KR100486837B1 - Measuring device for properties of unsaturated soil - Google Patents
Measuring device for properties of unsaturated soil Download PDFInfo
- Publication number
- KR100486837B1 KR100486837B1 KR1020050004284A KR20050004284A KR100486837B1 KR 100486837 B1 KR100486837 B1 KR 100486837B1 KR 1020050004284 A KR1020050004284 A KR 1020050004284A KR 20050004284 A KR20050004284 A KR 20050004284A KR 100486837 B1 KR100486837 B1 KR 100486837B1
- Authority
- KR
- South Korea
- Prior art keywords
- water
- soil
- measuring
- air
- earth
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/26—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
- F03B13/264—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/06—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B7/00—Water wheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2220/00—Application
- F05B2220/30—Application in turbines
- F05B2220/32—Application in turbines in water turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Oceanography (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Description
본 발명은 토사의 물성 측정장치에 관한 것으로, 상세하게는 토사의 포화투수계수와, 불포화토의 함수특성곡선과 불포화토의 전단강도를 측정하기 위한 장치에 관한 것이다. The present invention relates to an apparatus for measuring soil properties, and more particularly, to an apparatus for measuring the saturation permeability coefficient of soil, the water characteristic curve of unsaturated soil, and the shear strength of unsaturated soil.
일반적으로 토사는 불포화 상태 즉, 흙입자, 공기, 물이 포함된 불포화토이다. 그리고 흙입자와 물만으로 이루어진 포화토는 상기의 불포화토의 한 극단적인 상황일 뿐이다. 보통 자연에서 쉽게 접할 수 있는 사면의 경우에 있어 보통은 불포화 상태로 존재하며, 이러한 사면을 정확히 분석하기 위해서는 사면의 토사를 포화상태가 아닌 불포화 상태로 보고 분석하여야 한다.Soil is generally unsaturated, ie unsaturated soils containing soil particles, air and water. And saturated soil composed of soil particles and water is only one extreme situation of the above unsaturated soils. Usually, in the case of slopes that are easily encountered in nature, they usually exist in an unsaturated state. In order to analyze these slopes accurately, the soils of the slope should be viewed as unsaturated rather than saturated.
불포화토의 사면에서의 물의 흐름과 사면안정해석에 있어 중요한 입력요소 중의 하나가 함수특성곡선이다. 그리고 상기의 불포화토에서 투수계수는 일정하지 않고, 토사의 함수비가 변화함에 따라 변화한다. 따라서 상기 불포화토에서 투수계수의 변화를 반영하는 불포화토 방정식의 정확한 결정 또한 중요한 요소이다.One of the important input factors in water flow and slope stability analysis of unsaturated soils is the function characteristic curve. In the unsaturated soil, the permeability coefficient is not constant and changes as the water content of the soil is changed. Therefore, the accurate determination of the unsaturated soil equation reflecting the change of permeability coefficient in the unsaturated soil is also an important factor.
현재에 사면의 침투해석이나 사면안정해석시 불포화 조건을 고려한다고 해도 상기의 불포화토 함수특성곡선의 측정의 어려움때문에 대부분 실제 측정값이 아닌 문헌에서 제공된 값을 사용하고 있거나, 간단한 측정장비를 사용하여 함수특성곡선을 사용하고 있으나 그 신뢰성은 높지 않다. 그러나 토사의 종류에 따라 함수특성곡선과 불포화토의 투수계수는 매우 달라서 현재 상기의 불포화토의 침투해석이나 사면안정해석은 정확성에 있어 많은 문제점을 갖고 있다. Although the unsaturated conditions in the slope penetration analysis or slope stability analysis are considered at present, due to the difficulty in measuring the unsaturated soil water characteristic curve, most of them use values provided in the literature, rather than actual measurements, or use simple measurement equipment. The function characteristic curve is used but its reliability is not high. However, the water quality curve and the permeability coefficient of unsaturated soils are very different depending on the type of soil, so the penetration analysis and the slope stability analysis of unsaturated soils have many problems in accuracy.
따라서, 신뢰성 있는 불포화토의 분석이 이루어지기 위해서는 정확한 불포화토의 함수특성곡선과 투수계수방정식의 결정이 선행되어야 할 중요한 요소가 되는 것이다. Therefore, in order to perform reliable unsaturated soil analysis, the determination of the exact characteristic curve and permeability coefficient of unsaturated soil is an important factor to be preceded.
본 발명은 상기와 같은 불포화토의 함수특성곡선, 즉 토사의 체적함수비와 모관흡수력 관의 관계를 측정할 수 있는 불포화토의 물성측정장치를 제공하는 것을 목적으로 한다. It is an object of the present invention to provide an apparatus for measuring the properties of unsaturated soils, which is capable of measuring the relationship between the water-containing characteristic curve of unsaturated soils, that is, the volumetric water content of soil soils and the maternal absorption pipe.
또한, 본 발명의 불포화토 물성측정장치는 토사의 포화투수계수시험과, 토사의 함수비를 원하는 상태로 조정한 후 하중을 가하여 토사의 파괴상태를 측정할 수 있는 불포화토의 전단강도 시험을 할 수 있도록 함에 또 다른 목적이 있다.In addition, the unsaturated soil property measuring apparatus of the present invention is to test the saturation permeability coefficient of the soil and the shear strength test of the unsaturated soil that can measure the soil fracture state by applying a load after adjusting the water content of the soil to the desired state There is another purpose.
상기와 같은 목적을 달성하기 위한 본 발명의 불포화토 물성측정장치는 불포화토의 함수특성곡선을 측정하기 위한 장치로서, 측정대상이 되는 토사가 설치되는 삼축셀과, 삼축셀 내에 설치된 토사의 함수비 변화를 측정할 수 있는 제1체적측정계와, 포화투수계수시험시 토사에 공급되는 물의 양을 측정하기위한 제2체적측정계와, 삼축셀 내의 토사에 하중을 가하기 위한 구동수단이 설치된 재하대와, 토사내의 물이 배출될 때, 배출된 물속에는 물속에 확산된 공기가 이탈되어 물과 함께 공기방울을 형성하여 제2다공판의 하부측에 존재하는 공간에 맺혀있고, 제1체적측정계에 의해 측정된 물의 양에는 확산공기의 체적까지 포함되게 되어 이 확산공기의 체적을 감하여 주어야 하는데, 이 확산공기의 체적을 측정하기 위한 확산공기측정계와, 각각의 제1,2체적측정계, 삼축셀, 확산공기측정계 내부의 공기압을 제어하기 위해 복수개의 제어밸브가 설치되고, 상기 제어되는 각각의 공기압을 나타내는 복수개의 압력게이지가 설치된 제어부와, 상기 제1,2체적측정계의 공기압력 데이터값과, 삼축셀의 공기압력 데이터값과, 상기 재하대의 구동수단에 의해 토사에 가해지는 하중의 크기는 로드셀에 의해 측정되는데, 이 로드셀의 측정값과 토사의 연직변위를 측정한 연직변위계의 측정값을 저장, 계산 및 출력하는 컴퓨터를 포함하는 것을 특징으로 한다. Unsaturated soil physical property measuring apparatus of the present invention for achieving the above object as a device for measuring the moisture characteristic curve of the unsaturated soil, the three-axis cell in which the soil to be measured is installed, and the change in the water content of the soil installed in the triaxial cell In the soil table with a first volume measuring system, a second volume measuring system for measuring the amount of water supplied to the soil during the saturation permeability test, driving means for applying the load to the soil in the triaxial cell, When the water is discharged, the air diffused in the discharged water escapes, forms air bubbles with the water, and is formed in the space existing on the lower side of the second porous plate, and measured by the first volume measuring system. The amount of water includes the volume of the diffused air, so that the volume of the diffused air must be subtracted. The diffused air measuring system for measuring the volume of the diffused air, and each of the first A control unit provided with a plurality of control valves for controlling the air pressure inside the two-volume measuring system, the triaxial cell, and the diffused air measuring system, and a plurality of pressure gauges indicating the respective controlled air pressures, and the first and second volume measuring systems. The air pressure data value of, the air pressure data value of the triaxial cell, and the magnitude of the load applied to the soil by the driving means of the loading table are measured by the load cell, and the measured value of the load cell and the vertical displacement of the soil And a computer for storing, calculating, and outputting the measured values of the vertical displacement gauge.
또한, 본 발명의 불포화토 물성측정장치는 상기 각각의 제1,2 체적측정계와 연결된 삼축셀의 사이에는 각각 제1,2 압력변환계와 삼축셀 내부의 공기압력을 측정하기 위한 제3압력변환계가 설치되어 있고, 상기 컴퓨터는 상기 압력변환계의 값을 입력받아 디스플레이 신호로 변환하여 출력하는 것을 특징으로 한다.In addition, the unsaturated earth property measuring apparatus of the present invention is the third pressure conversion for measuring the air pressure inside the first and second pressure transducers and the triaxial cells, respectively, between the three axis cells connected to each of the first and second volumetric meters. A system is installed, and the computer receives the value of the pressure transducer and converts it into a display signal.
또한, 본 발명의 불포화토 물성측정장치에서 상기 각각의 제1,2 체적측정계와 상기 삼축셀과 공기압 제어수단과의 연결부위에는 각각의 공기 및 물의 흐름을 차단하기 위한 밸브가 더 설치되어 있는 것을 특징으로 한다.In addition, in the unsaturated earth property measuring apparatus of the present invention, a valve for blocking the flow of air and water is further provided at a connection portion between each of the first and second volume measuring systems, the triaxial cell, and the air pressure control means. It features.
또한, 본 발명의 불포화토 물성측정장치에서 상기 컴퓨터는 상기 로드셀의 측정값과, 연직변위계의 측정값과, 3개의 압력변환계의 측정값을 증폭하여 출력하는 증폭수단과, 상기 증폭수단의 아날로그 출력값을 디지털로 변환하여 출력하는 아날로그/디지탈 컨버터를 더 포함하는 것을 특징으로 한다.In the unsaturated earth property measuring apparatus of the present invention, the computer includes amplifying means for amplifying and outputting the measured value of the load cell, the measured value of the vertical displacement meter, and the measured values of the three pressure transducers, and the analog of the amplifying means. It further comprises an analog / digital converter for converting the output value to digital output.
또한, 본 발명의 불포화토 물성측정장치에서 삼축셀은, 내부에 토사를 수용하는 중공의 실린더 형상의 관을 더 포함하고, 상기 관에는 토사의 상부측에 복수개의 관통구멍이 형성된 제1다공판이 설치되고, 토사의 하부측에는 토사를 통해서 유입되는 물은 통과하되, 공기는 통과시키기 못하는 재질의 미세한 복수개의 관통구멍이 형성된 제2다공판이 설치되어 있고, 제2다공판 하부에 있는 저판에는 물에서 이탈된 확산공기가 모이도록 홈이 있는 것을 특징으로 한다.In addition, in the unsaturated earth property measuring apparatus of the present invention, the triaxial cell further includes a hollow cylindrical tube for accommodating soil therein, and the tube includes a first porous plate having a plurality of through holes formed in the upper side of the soil. A second porous plate having a plurality of fine through-holes of a material that passes through the soil, but does not allow air to pass through is installed on the lower side of the soil, and the bottom plate of the lower portion of the soil Characterized in that the groove is so as to collect the diffused air released from the water.
이하에서는 본 발명의 일실시예에 따른 불포화토 물성 측정장치(100)를 첨부된 도면 1 내지 5를 참조하여 설명한다.Hereinafter will be described with reference to the accompanying drawings 1 to 5 unsaturated earth property measuring apparatus 100 according to an embodiment of the present invention.
도 1은 본 발명의 일실시예에 따른 불포화토 물성 측정장치의 정면도이고, 도 2는 본 발명의 일실시예에 따른 불포화토 물성 측정장치의 동작을 설명하기 위한 계통도이고, 도 3은 본 발명의 일실시예에 따른 불포화토 물성 측정장치의 삼축셀을 보인 도면이며, 도 4는 보 발명의 일실시예에 따른 불포화토 물성 측정장치의 측정값 제어 계통도이고, 도 5는 본 발명의 일실시예에 따른 홈이 있는 저판을 보이는 도면이다.1 is a front view of an unsaturated earth property measuring apparatus according to an embodiment of the present invention, Figure 2 is a schematic diagram for explaining the operation of the unsaturated earth property measuring apparatus according to an embodiment of the present invention, Figure 3 Figure 3 is a view showing a triaxial cell of the unsaturated earth property measuring apparatus according to an embodiment of, Figure 4 is a measured value control system diagram of the unsaturated earth property measuring apparatus according to an embodiment of the present invention, Figure 5 is an embodiment of the present invention The drawing shows the grooved bottom plate according to the example.
본 실시예의 불포화토 물성측정장치(100)는 토사(70)에 하중을 가하기 위한 구동수단(도면에 표시하지 않음)이 설치된 재하대(50)의 상부로 두개의 제1,2지지봉(51,52)이 수직방향으로 일정간격 이격되어 설치되어 있고, 상기 두개의 지지봉(51,52)은 상호 지지바(도면에 표시하지 않음)로 연결되어 있다. 상기 제1지지봉(51)에는 내부에 물을 수용하여 측정 토사(70)의 함수비변화를 측정하기 위해 공기압력변화에 의해 배출되거나 흡수된 물의 양을 측정할 수 있는 제1체적측정계(10)가 설치되어 있고, 상기 제2지지봉(52)에는 내부에 물을 수용하도록 되어 있어, 측정 토사(70)의 포화투수계수시험시, 토사(70)에 공급된 물의 양을 측정할 수 있는 제2체적측정계(20)가 설치되어 있다.Unsaturated soil physical property measuring device 100 of the present embodiment is the first and second support rods 51, which are installed on the upper stage 50 is provided with a driving means (not shown) for applying a load to the soil (70) 52 are spaced apart at regular intervals in the vertical direction, and the two support bars 51 and 52 are connected to each other by a support bar (not shown). The first support rod (51) has a first volume measuring system (10) capable of measuring the amount of water discharged or absorbed by the air pressure change in order to accommodate the water therein to measure the water content change of the measured soil (70) The second support rod (52) is provided to accommodate water therein, so that the second volume capable of measuring the amount of water supplied to the soil (70) during the saturation permeability test of the measured soil (70) The measuring system 20 is provided.
상기 제1지지봉(51)과 제2지지봉(52)의 사이에는 내부에 측정할 토사(70)를 수용하고, 상기 제2체적측정계(20)에서 배출된 물을 공급받아 상기 토사(70)를 통해 상기 제1체적측정계(10)측으로 배출하며, 상부에 상기 토사(70)의 전단강도를 측정하기 위해 상부에서 토사(70)측으로 하중을 전달하기 위한 전달봉(도면에 표시하지 않음)과, 토사(70)측에 재하된 하중의 크기를 측정하기 위한 로드셀(32)이 상기 전달봉에 설치되고, 상기 전달봉에 연결된 토사(70)의 연직 변위량을 측정하기 위한 연직변위계(31)가 설치된 삼축셀(30)이 설치된다. 상기 제1지지봉(51)에 설치된 제1체적측정계(10)의 하부에는 제2다공판(35) 하부에 있는 물에서 이탈된 확산공기의 체적을 측정할 수 있는 확산공기측정계(60)가 설치된다. 이탈된 확산공기 체적의 측정은 제1체적측정계(10)에서 제2다공판(35) 하부를 경유하여 확산공기측정계(60)로 물을 통과시키고, 이 때 물과 이탈된 확산공기 함께 배출되어 확산공기측정계(60) 내부에 있는 뷰렛(미도시)에 모이게 되고 이 모인 공기량이 측정된다. Between the first support rod 51 and the second support rod 52 is housed in the soil 70 to be measured therein, receiving the water discharged from the second volume measuring system 20 receives the soil sand 70 A discharge rod (not shown) for discharging to the first volume measuring system 10 side, and for transmitting a load from the upper side to the soil sand 70 side to measure the shear strength of the soil sand 70 on the upper side, A load cell 32 for measuring the magnitude of the load loaded on the earth and sand 70 side is installed in the transfer rod, and a vertical displacement gauge 31 for measuring the vertical displacement amount of the earth and sand 70 connected to the transfer rod is installed. Triaxial cell 30 is installed. A diffusion air measurement system 60 is installed at a lower portion of the first volume measurement system 10 installed at the first supporting rod 51 to measure the volume of the diffused air released from the water in the lower portion of the second porous plate 35. do. The measurement of the separated diffused air volume passes water from the first volume measuring system 10 to the diffused air measuring system 60 through the lower portion of the second porous plate 35, and at this time, the water and the diffused diffused air are discharged together. The collected air is collected in a burette (not shown) inside the air measuring system 60 and the collected air amount is measured.
또한, 상기 제1,2 체적측정계(10,20) 및 삼축셀(30)의 내부 공기압을 제어하기 위해 내부에 일정량의 공기 및 물을 수용할 수 있는 공간이 형성되어, 상기 제1,2 체적측정계(10,20)의 물 및 삼축셀의 공기를 공급받거나, 제1,2 체적측정계(10,20)와 삼축셀(30)에 물 및 공기를 공급하고, 상기 공급받거나 공급하는 공기 및 물의 양을 제어할 수 있는 공기압 제어수단(P)이 설치되어 있고, 상기 공기압 제어수단(P)의 공기압을 조작하여 제어하기 위한 복수개의 제어밸브(42,43)와, 상기 제어되는 각각의 공기압을 개별적으로 디스플레이 하기 위한 복수개의 압력게이지(41)가 설치된 제어부(40)와, 상기 제1,2 체적측정계(10,20)의 공기압력 및 물의 양 데이터값과, 삼축셀(30)의 공기압력 및 물의 양 데이터값과, 상기 로드셀(32)의 측정값과 연직변위계(31)의 측정값을 입력받아 미리 설정된 식에 의해 결과물을 산출하여 출력하는 컴퓨터(80)를 포함한다.In addition, a space for accommodating a certain amount of air and water is formed therein to control the internal air pressure of the first and second volume measuring systems 10 and 20 and the triaxial cell 30, thereby allowing the first and second volumes to be measured. The water of the measuring system (10, 20) and the air of the triaxial cell is supplied, or the water and air to the first, second volume measuring system (10, 20) and the triaxial cell (30), the supply or supply of the air and water Pneumatic pressure control means (P) for controlling the amount is provided, and a plurality of control valves (42,43) for operating by controlling the air pressure of the air pressure control means (P), and each of the controlled air pressure The control unit 40 provided with a plurality of pressure gauges 41 for displaying individually, the air pressure and water data values of the first and second volume measuring systems 10 and 20, and the air pressure of the triaxial cell 30 And a quantity data value of water, a measured value of the load cell 32, and a measured value of the vertical displacement gauge 31. Lee includes a computer 80 which outputs the calculated result by the set expression.
상기 각각의 제1,2 체적측정계(10,20)와 연결된 삼축셀(30)의 사이에는 각각 제1,2 압력변환계(90a,90b)와 삼축셀(30)내의 압력을 측정하기 위한 제3압력변환계(90c)가 더 설치되어 있고, 상기 컴퓨터(80)는 상기 압력변환계(90a,90b,90c)의 값을 입력받아 상기 컴퓨터(80) 화면에서 디스플레이 신호로 변환하여 출력한다.Between the first and second volumetric measuring system (10,20) and the triaxial cell (30) connected to each of the first and second pressure transducers (90a, 90b) and the third for measuring the pressure in the triaxial cell (30) Three pressure transducers 90c are further installed, and the computer 80 receives the values of the pressure transducers 90a, 90b, and 90c, and converts them into display signals on the screen of the computer 80.
상기 각각의 수조(W)와 제1,2 체적측정계(10,20)와 상기 삼축셀(30)과의 연결부위에는 각각의 물의 흐름을 조절하기 위한 밸브(11,21)가 더 설치되어 있다.Valves 11 and 21 for controlling the flow of water are further installed at the connection portions of the respective water tanks W, the first and second volume measuring systems 10 and 20 and the triaxial cell 30. .
상기 컴퓨터(80)는 상기 로드셀(32)의 측정값과, 연직변위계(31)의 측정값과, 압력변환계(90a,90b,90c)의 측정값을 증폭하여 출력하는 증폭수단(83)과, 상기 증폭수단(83)의 아날로그 출력값을 디지털로 변환하여 출력하는 아날로그/디지탈 컨버터(82)를 더 포함한다. The computer 80 includes amplifying means 83 for amplifying and outputting the measured value of the load cell 32, the measured value of the vertical displacement meter 31, and the measured value of the pressure transducers 90a, 90b, and 90c. And an analog / digital converter 82 for converting and outputting the analog output value of the amplifying means 83 to digital.
상기 삼축셀(30)은 내부에 토사(70)를 수용하는 중공의 실린더 형상의 관(33)을 더 포함하고, 상기 관(33)에는 토사(70)의 상부측에 복수개의 관통구멍이 형성된 제1다공판(34)이 설치되고, 토사(70)의 하부측에는 토사(70)를 통해서 유입되는 물은 통과하되, 공기는 통과시키기 못하는 세밀한 복수개의 관통구멍이 형성된 제2다공판(35)이 설치되어 있고, 상기 제2다공판(35)의 하부에 있는 저판(36)에는 물에서 이탈된 확산공기가 모이고, 이탈된 확산공기를 상기 확산공기측정계(60)로 배출시킬 때 통로 역할을 하는 홈(36a)이 있다. The triaxial cell 30 further includes a hollow cylindrical tube 33 for accommodating the earth and sand 70 therein, and the tube 33 has a plurality of through holes formed in an upper side of the earth and sand 70. The first porous plate 34 is installed, and the second porous plate 35 having a plurality of fine through-holes through which water flowing through the soil 70 passes through the lower side of the earth and sand 70 but does not allow air to pass therethrough. Is installed, the bottom plate 36 in the lower portion of the second porous plate 35, the diffusion air escaped from the water is collected, and serves as a passage when discharging the escaped diffused air to the diffusion air measurement system (60) There is a groove 36a.
이하 그 동작을 설명하면 다음과 같다.The operation will be described below.
통상 토사(70)의 체적함수비 즉, 체적 수분함유비는 토사가 포함하고 있는 모관흡수력(공극 공기압과 공극 수압의 차이)에 따라 변화한다. 즉, 모관흡수력이 증가하면 체적함수비는 감소하고, 반대로 모관흡수력이 감소하면 체적함수비는 증가하게 된다. In general, the volume water content ratio of the soil sand 70, that is, the volume water content ratio, varies depending on the capillary absorption force (difference between the air gap and the air gap) that the soil includes. That is, the volume function ratio decreases as the maternal absorption increases, whereas the volume function ratio increases when the maternal absorption increases.
먼저, 측정할 토사를 준비해야 하는데, 자연상태의 함수비(수분함유비)가 알려진 흙시료를 사용하여, 최적 함수비가 되도록 물을 첨가시킨다. 토사의 함수비가 일정하게 되고, 외부의 변화요인을 제거하기 위해 토양을 밀폐하여 1일 이상 안정화를 시킨다. 이후, 1일후 별도의 몰드(미도시)에 토사(70)를 4~6cm 높이로 1층으로 다진다. 이때, 제2다공판(35)의 표면을 보호하기 위해 기름종이(미도시)를 설치하고, 토사(70)를 다지는게 바람직 하다. First, the earth and sand to be measured should be prepared. Water is added to the optimum water content using a soil sample having a known water content (water content). The soil water content becomes constant, and the soil is sealed to stabilize it for more than one day in order to remove external change factors. Thereafter, after one day, the earth and sand 70 in a separate mold (not shown) is chopped into one layer at a height of 4 to 6 cm. At this time, in order to protect the surface of the second porous plate 35, oil paper (not shown) is installed, and the earth and sand 70 is preferably chopped.
그리고, 제2다공판(35)을 물로 포화시키는데, 삼축셀(30)의 관(33)에 물을 채운 후, 압력을 600kpa로 1시간 정도 유지하면서 물이 제2다공판(35)를 통하여 흐르도록 한다. 이때, 10분에 1번씩 저판(36)의 물을 순환시켜주어, 순환된 물과 이탈된 확산공기방울이 저판(36)과 연결된 확산공기측정계(60)로 나오게 된다. 토사가 설치되기 전까지 제2다공판(35)이 물로 포화된 후 포화상태를 유지하기 위해 제2다공판(35)이 공기중에 노출되지 않도록 한다.Then, the second porous plate 35 is saturated with water, and after filling the tube 33 of the triaxial cell 30 with water, the water is maintained at 600 kpa for about one hour while the water is passed through the second porous plate 35. Let it flow At this time, the water of the bottom plate 36 is circulated once every 10 minutes, and the circulated water and the diffused air droplets are released to the diffusion air measuring system 60 connected to the bottom plate 36. The second porous plate 35 is not exposed to the air in order to maintain the saturation after the second porous plate 35 is saturated with water until the earth and sand is installed.
이후, 상기 다져진 토사(70)를 관(33) 내부에 거치하게 되는데, 토사(70)를 거치하기 전에 제1, 2 다공판(34,35) 측에 고무링(미도시)을 설치하고, 밀폐효과를 높이기 위해 구리스 등을 도포한다. 토사(70)의 거치시 토사(70)의 상부면은 제1다공판(34)과 밀착시키고, 하부면은 제2다공판(35)과 밀착시킨다. 이때, 제2다공판(35)의 표면을 보호하기 위하여 기름종이(미도시)를 별도로 설치해 주는게 바람직하다. 상기와 같이 토사(70)의 거치가 완료되면, 삼축셀(30)내에 물을 채우고, 로드셀(32)과 변위계(31)를 상부측에 설치한다. 이때, 주위해야 할 점은 각각의 로드셀(32)과 변위계(31)가 그 측정대상의 특성상 움직이지 않고, 정확히 고정되도록 설치해야 한다.Thereafter, the chopped soil 70 is mounted inside the pipe 33. Before mounting the soil 70, rubber rings (not shown) are installed on the first and second porous plates 34 and 35, respectively. Apply grease or the like to increase the sealing effect. When the earth and sand 70 is mounted, the upper surface of the soil sand 70 is in close contact with the first porous plate 34, and the lower surface is in close contact with the second porous plate 35. At this time, in order to protect the surface of the second porous plate 35, it is preferable to install oil paper (not shown) separately. When the mounting of the earth and sand 70 is completed as described above, the triaxial cell 30 is filled with water, and the load cell 32 and the displacement meter 31 are installed on the upper side. At this time, the surrounding point should be installed so that each load cell 32 and the displacement meter 31 does not move due to the characteristics of the measurement object, and is fixed accurately.
이후, 토사(70)를 물로 포화시키는데, 수조(W)에 공기압이 가해지도록 공기압 제어수단(P)을 제어하여, 수조(W)의 물이 제1체적측정계(10)에 최하수위를 형성하도록 공급하고, 제2체적측정계(20)는 수위가 높게 형성하도록 공급한다. 그리고, 제1다공판(34)의 관통구멍(미도시)에 존재하는 공기를 제거하기 위해, 제2체적측정계(20)의 물을 공급하여 상기 제1다공판(34)의 관통구멍에 존재하는 공기가 배출되도록 한다. 상기와 같이 토사(70)의 포화 준비가 완료되면 제2체적측정계(20)에 압력을 가하여 제2체적측정계(20)의 물이 토사(70)를 통해 하부로 물이 흐르도록 한다. 이때, 제2체적측정계(20)의 물 감소량과 상기 토사(70)를 통해 제1체적측정계(10)로 유입되는 물의 양이 같으면 토사(70)이 수분으로 포화된 것이다.Thereafter, the earth and sand 70 is saturated with water, and the air pressure control means P is controlled so that air pressure is applied to the water tank W so that the water in the water tank W forms the lowest level in the first volume measurement system 10. The second volume measurement system 20 supplies the water level to be formed high. In order to remove air existing in the through hole (not shown) of the first porous plate 34, water of the second volume measuring system 20 is supplied to be present in the through hole of the first porous plate 34. To let the air out. When the preparation for saturation of the earth and sand 70 is completed as described above, pressure is applied to the second volume measuring system 20 so that the water of the second volume measuring system 20 flows downward through the earth and sand 70. At this time, if the amount of water reduction of the second volume measuring system 20 is equal to the amount of water flowing into the first volume measuring system 10 through the soil sand 70, the soil sand 70 is saturated with water.
상기와 같이 토사(70)가 포화되면 포화투수계수를 측정하는데, 제2체적측정계(20)에 공기압 제어수단(P)을 이용하여 100kpa의 압력을 가하고 시간경과에 따른 변화된 물의 양을 측정하고, 공기압을 200, 300, 400kpa 순으로 증가하여 물의 양을 측정한다. 상기 측정값은 컴퓨터(80)에서 실시간으로 별도로 저장한다.As described above, when the soil 70 is saturated, the saturation permeability coefficient is measured. A pressure of 100 kpa is applied to the second volume measuring system 20 using an air pressure control means P, and the amount of water changed over time is measured. Increase the air pressure in order of 200, 300, 400 kpa and measure the amount of water. The measured values are stored separately in real time in the computer 80.
상기와 같이 포화투수계수가 측정된 후, 상기 토사(70)를 건조시켜 가면서 함수특성곡선을 측정한다. 먼저, 제1다공판(34)의 관통구멍에 있는 물을 제거하기 위해 공기압 제어수단(P)을 제어하여 공기압을 가하고, 제2체적측정계(20)의 밸브(21)를 오픈하여 물이 완전히 제거되도록 한다. 이때 제2체적측정계(20)에서 공기, 즉 기포가 배출되면 물이 완전히 제거된 것으로 판단하고, 상기 밸브(21)를 클로즈 하며, 공기압 제어수단(P)을 제어하여 더이상 공기압이 가해지지 않도록 한다. After the saturation permeability coefficient is measured as described above, while the soil sand 70 is dried, the moisture characteristic curve is measured. First, in order to remove the water in the through hole of the first porous plate 34, the air pressure control means P is applied to apply air pressure, and the valve 21 of the second volume measuring system 20 is opened to completely remove the water. To be removed. At this time, when the air, that is, bubbles are discharged from the second volumetric meter 20, it is determined that the water is completely removed, the valve 21 is closed, and the air pressure control means P is controlled so that no further air pressure is applied. .
이후, 확산공기측정계(60)에 물을 완전히 채우고, 삼축셀(30)내의 토사(70)의 상부에 공기압 제어수단(P)을 이용하여 공기압을 가한다. 이때, 토사(70)로부터 배출되는 물의 양을 측정키 위해 제1체적측정계(10)의 밸브(11)를 오픈하고, 제2다공판(35)의 하부의 이탈된 확산공기의 제거 및 측정을 주기적으로 해준다. 이탈된 확산공기의 제거시 먼저 제1체적측정계(10)의 밸브를 닫고, 확산공기측정계(60)와, 제2다공판(35)와 연결된 밸브를 오픈하고, 제1체적측정계(10)의 밸브(11)를 열어 물을 순환시킴으로써 공기를 제거한다. 공기가 완전히 제거된 후 제1체적측정계(10)의 밸브를 닫고 확산공기측정계(60)와 제2다공판(35)의 연결 밸브를 닫는다. 그리고, 다시 제1체적측정계(10)의 밸브를 열고, 물의 양을 측정하고, 동시에 확산공기측정계(60)내의 있는 뷰렛의 수위변화를 측정하여 기록한다. 이때, 제1체적측정계(10)의 물의 양 변화값이 제로에 가까우면 상기 삼축셀(30)과의 토사(70)내 공기압을 높여서 시험을 진행한다. 이렇게 공기압을 높여 가면서 얻은 곡선이 건조 함수특성곡선이다.Thereafter, the diffusion air measurement system 60 is completely filled with water, and the air pressure is applied to the upper portion of the earth and sand 70 in the triaxial cell 30 using the air pressure control means P. At this time, the valve 11 of the first volume measuring system 10 is opened to measure the amount of water discharged from the earth and sand 70, and the removal and measurement of the escaped diffused air at the bottom of the second porous plate 35 is performed. Do it periodically. Upon removal of the escaped diffused air, first, the valve of the first volume measuring system 10 is closed, the valve connected to the diffuse air measuring system 60 and the second porous plate 35 is opened, and the first volume measuring system 10 is closed. Open the valve 11 to circulate the water to remove air. After the air is completely removed, the valve of the first volume measuring system 10 is closed and the connection valve of the diffusion air measuring system 60 and the second porous plate 35 is closed. Then, the valve of the first volume measuring system 10 is opened again, the amount of water is measured, and at the same time, the change in the water level of the burette in the diffused air measuring system 60 is measured and recorded. At this time, if the amount change value of the water of the first volume measuring system 10 is close to zero, the test is performed by increasing the air pressure in the soil 70 with the triaxial cell 30. The curve obtained by increasing the air pressure is the drying function characteristic curve.
이후, 상기의 과정과 반대로 상기 삼축셀(30)과 토사(32)내 공기의 압력을 줄여주어 습윤 함수특성곡선을 측정한다. 즉, 토사(70)내부의 공기압의 감소로 인한 제1체적측정계(10)의 물이 토사(70)로 공급되는 것을 제외하면 각 과정들은 건조과정과 동일하다.Thereafter, the wet function characteristic curve is measured by reducing the pressure of air in the triaxial cell 30 and the earth and sand 32 as opposed to the above process. That is, each process is the same as the drying process except that the water of the first volume measuring system 10 is supplied to the earth and sand 70 due to the decrease in the air pressure in the earth and sand 70.
상기와 같이 습윤 함수특성곡선 시험이 종료되면 토사(70)의 무게, 높이를 측정하고, 상기 각 과정에서의 측정값들을 이용하여 미리 정해진 식에 의해 포화투수계수와, 건조 및 습윤시 함수특성 곡선을 산출 또는 도시한다. 그리고, 상기 함수특성곡선과 포화투수계수를 이용하여 별도의 정해진 식에 의해 불포화토의 투수계수방정식을 계산한다.When the wetting function curve test is completed as described above, the weight and height of the soil layer 70 are measured, and the saturation permeability coefficient and the water characteristic curve during drying and wetting by a predetermined equation using the measured values in the respective processes. Calculate or show Then, the permeability coefficient of the unsaturated soil is calculated by using a separate formula using the water content curve and the saturation permeability coefficient.
본 발명의 불포화토의 물성측정장치에 따르면, 불포화토의 함수특성곡선을 신뢰성 있게 측정할 수 있고, 불포화토의 투수계수방정식을 산출할 수 있는 장점이 있다. According to the physical property measuring device of the unsaturated soil of the present invention, it is possible to reliably measure the functional characteristic curve of the unsaturated soil, there is an advantage that can calculate the permeability coefficient equation of the unsaturated soil.
또한, 본 발명의 불포화토 물성측정장치는 토사를 원하는 함수비의 불포상태로 유지하고, 토사에 하중을 가하는 파괴시험과 토양의 연직 변위량을 측정하기 위한 연직변위계를 구비하여 불포화토의 전단강도 시험까지 할 수 있어 불포화토 연구에 있어서 폭넓은 활용이 가능한 장점이 있다.In addition, the apparatus for measuring unsaturated soil properties of the present invention maintains soil in an unsaturated state with a desired water content, and has a failure test to apply a load to the soil and a vertical displacement gauge to measure the amount of vertical displacement of the soil. It has the advantage that it can be widely used in unsaturated soil research.
또한, 종래 장치의 모관흡수력(토사의 공극 공기압과 공극 수압의 차이) 측정 범위보다 훨씬 큰 범위의 모관흡수력까지 측정할 수 있어, 다양한 불포화토에 대한 측정이 가능하여 범호환성이 향상된 효과가 있다.In addition, it is possible to measure up to the capillary absorption of a much larger range than the measurement range of the capillary absorption of the conventional apparatus (difference between the pore air pressure and the pore water pressure of the soil), it is possible to measure a variety of unsaturated soils, thereby improving the compatibility.
앞에서 설명되고, 도면에 도시된 본 발명의 일 실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.An embodiment of the present invention described above and illustrated in the drawings should not be construed as limiting the technical spirit of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can change and change the technical idea of the present invention in various forms. Therefore, such improvements and modifications will fall within the protection scope of the present invention, as will be apparent to those skilled in the art.
도 1은 본 발명의 일실시예에 따른 불포화토 물성 측정장치의 정면도1 is a front view of an unsaturated earth property measuring apparatus according to an embodiment of the present invention
도 2는 본 발명의 일실시예에 따른 불포화토 물성 측정장치의 동작을 설명하기 위한 계통도Figure 2 is a schematic diagram for explaining the operation of the unsaturated earth property measuring apparatus according to an embodiment of the present invention
도 3은 본 발명의 일실시예에 따른 불포화토 물성 측정장치의 삼축셀을 보인 도면3 is a view showing a triaxial cell of the unsaturated earth property measuring apparatus according to an embodiment of the present invention
도 4는 본 발명의 일실시예에 따른 불포화토 물성 측정장치의 측정값 제어 계통도 4 is a measured value control system diagram of an apparatus for measuring unsaturated soil properties according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 제2다공판 하부의 저판을 보이는 도면5 is a view showing a bottom plate of the lower portion of the second porous plate according to an embodiment of the present invention.
<도면 부호의 간단한 설명><Short description of drawing symbols>
10 제1체적측정계 20 제2체적측정계10 First volumetric meter 20 Second volumetric meter
30 삼축셀 40 제어부30 triaxial cell 40 control unit
50 재하대 60 확산공기측정계50 Loading Stage 60 Diffusion Air Measuring System
70 토사 80 컴퓨터70 Tosa 80 Computer
P 공기압 제어수단 W 수조P air pressure control unit W water tank
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050004284A KR100486837B1 (en) | 2005-01-17 | 2005-01-17 | Measuring device for properties of unsaturated soil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050004284A KR100486837B1 (en) | 2005-01-17 | 2005-01-17 | Measuring device for properties of unsaturated soil |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100486837B1 true KR100486837B1 (en) | 2005-04-29 |
Family
ID=37302377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050004284A KR100486837B1 (en) | 2005-01-17 | 2005-01-17 | Measuring device for properties of unsaturated soil |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100486837B1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102305845A (en) * | 2011-07-28 | 2012-01-04 | 河北建设勘察研究院有限公司 | Method for rapidly detecting area unsaturated soil shearing strength |
CN101441209B (en) * | 2008-12-19 | 2012-02-01 | 河海大学 | Rapid triaxial consolidation shearing test method of soil body |
CN104359728A (en) * | 2014-10-29 | 2015-02-18 | 河海大学 | Cohesiveless soil three-axis sample saturation device and using method thereof |
WO2015096672A1 (en) * | 2013-12-23 | 2015-07-02 | 石家庄铁道大学 | Detection device |
CN105424488A (en) * | 2015-06-29 | 2016-03-23 | 西南交通大学 | Suction-controllable unsaturated soil static triaxial instrument based on inner volume change precision measurement |
CN108181220A (en) * | 2017-12-13 | 2018-06-19 | 浙江大学 | The experimental rig of coarse-grained soil horizontal direction and vertical saturation permeability coefficient under different pressures is tested in a kind of interior simultaneously |
CN108507931A (en) * | 2018-06-22 | 2018-09-07 | 三峡大学 | A kind of full-automatic measurement system of complete soil―structure interaction |
CN109270116A (en) * | 2018-11-02 | 2019-01-25 | 中国地质大学(武汉) | Measure the joint test device and method of unsaturated soil matric suction and thermal conductivity |
WO2019075661A1 (en) * | 2017-10-18 | 2019-04-25 | 苏州汇才土水工程科技有限公司 | Digital image measurement device and method for measuring specimen surface deformation based on sub-pixel corner recognition |
KR20200045235A (en) * | 2018-10-22 | 2020-05-04 | 인천대학교 산학협력단 | One-dimension expansive pressure test apparatus |
KR20200108550A (en) * | 2019-03-11 | 2020-09-21 | 한국철도기술연구원 | Method and device for estimate soil water characteristic curve and unsaturated permeability of ground |
CN114676375A (en) * | 2022-02-14 | 2022-06-28 | 汪振康 | Method for measuring and calculating quantity of water guide modules of storage and regulation system |
-
2005
- 2005-01-17 KR KR1020050004284A patent/KR100486837B1/en active IP Right Grant
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101441209B (en) * | 2008-12-19 | 2012-02-01 | 河海大学 | Rapid triaxial consolidation shearing test method of soil body |
CN102305845A (en) * | 2011-07-28 | 2012-01-04 | 河北建设勘察研究院有限公司 | Method for rapidly detecting area unsaturated soil shearing strength |
CN102305845B (en) * | 2011-07-28 | 2014-09-24 | 河北建设勘察研究院有限公司 | Method for rapidly detecting area unsaturated soil shearing strength |
WO2015096672A1 (en) * | 2013-12-23 | 2015-07-02 | 石家庄铁道大学 | Detection device |
US9453829B2 (en) | 2013-12-23 | 2016-09-27 | Shijiazhuang Tiedao University | Soil property test device |
CN104359728A (en) * | 2014-10-29 | 2015-02-18 | 河海大学 | Cohesiveless soil three-axis sample saturation device and using method thereof |
CN105424488A (en) * | 2015-06-29 | 2016-03-23 | 西南交通大学 | Suction-controllable unsaturated soil static triaxial instrument based on inner volume change precision measurement |
WO2019075661A1 (en) * | 2017-10-18 | 2019-04-25 | 苏州汇才土水工程科技有限公司 | Digital image measurement device and method for measuring specimen surface deformation based on sub-pixel corner recognition |
US11119016B2 (en) | 2017-10-18 | 2021-09-14 | Suzhou H-C Soil & Water Science And Technology Co., Ltd | Image measurement device and method for the surface deformation of specimen based on sub-pixel corner detection |
CN108181220A (en) * | 2017-12-13 | 2018-06-19 | 浙江大学 | The experimental rig of coarse-grained soil horizontal direction and vertical saturation permeability coefficient under different pressures is tested in a kind of interior simultaneously |
CN108181220B (en) * | 2017-12-13 | 2024-02-27 | 浙江大学 | Test device for simultaneously testing horizontal and vertical saturation permeability coefficients of coarse-grained soil under different pressures indoors |
CN108507931A (en) * | 2018-06-22 | 2018-09-07 | 三峡大学 | A kind of full-automatic measurement system of complete soil―structure interaction |
CN108507931B (en) * | 2018-06-22 | 2023-11-24 | 三峡大学 | Full-automatic measurement method for complete soil-water characteristic curve |
KR20200045235A (en) * | 2018-10-22 | 2020-05-04 | 인천대학교 산학협력단 | One-dimension expansive pressure test apparatus |
KR102129410B1 (en) | 2018-10-22 | 2020-07-02 | 인천대학교 산학협력단 | One-dimension expansive pressure test apparatus |
CN109270116A (en) * | 2018-11-02 | 2019-01-25 | 中国地质大学(武汉) | Measure the joint test device and method of unsaturated soil matric suction and thermal conductivity |
CN109270116B (en) * | 2018-11-02 | 2023-12-05 | 中国地质大学(武汉) | Combined test method for measuring suction and thermal conductivity of unsaturated soil matrix |
KR20200108550A (en) * | 2019-03-11 | 2020-09-21 | 한국철도기술연구원 | Method and device for estimate soil water characteristic curve and unsaturated permeability of ground |
KR102204789B1 (en) * | 2019-03-11 | 2021-01-19 | 한국철도기술연구원 | Method and device for estimate soil water characteristic curve and unsaturated permeability of ground |
CN114676375A (en) * | 2022-02-14 | 2022-06-28 | 汪振康 | Method for measuring and calculating quantity of water guide modules of storage and regulation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100486837B1 (en) | Measuring device for properties of unsaturated soil | |
Vanapalli et al. | Axis translation and negative water column techniques for suction control | |
US7509840B2 (en) | Centrifuge permeameter for unsaturated soils system | |
CN102445528B (en) | The unsaturated soil comprehensive test apparatus that humidity and osmotic suction control | |
US6234008B1 (en) | Method and apparatus for the direct measurement of moisture characteristics of porous samples of soil, wood, concrete and the like | |
CN101865810B (en) | Test method for determining unsaturated soil water characteristic parameters | |
CN110426336B (en) | Roadbed soil unsaturated permeability coefficient measurement system and related measurement method thereof | |
JP3381991B2 (en) | Water permeability measuring apparatus and water permeability measuring method using the same | |
CN111650082B (en) | Unsaturated soil water characteristic curve measuring device | |
JPH0545173B2 (en) | ||
CN108680480A (en) | A kind of unsaturation coarse-grained soil permeameter and its test method | |
CN110196255B (en) | Pressure plate instrument for quickly measuring soil-water characteristic curve and measuring method thereof | |
US7367218B2 (en) | Centrifuge permeameter for unsaturated soils system | |
CN104020047A (en) | Solidification and permeation combined testing device and method | |
CN111796074A (en) | Device capable of testing multidirectional deformation and expansive force of expansive soil | |
CN116519409A (en) | Coarse-grained soil sample preparation device and method for simulating seepage-erosion and measuring soil-water characteristics | |
Muraleetharan et al. | The use of miniature pore pressure transducers in measuring matric suction in unsaturated soils | |
CA2490264A1 (en) | Liquid extrusion porosimeter and method | |
CN115979880B (en) | Device and method for testing near-surface soil water retention curve under low-stress environment | |
JPH07306198A (en) | Large scale indoor water permeability test system | |
CN1484013A (en) | Instrment for testing geotextile permeability and silting property | |
CN207798545U (en) | A kind of consolidation testing device of gassiness soil | |
CN214278155U (en) | Sample deformation testing arrangement that absorbs water | |
BR102013010037A2 (en) | Flexible wall perimeter | |
CN212459689U (en) | Device capable of testing multidirectional deformation and expansive force of expansive soil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130402 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20140417 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20150417 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20160418 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20170418 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20180409 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20190402 Year of fee payment: 15 |