 ) 10 W 12 O 41 5H 2 O) to the vanadium oxalate aqueous solution;

ⅲ) 상기 혼합 수용액에 이산화티탄을 함침시켜 슬러리를 제조하는 단계;Iii) impregnating titanium dioxide into the mixed aqueous solution to prepare a slurry;

ⅳ) 상기 슬러리를 100 내지 150 ℃의 온도에서 건조시킨 후, 건조물을 450 내지 550 ℃의 온도에서 소성시키는 단계;Iii) drying the slurry at a temperature of 100 to 150 ° C., and then firing the dried product at a temperature of 450 to 550 ° C .;

ⅴ) 상기 소성물을 질산세륨(Ce(NO3)3·6H2O), 또는 질산철(Fe(NO 3)3·9H2O) 수용액에 함침시켜 슬러리를 제조하는 단계; 및Iii) impregnating the calcined product with an aqueous solution of cerium nitrate (Ce (NO 3 ) 3 .6H 2 O) or iron nitrate (Fe (NO 3 ) 3 .9H 2 O) to prepare a slurry; And

ⅳ) 상기 슬러리를 100 내지 150 ℃의 온도에서 건조시킨 후, 건조물을 450 내지 550 ℃의 온도에서 소성시키는 단계Iii) drying the slurry at a temperature of 100 to 150 ° C., and then firing the dried product at a temperature of 450 to 550 ° C.

를 포함하여 제조하는 것이다.It will be prepared to include.

이와 같은 조성 및 방법으로 제조되는 본 발명의 염소계 유기화합물의 산화분해반응용 촉매는 통상적인 촉매분해법에 의한 염소계 유기화합물의 제거에 이용된다. 즉, 염소계 유기화합물을 함유하는 배기가스를 고온에서 촉매 상으로 이동시킴으로써, 배기가스에 함유된 염소계 유기화합물을 산화분해반응시켜서 제거하는 단계를 포함하는 배기가스의 염소계 유기화합물 제거 방법에서 촉매로 사용하는 것이다. 이때의 산화분해 반응온도는 높을수록 유리하며, 상업적 이용을 위하여 200 내지 300 ℃로 설정하고, 촉매 부피기준으로 100,000 hr-1 이하의 공간속도로 염소계 유기화합물을 함유하는 배기가스를 본 발명의 촉매상으로 공급하여 배기가스와 촉매가 접촉되도록 하는 것이 바람직하다.The catalyst for oxidative decomposition reaction of the chlorine-based organic compound of the present invention prepared by such a composition and method is used to remove the chlorine-based organic compound by a conventional catalytic decomposition method. That is, by using the catalyst in the method for removing chlorine-based organic compounds of the exhaust gas comprising the step of moving the exhaust gas containing the chlorine-based organic compound to the catalyst at a high temperature, by oxidatively removing the chlorine-based organic compound contained in the exhaust gas It is. At this time, the higher the oxidative decomposition reaction temperature is advantageous, it is set to 200 to 300 ℃ for commercial use, the exhaust gas containing a chlorine-based organic compound at a space velocity of 100,000 hr -1 or less based on the catalyst volume of the catalyst of the present invention It is preferable to feed into the bed so that the exhaust gas and the catalyst are in contact.

이하의 실시예 및 비교예를 통하여 본 발명을 더욱 상세하게 설명한다. 단, 실시예는 본 발명을 예시하기 위한 것이지 이들만으로 한정하는 것이 아니다.The present invention will be described in more detail with reference to the following examples and comparative examples. However, an Example is for illustrating this invention and is not limited only to these.

[실시예]EXAMPLE

비교예 1Comparative Example 1

(V-W계 이산화티탄 촉매의 제조)(Production of V-W Type Titanium Dioxide Catalyst)

바나듐산암모늄(NH4VO3) 11.6 g을 356.7 g의 옥살산(C2H2O 4) 수용액에 가하여 초기 진한 노랑색에서 녹색을 거쳐 진한 파랑색으로 변화될 때까지 교반하였다.11.6 g of ammonium vanadate (NH 4 VO 3 ) was added to 356.7 g of an aqueous solution of oxalic acid (C 2 H 2 O 4 ) and stirred until it changed from an initial dark yellow color to a green color to a dark blue color.

상기 옥살산 바나듐 수용액에 텅스텐산암모늄((NH4)10W12O41 ·5H2O) 5.6 g이 포함된 수용액을 첨가 혼합하였다.An aqueous solution containing 5.6 g of ammonium tungstate ((NH 4 ) 10 W 12 O 41 .5H 2 O) was added and mixed to the vanadium oxalate aqueous solution.

상기 혼합 수용액에 담체로 분말형태의 이산화티탄 분말(Degussa제조 P25) 100 g을 투입 혼합하여 슬러리를 제조하였다. 이 슬러리를 120 ℃의 온도에서 건조한 후, 공기 분위기하에 520 ℃의 온도로 소성하여 바나듐산화물, 및 텅스텐산화물이 담지된 이산화티탄 촉매(V-W계 이산화티탄 촉매)를 제조하였다.A slurry was prepared by adding 100 g of powdered titanium dioxide powder (P25 manufactured by Degussa) as a carrier to the mixed aqueous solution. The slurry was dried at a temperature of 120 ° C. and then calcined at a temperature of 520 ° C. in an air atmosphere to prepare a titanium dioxide catalyst (V-W-based titanium dioxide catalyst) carrying vanadium oxide and tungsten oxide.

실시예 1Example 1

(V-W-Ce계 이산화티탄 촉매의 제조)(Production of V-W-Ce Type Titanium Dioxide Catalyst)

상기 비교예 1의 바나듐 산화물-텅스텐 산화물이 담지된 이산화티탄 촉매를 질산세륨(Ce(NO3)3·6H2O) 0.25 g이 함유된 수용액에 함침하고, 이를 120 ℃의 온도에서 건조한 후, 공기 분위기 하에 520 ℃의 온도로 소성하여 세륨산화물-바나듐산화물-텅스텐산화물이 담지된 이산화티탄 촉매(V-W-Ce계 이산화티탄 촉매)를 제조하였다.The titanium dioxide catalyst carrying the vanadium oxide-tungsten oxide of Comparative Example 1 was impregnated in an aqueous solution containing 0.25 g of cerium nitrate (Ce (NO 3 ) 3 .6H 2 O), and dried at a temperature of 120 ° C., Firing at a temperature of 520 ° C. under an air atmosphere to prepare a titanium dioxide catalyst (VW-Ce based titanium dioxide catalyst) supported with cerium oxide-vanadium oxide-tungsten oxide.

실시예 2Example 2

(V-W-Fe계 이산화티탄 촉매의 제조)(Production of V-W-Fe Based Titanium Dioxide Catalyst)

상기 비교예 1의 바나듐 산화물-텅스텐 산화물이 담지된 이산화티탄 촉매를 질산철(Fe(NO3)3·9H2O) 0.25 g이 함유된 수용액에 함침하고, 이를 120 ℃의 온도에서 건조한 후, 공기 분위기 하에 520 ℃의 온도로 소성하여 세륨산화물-바나듐산화물-텅스텐산화물이 담지된 이산화티탄 촉매(V-W-Fe계 이산화티탄 촉매)를 제조하였다.After impregnating the titanium dioxide catalyst carrying the vanadium oxide-tungsten oxide of Comparative Example 1 in an aqueous solution containing 0.25 g of iron nitrate (Fe (NO 3 ) 3 .9H 2 O), and drying it at a temperature of 120 ℃, Firing at a temperature of 520 ° C. under an air atmosphere to prepare a titanium dioxide catalyst (VW-Fe-based titanium dioxide catalyst) supported with cerium oxide-vanadium oxide-tungsten oxide.

촉매층이 위치한 곳의 외경이 12 mm인 파이렉스(pyrex)로 제작한 고정층 반응기에 실시예 1, 실시예 2, 및 비교예 1에서 제조한 촉매 0.5 g을 각각 충전한 후, 1,2-디클로로벤젠(1,2-dichlorobenzen)에 대한 제거효율을 각각 측정하여 하기 표 1에 나타내었다. 산화분해 반응시의 온도는 200 내지 300 ℃로 변화시켰으며 공간속도는 25,000 hr-1 이었다. 이때 실제 소각로의 배연가스 조성과 유사하게 하기 위하여 1,2-디클로로벤젠(1,2-dichlorobenzne) 600 ppm, 산소 10 vol% 및 물 5 vol%로 구성된 혼합물을 고정층 반응기에 공급하였다.0.5 g of the catalysts prepared in Examples 1, 2, and Comparative Example 1 were charged to a fixed bed reactor made of pyrex having an outer diameter of 12 mm where the catalyst layer was located, and then 1,2-dichlorobenzene The removal efficiencies for (1,2-dichlorobenzen) were measured and shown in Table 1 below. The temperature during the oxidative decomposition reaction was changed from 200 to 300 ℃ and the space velocity was 25,000 hr -1 . At this time, in order to resemble the flue gas composition of the actual incinerator, a mixture consisting of 600 ppm 1,2-dichlorobenzne, 10 vol% oxygen and 5 vol% water was fed to the fixed bed reactor.

소량의 세륨 또는 철 산화물의 담지로 산화분해 반응에 대한 활성이 증가하였으며, 특히 250 ℃에서 90 % 이상의 전환율을 나타내었다. The small amount of cerium or iron oxide was used to increase the activity of the oxidative decomposition reaction, and the conversion was more than 90% at 250 ° C.

구 분division 실시예 1 촉매(V-W-Ce계)의 분해율Example 1 Degradation Rate of Catalyst (V-W-Ce) 실시예 2 촉매(V-W-Fe계)의 분해율Example 2 Degradation Rate of Catalyst (V-W-Fe System) 비교예 1 촉매(V-W계)의 분해율Comparative Example 1 Degradation Rate of Catalyst (V-W System) 반응온도(℃)Reaction temperature (℃) 200200 67.667.6 61.161.1 52.852.8 225225 79.479.4 75.575.5 65.865.8 250250 91.391.3 91.391.3 83.483.4 275275 98.298.2 98.898.8 93.293.2 300300 99.599.5 99.599.5 98.398.3

본 발명의 염소계 유기화합물의 산화분해반응용 촉매는 염소계 유기화합물의 산화분해반응에 높은 활성을 나타내며, 이산화티탄 담체에 바나듐 산화물, 및 텅스텐 산화물 이외에 저가의 전이금속을 담지하여 경제적인 촉매이다.The catalyst for oxidative decomposition reaction of the chlorine-based organic compound of the present invention shows high activity in the oxidative decomposition reaction of the chlorine-based organic compound, and is an economical catalyst supporting a low-cost transition metal other than vanadium oxide and tungsten oxide on a titanium dioxide carrier.

Claims (7)

a) 이산화티탄 담체 100 중량부에a) to 100 parts by weight of a titanium dioxide carrier b) 촉매성분으로b) as a catalyst component ⅰ) 세륨 산화물 또는 철 산화물 0.01 내지 0.1 중량부;    Iii) 0.01 to 0.1 parts by weight of cerium oxide or iron oxide; ⅱ) 바나듐 산화물 3 내지 13 중량부; 및   Ii) 3 to 13 parts by weight of vanadium oxide; And ⅲ) 텅스텐 산화물 3 내지 13 중량부   Iii) 3 to 13 parts by weight of tungsten oxide 가 담지된 담지 촉매   Supported catalyst 를 포함하는 염소계 유기화합물의 산화분해반응용 촉매.Catalyst for oxidative decomposition reaction of chlorine-based organic compound comprising a. 제 1 항에 있어서,The method of claim 1, 상기 a)의 이산화티탄 담체는 비표면적이 50 내지 150 m2/g이고, 아나타제 결정을 70 중량% 이상 함유하는 염소계 유기화합물의 산화분해반응용 촉매.The titanium dioxide carrier of a) has a specific surface area of 50 to 150 m 2 / g and a catalyst for oxidative decomposition reaction of chlorine-based organic compounds containing 70% by weight or more of anatase crystals. a) 이산화티탄 분말을 바나듐산화물 전구체 수용액, 및 텅스텐산화물 전구체 수용액의 혼합 수용액에 함침시키고, 100 내지 150 ℃의 온도에서 건조한 후, 450 내지 550 ℃의 온도에서 소성하여 바나듐산화물과 텅스텐산화물이 담지된 담지 촉매를 제조하는 단계; 및a) Titanium dioxide powder is impregnated into a mixed aqueous solution of a vanadium oxide precursor solution and a tungsten oxide precursor aqueous solution, dried at a temperature of 100 to 150 ° C., and calcined at a temperature of 450 to 550 ° C. to support vanadium oxide and tungsten oxide. Preparing a supported catalyst; And b) 상기 a)단계의 담지 촉매를 질산 세륨(Ce(NO3)3·6H2O), 또는 질산 철(Fe(NO3)3·9H2O) 수용액에 함침시키고, 100 내지 150 ℃의 온도에서 건조한 후, 450 내지 550 ℃의 온도에서 소성하여 바나듐산화물, 텅스텐산화물, 및 세륨 또는 철의 전이금속 산화물이 담지된 담지 촉매를 제조하는 단계b) the supported catalyst of step a) is impregnated in an aqueous solution of cerium nitrate (Ce (NO 3 ) 3 .6H 2 O) or iron nitrate (Fe (NO 3 ) 3 .9H 2 O), and After drying at a temperature, calcining at a temperature of 450 to 550 ℃ to prepare a supported catalyst carrying vanadium oxide, tungsten oxide, and transition metal oxide of cerium or iron 를 포함하는 염소계 유기화합물의 산화분해반응용 촉매의 제조방법.Method for producing a catalyst for oxidative decomposition reaction of chlorine-based organic compounds comprising a. 제 3 항에 있어서,The method of claim 3, wherein ⅰ) 바나듐산 암모늄(NH4VO3)을 옥살산(C2H2O4) 수용액에 용해시키는 단계;V) dissolving ammonium vanadate (NH 4 VO 3 ) in an aqueous solution of oxalic acid (C 2 H 2 O 4 ); ⅱ) 상기 옥살산 바나듐 수용액에 텅스텐산 암모늄((NH4)10W12O 415H2O) 수용액을 첨가하여 혼합하는 단계;Ii) adding and mixing an aqueous solution of ammonium tungstate ((NH 4 ) 10 W 12 O 41 5H 2 O) to the vanadium oxalate aqueous solution; ⅲ) 상기 혼합 수용액에 이산화티탄을 함침시켜 슬러리를 제조하는 단계;Iii) impregnating titanium dioxide into the mixed aqueous solution to prepare a slurry; ⅳ) 상기 슬러리를 100 내지 150 ℃의 온도에서 건조시킨 후, 건조물을 450 내지 550 ℃의 온도에서 소성시키는 단계;Iii) drying the slurry at a temperature of 100 to 150 ° C., and then firing the dried product at a temperature of 450 to 550 ° C .; ⅴ) 상기 소성물을 질산 세륨(Ce(NO3)3·6H2O), 또는 질산 철(Fe(NO 3)3·9H2O) 수용액에 함침시켜 슬러리를 제조하는 단계; 및Iii) impregnating the calcined product into an aqueous solution of cerium nitrate (Ce (NO 3 ) 3 .6H 2 O) or iron nitrate (Fe (NO 3 ) 3 .9H 2 O) to prepare a slurry; And ⅳ) 상기 슬러리를 100 내지 150 ℃의 온도에서 건조시킨 후, 건조물을 450 내지 550 ℃의 온도에서 소성시키는 단계Iii) drying the slurry at a temperature of 100 to 150 ° C., and then firing the dried product at a temperature of 450 to 550 ° C. 를 포함하는 염소계 유기화합물의 산화분해반응용 촉매의 제조방법.Method for producing a catalyst for oxidative decomposition reaction of chlorine-based organic compounds comprising a. 염소계 유기화합물을 함유하는 배기가스를Exhaust gas containing chlorine-based organic compounds ⅰ) 이산화티탄 담체 100 중량부에Iii) 100 parts by weight of a titanium dioxide carrier ⅱ) 촉매성분으로Ii) as a catalyst component ㄱ) 세륨 산화물 또는 철 산화물 0.01 내지 0.1 중량부;     A) 0.01 to 0.1 parts by weight of cerium oxide or iron oxide; ㄴ) 바나듐 산화물 3 내지 13 중량부; 및    B) 3 to 13 parts by weight of vanadium oxide; And ㄷ) 텅스텐 산화물 3 내지 13 중량부    C) 3 to 13 parts by weight of tungsten oxide 가 담지된 담지 촉매Supported catalyst 와 접촉시키며 200 내지 300 ℃의 반응온도에서 산화분해반응시키는 단계Oxidative decomposition reaction at a reaction temperature of 200 to 300 ℃ while contacting with 를 포함하는 배기가스에 함유된 염소계 유기화합물의 제거 방법.Method for removing chlorine-based organic compounds contained in the exhaust gas comprising a. 삭제delete 제 5 항에 있어서,The method of claim 5, wherein 상기 배기가스와 담지촉매는 촉매 부피기준으로 25,000 내지 100,000 hr-1 의 공간속도에서 접촉되는 배기가스에 함유된 염소계 유기화합물의 제거 방법.The exhaust gas and the supported catalyst is a method for removing chlorine-based organic compounds contained in the exhaust gas in contact at a space velocity of 25,000 to 100,000 hr -1 based on the catalyst volume.
KR10-2002-0057018A 2002-09-18 2002-09-18 Catalyst supporting transition metal for oxidation decomposition of chloride based organic compound, method for preparing the same, and method for removing chloride based organic compound using the same KR100490835B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0057018A KR100490835B1 (en) 2002-09-18 2002-09-18 Catalyst supporting transition metal for oxidation decomposition of chloride based organic compound, method for preparing the same, and method for removing chloride based organic compound using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0057018A KR100490835B1 (en) 2002-09-18 2002-09-18 Catalyst supporting transition metal for oxidation decomposition of chloride based organic compound, method for preparing the same, and method for removing chloride based organic compound using the same

Publications (2)

Publication Number Publication Date
KR20040025176A KR20040025176A (en) 2004-03-24
KR100490835B1 true KR100490835B1 (en) 2005-05-19

Family

ID=37328136

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0057018A KR100490835B1 (en) 2002-09-18 2002-09-18 Catalyst supporting transition metal for oxidation decomposition of chloride based organic compound, method for preparing the same, and method for removing chloride based organic compound using the same

Country Status (1)

Country Link
KR (1) KR100490835B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100763226B1 (en) 2006-02-17 2007-10-04 삼성전자주식회사 Photocatalyst materials manufacturing method of transition metal ion added and 10? mean particle diameter sized metal oxide having semiconductor characteristic, material manufactured thereby, and filter, fan filter unit and clean room system having the same material
KR200451751Y1 (en) * 2008-08-21 2011-01-10 주식회사 태정기획 Fixing structure for cover of installing-lamp in a toilet stool
CN115970722B (en) * 2023-03-21 2023-05-16 山东迅达化工集团有限公司 Low-temperature combustion catalyst with organic chlorine hydrolysis function and application thereof in purification treatment of gas flow containing water vapor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430230A (en) * 1991-04-30 1995-07-04 Nippon Shokubai Co., Ltd. Method for disposing of organohalogen compounds by oxidative decomposition
US5512259A (en) * 1989-10-06 1996-04-30 Babcock Deutsche Babcock Anlagen Ag Process for reducing emissions of organic halogen compounds from incineration systems
JP2000126601A (en) * 1998-10-26 2000-05-09 Kobe Steel Ltd Decomposition catalyst for organic halogen compound and decomposition method
JP2001062292A (en) * 1999-06-25 2001-03-13 Nippon Shokubai Co Ltd Catalyst for removal of organic halogen compound and method for removing organic halogen compound
KR100377886B1 (en) * 1998-12-16 2003-07-16 삼성엔지니어링 주식회사 Catalyst for removing organic chlorine compounds and preparing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512259A (en) * 1989-10-06 1996-04-30 Babcock Deutsche Babcock Anlagen Ag Process for reducing emissions of organic halogen compounds from incineration systems
US5430230A (en) * 1991-04-30 1995-07-04 Nippon Shokubai Co., Ltd. Method for disposing of organohalogen compounds by oxidative decomposition
JP2000126601A (en) * 1998-10-26 2000-05-09 Kobe Steel Ltd Decomposition catalyst for organic halogen compound and decomposition method
KR100377886B1 (en) * 1998-12-16 2003-07-16 삼성엔지니어링 주식회사 Catalyst for removing organic chlorine compounds and preparing method thereof
JP2001062292A (en) * 1999-06-25 2001-03-13 Nippon Shokubai Co Ltd Catalyst for removal of organic halogen compound and method for removing organic halogen compound

Also Published As

Publication number Publication date
KR20040025176A (en) 2004-03-24

Similar Documents

Publication Publication Date Title
KR101833410B1 (en) Mixed oxides catalysts
KR100384349B1 (en) Catalytic oxidation catalyst and method for controlling voc, co and halogenated organic emissions
WO2020151577A1 (en) Cerium oxide catalyst modified by phosphoric acid, and preparation method and application of cerium oxide catalyst
US4138469A (en) Process for catalytically treating exhaust gas containing NOx in the presence of ammonia gas
EP0208434B1 (en) Process for removing nitrogen oxides and carbon monoxide simultaneously
Zheng et al. Review on NH3-SCR for simultaneous abating NOx and VOCs in industrial furnaces: Catalysts' composition, mechanism, deactivation and regeneration
JP4860077B2 (en) Process for producing catalyst for selective catalytic reduction of nitrogen oxides at high temperature
KR100490835B1 (en) Catalyst supporting transition metal for oxidation decomposition of chloride based organic compound, method for preparing the same, and method for removing chloride based organic compound using the same
KR100533877B1 (en) Catalyst for Removing Aromatic Halogenated Compounds Comprising Dioxin, Carbon Monoxide, and Nitrogen Oxide and Use Thereof
US6858562B1 (en) Catalyst for decomposing organic harmful substances and method for decomposing organic halides by use thereof
KR100497171B1 (en) Catalyst supporting noble metal for oxidation decomposition of chloride based organic compound, method for preparing the same, and method for removing chloride based organic compound using the same
US6299851B1 (en) Method for oxidizing hydrogen sulfide to elemental sulfur
KR100382050B1 (en) Catalyst for Removing Dioxin and Nitrogen Oxides in Flue Gas and Method for Treating Combustion Exhaust Gases Using the Same
KR100402430B1 (en) Catalyst for decomposition of toxic pollutants and producing process thereof
EP3075437B1 (en) Exhaust gas treatment system
EP1236498B1 (en) Method for decomposing chlorine-containing organic compounds in exhaust gas
KR100515907B1 (en) Catalyst for removing dioxin and/or nitrogen oxide, and preparation method thereof
KR100377886B1 (en) Catalyst for removing organic chlorine compounds and preparing method thereof
JP2005125236A (en) Catalyst for removing aromatic halogen compound including dioxin, carbon monoxide, and nitrogen oxide and use thereof
JP2619470B2 (en) Catalyst for simultaneous removal of nitrogen oxides and carbon monoxide
KR100355015B1 (en) Manufacturing method of high-activity oxidation catalysts for wet air oxidation
KR100407166B1 (en) Oxidation catalysts and method for controlling co, voc, and halogenated organic
KR20020051885A (en) Method for improving nox removal efficiency from flue gas and reducing consumption of ammonia and emission of nitrogen dioxide using modified natural manganese ores
JP2001286729A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
WO2001034296A1 (en) Catalyst for reducing toxic organic compounds and a method for preparing the catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090506

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee