KR100486121B1 - A Method for Producing Aluminum titanate- Zirconium titanate Ceramics with Low Thermal Expansion Behavior - Google Patents

A Method for Producing Aluminum titanate- Zirconium titanate Ceramics with Low Thermal Expansion Behavior Download PDF

Info

Publication number
KR100486121B1
KR100486121B1 KR10-2002-0028072A KR20020028072A KR100486121B1 KR 100486121 B1 KR100486121 B1 KR 100486121B1 KR 20020028072 A KR20020028072 A KR 20020028072A KR 100486121 B1 KR100486121 B1 KR 100486121B1
Authority
KR
South Korea
Prior art keywords
titanate
aluminum titanate
zirconium
thermal expansion
tio
Prior art date
Application number
KR10-2002-0028072A
Other languages
Korean (ko)
Other versions
KR20030090081A (en
Inventor
김익진
조항근
이승범
Original Assignee
(주) 세라컴
김익진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 세라컴, 김익진 filed Critical (주) 세라컴
Priority to KR10-2002-0028072A priority Critical patent/KR100486121B1/en
Publication of KR20030090081A publication Critical patent/KR20030090081A/en
Application granted granted Critical
Publication of KR100486121B1 publication Critical patent/KR100486121B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 열팽창이 작은 알루미늄 티타네이트- 지르코늄 티타네이트 (Al2TiO5-ZrTiO4) 세라믹 제조에 관한 것이다.The present invention relates to the production of aluminum titanate-zirconium titanate (Al 2 TiO 5 -ZrTiO 4 ) ceramics with low thermal expansion.

본 발명의 세라믹 제조방법은 mol%로, 40~ 60%의 Al2O3와 60~ 40%의 TiO2에 3~ 7%의 MgO를 첨가 혼합하여 분쇄한 후, 성형, 소결하여 알루미늄 티타네이트 분말을 얻은 다음, 40~ 60%의 ZrO2와 60~ 40%의 TiO2를 혼합하여 분쇄한 후, 성형, 소결하여 지르코늄 티타네이트 분말을 얻고, 이후 상기 알루미늄 티타네이트와 지르코늄 티타네이트 분말을 서로 혼합한 후 성형, 소결하여 알루미늄 티타네이트- 지르코늄 티타네이트 세라믹을 제조하는 것을 그 기술적 요지로 한다.Ceramic manufacturing method of the present invention is mol%, 40 to 60% Al 2 O 3 and 60 to 40% of TiO 2 by adding 3-7% MgO mixed and pulverized, then molded and sintered aluminum titanate After the powder was obtained, 40 to 60% of ZrO 2 and 60 to 40% of TiO 2 were mixed and pulverized, and then molded and sintered to obtain a zirconium titanate powder. Then, the aluminum titanate and zirconium titanate powder were mixed with each other. The technical gist of the aluminum titanate-zirconium titanate ceramic is produced by mixing, sintering and sintering.

Description

열팽창이 낮은 알루미늄 티타네이트- 지르코늄 티타네이트 세라믹 제조 방법{A Method for Producing Aluminum titanate- Zirconium titanate Ceramics with Low Thermal Expansion Behavior}A method for producing aluminum titanate- zirconium titanate ceramics with low thermal expansion behavior}

본 발명은 자동차의 포트라이너(portliner), 촉매담체(catalyst substrate), 축열체(ceramic honeycomb for heat capacitor), 주물필터(molten metal filter), 조리용 촉매담체 또는 비철금속 용융체 공장과 유리용융체 내화물 공장의 고급질 내화물 혹은 각종 고온구조재료로 사용되는 알루미늄 티타네이트- 지르코늄 티타네이트(Al2TiO5-ZrTiO4) 세라믹 제조에 관한 것으로서, 보다 상세하게는 낮은 열팽창계수로 인하여 우수한 열충격성, 내침식성과 단열성을 나타내는 알루미늄 티타네이트- 지르코늄 티타네이트 세라믹의 제조방법에 관한 것이다.The present invention relates to a portliner, a catalyst carrier, a caloric honeycomb for heat capacitor, a molten metal filter, a catalyst carrier for cooking or a nonferrous metal melt factory and a glass melt refractory plant. Manufacture of aluminum titanate-zirconium titanate (Al 2 TiO 5 -ZrTiO 4 ) ceramics used as high-quality refractory materials or various high-temperature structural materials. More specifically, due to low thermal expansion coefficient, excellent thermal shock resistance, corrosion resistance and thermal insulation It relates to a method for producing an aluminum titanate-zirconium titanate ceramic.

일반적으로 고온구조 재료로서 사용되는 순수한 알루미늄 티타네이트는 소결후 냉각도중 800-1300℃의 영역에서 출발재료인 알루미나(α-Al2O3)와 티타니아(TiO2-rutile)로 분해되는 열적 불안정성을 갖고 있다. 또한, 이들은 상이한 결정축에 따라 서로 다른 열팽창계수를 갖기 때문에 내부응력에 의한 미세균열이 발생하고, 1300℃ 이상의 고온에서는 급격한 알루미늄 티타네이트의 입자성장으로 낮은 기계적 강도를 갖게 된다. 특히, 출발원료인 알루미나와 티타니아가 반응하여 β형 알루미늄 티타네이트(β-Al2TiO5)를 합성할 때, 낮은 알루미늄 티타네이트(Al2TiO5)의 이론밀도(corundum : 3.99 g/㎤, rutile : 4.25 g/㎤, tielite : 3.702 g/㎤)로 인하여 10 ∼ 15% 부피팽창이 일어난다. 이와 같은 낮은 소결성과 이로 인한 낮은 기계적 강도와 열적 불안정성은 알루미늄 티타네이트를 고온구조 재료로서의 산업적 응용에 많은 제약을 주고 있다.Generally, pure aluminum titanate used as a high-temperature structural material has thermal instability that decomposes into starting materials alumina (α-Al 2 O 3 ) and titania (TiO 2 -rutile) in the region of 800-1300 ℃ during cooling after sintering. Have In addition, since they have different coefficients of thermal expansion according to different crystal axes, microcracks occur due to internal stress, and at high temperatures of 1300 ° C. or higher, they have low mechanical strength due to rapid growth of aluminum titanate grains. In particular, when the starting material alumina and titania react to synthesize β-type aluminum titanate (β-Al 2 TiO 5 ), the theoretical density of low aluminum titanate (Al 2 TiO 5 ) (corundum: 3.99 g / cm 3, rutile: 4.25 g / cm 3 and tielite: 3.702 g / cm 3) resulting in 10-15% volume expansion. Such low sintering properties and the low mechanical strength and thermal instability thus limit many industrial applications of aluminum titanate as a high temperature structural material.

그러므로 알루미늄 티타네이트 세라믹의 성공적인 산업응용은 위 재료의 미세구조 현상을 어떻게 제어할 수 있느냐에 달려 있다. 이러한 제어 방법 중 하나는, 순수한 알루미늄 티타네이트가 알루미나와 티타니아로 분해되는 성질을 이해하여 열적, 기계적으로 안정화시키는 것이다. Therefore, the successful industrial application of aluminum titanate ceramics depends on how the microstructural phenomena of the above materials can be controlled. One such control method is to understand the properties of pure aluminum titanate decomposing into alumina and titania and to thermally and mechanically stabilize it.

상기 알루미늄 티타네이트의 열적 불안정성을 1300℃ 이하에서 안정화시키는 방법은, 크게 열역학적인 안정화와 운동학적인(kinetic) 안정화 방법으로 구분할 수 있다. 상기 열역학적인 안정화 방법은 MgO, Fe2O3, TiO2, Cr2O 3, GaO2와 같은 물질을 Al2TiO5와 함께 고용체를 형성하여, Fe2TiO5(pseudobrookite) 구조와 비슷한 Mg2TiO5(karroite), Ti2TiO5(anosovite), FeTi2O 5(ferropseudobrookite) 혹은 (Al, Cr)2TiO5를 이루어 분해온도 1300℃ 이하에서 안정화시키는 방법이다. 반면, 상기 운동학적인 안정화 방법은, 알루미늄 티타네이트와는 고용체를 형성하지 않는 SiO2, ZrO2, α-Al2O3, 뮬라이트(mullite), ZrTiO4와 같은 물질을 첨가하여, 알루미늄 티타네이트 입자사이에 제2의 상으로서 알루미늄 티타네이트 입자성장을 억제시켜 안정화시키는 방법이다.The method of stabilizing the thermal instability of the aluminum titanate at 1300 ° C. or less can be largely classified into thermodynamic stabilization and kinetic stabilization. In the thermodynamic stabilization method, MgO, Fe 2 O 3 , TiO 2 , Cr 2 O 3 , GaO 2 and the like to form a solid solution with Al 2 TiO 5 , Mg 2 similar to Fe 2 TiO 5 (pseudobrookite) structure TiO 5 (karroite), Ti 2 TiO 5 (anosovite), FeTi 2 O 5 (ferropseudobrookite) or (Al, Cr) 2 TiO 5 to form a stabilization at a decomposition temperature of 1300 ℃ or less. On the other hand, the kinematic stabilization method, aluminum titanate particles by adding a material such as SiO 2 , ZrO 2 , α-Al 2 O 3 , mullite, ZrTiO 4 , which does not form a solid solution with aluminum titanate It is a method of restraining and stabilizing aluminum titanate grain growth as a 2nd phase between them.

그러나, 이와 같이 기존의 첨가물을 첨가하여 안정화된 알루미늄 티타네이트를 제조하는 방법들은, 1300℃ 고온에서 급격한 알루미늄 티타네이트 입자의 성장으로 기계적 특성이 낮아지고, 알루미늄 티타네이트가 출발 원료로 분해된다. 이에 따라 상기 안정화 처리된 알루미늄 티타네이트는 높은 열팽창성을 나타내고, 동시에 낮은 열충격 저항성을 나타낸다.However, the methods for producing stabilized aluminum titanate by adding the conventional additives, the mechanical properties are lowered by the rapid growth of aluminum titanate particles at a high temperature of 1300 ℃, aluminum titanate is decomposed as a starting material. The stabilized aluminum titanate thus exhibits high thermal expansion and at the same time low thermal shock resistance.

본 발명의 목적은 상기 종래의 알루미늄 티타네이트의 급격한 입성장을 지르코늄 티타네이트 상으로 억제시켜 열적 안정화를 도모함으로써, 기존의 세라믹에 비하여 열팽창계수가 매우 낮은 알루미늄 티타네이트- 지르코늄 티타네이트 (Al2TiO5-ZrTiO4) 세라믹을 제공함에 있다.An object of the present invention is to suppress the rapid grain growth of the conventional aluminum titanate to the zirconium titanate phase to achieve thermal stabilization, so that the thermal expansion coefficient of aluminum titanate-zirconium titanate (Al 2 TiO) is very low 5 -ZrTiO 4 ) ceramics.

상기한 목적 달성을 위한 본 발명에 따른 알루미늄 티타네이트- 지르코늄 티타네이트 세라믹 제조방법은, mol%로, 40~ 60%의 Al2O3와 60~ 40%의 TiO2에 3~ 7%의 MgO를 첨가 혼합하여 분쇄한 후, 성형, 소결하여 알루미늄 티타네이트 분말을 얻는 단계;Aluminum titanate-zirconium titanate ceramic manufacturing method according to the present invention for achieving the above object, in mol%, 40 to 60% Al 2 O 3 and 60 to 40% of TiO 2 3-7% MgO Adding, mixing, and pulverizing, followed by molding and sintering to obtain aluminum titanate powder;

40~ 60%의 ZrO2와 60~ 40%의 TiO2를 혼합하여 분쇄한 후, 성형, 소결하여 지르코늄 티타네이트 분말을 얻는 단계 및40 to 60% of ZrO 2 and 60 to 40% of TiO 2 are mixed and ground, followed by molding and sintering to obtain zirconium titanate powder, and

상기 알루미늄 티타네이트와 지르코늄 티타네이트 분말을 서로 혼합한 후 성형, 소결하여 알루미늄 티타네이트- 지르코늄 티타네이트 세라믹을 얻는 단계를 포함하여 구성된다. The aluminum titanate and zirconium titanate powder are mixed with each other, followed by molding and sintering to obtain an aluminum titanate-zirconium titanate ceramic.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명에 따른 알루미늄 티타네이트- 지르코늄 티타네이트 세라믹 제조방법은, 알루미늄 티타네이트 분말을 준비한 다음, 지르코늄 티타네이트 분말을 준비하고, 상기 두 분말을 소결하여 알루미늄 티타네이트- 지르코늄 티타네이트 분말을 제조한다. 본 발명에 따르면, 제2상인 지르코늄 티타네이트가 알루미늄 티타네이트의 입자성장을 억제시킴으로써, 열적으로 안정화시켜 열적 내구성과 열충격 저항성이 뛰어난 알루미늄 티타네이트- 지르코늄 티타네이트 세라믹이 제조된다.In the aluminum titanate-zirconium titanate ceramic manufacturing method according to the present invention, aluminum titanate powder is prepared, zirconium titanate powder is prepared, and the two powders are sintered to prepare aluminum titanate-zirconium titanate powder. According to the present invention, the zirconium titanate as the second phase inhibits grain growth of aluminum titanate, thereby thermally stabilizing to produce an aluminum titanate-zirconium titanate ceramic excellent in thermal durability and thermal shock resistance.

먼저, 상기 알루미늄 티타네이트 분말의 제조는, 알루미나와 티타니아 분말에 산화철을 첨가하여 이를 소결함으로써 제조할 수 있다. 이때, 알루미나와 티타니아의 혼합은, 각각 알루미나 40~ 60mol%(이하, 단지 %라 한다)에 티타니아 60~ 40%의 비율로 하고, 여기에 산화마그네슘(MgO)을 3~ 7%의 범위에서 첨가하여 이들을 분쇄한다. 상기 알루미나의 혼합비가 40% 미만이면 미반응의 티타니아가 존재하고, 60%를 초과하면 합성된 알루미늄 티타네이트의 입성장은 억제할 수 있으나 높은 열팽창계수로 인하여 바람직하지 않다. 이렇게 분쇄된 혼합물은 성형, 소결하여 알루미늄 티타네이트 분말을 준비한다. 소결온도는 1350~ 1600℃의 범위가 적당하다. First, the aluminum titanate powder may be prepared by adding iron oxide to alumina and titania powder and sintering it. At this time, the mixture of alumina and titania is made into alumina 40-40 mol% (hereinafter only referred to as%) of titania 60-40%, and magnesium oxide (MgO) is added to it in the range of 3-7% here, respectively. To pulverize them. If the mixing ratio of the alumina is less than 40%, unreacted titania is present, and if it exceeds 60%, the grain growth of the synthesized aluminum titanate can be suppressed, but it is not preferable because of the high coefficient of thermal expansion. The pulverized mixture is molded and sintered to prepare aluminum titanate powder. The sintering temperature is in the range of 1350 ~ 1600 ℃.

그 다음, 지르코늄 티타네이트 분말의 제조는, 지르코니아 40~ 60%와 티타니아 40~ 60%를 혼합하여 분쇄한 후, 분쇄된 혼합물을 성형, 소결하여 제조한다. Next, zirconium titanate powder is prepared by mixing 40 to 60% of zirconia and 40 to 60% of titania, followed by molding and sintering the ground mixture.

본 발명에 첨가되는 지르코늄 티타네이트는 HfTiO4처럼 미세균열 조직으로 낮은 열팽창계수를 갖고 있으며, 구조적으로는 α-PbO2의 구조와 유사하다. 지르코늄 티타네이트는 통상적으로 전자재료 중 유전물질(dielectric material)이나 안료(pigments) 등으로 사용되고 있을 뿐, 지금까지 고온구조 재료로서는 응용된 바가 적다.The zirconium titanate added to the present invention has a low thermal expansion coefficient as a microcracked structure, such as HfTiO 4 , and is structurally similar to the structure of α-PbO 2 . Zirconium titanate is generally used as a dielectric material, pigments, etc. among electronic materials, and has been rarely applied as a high temperature structural material.

본 발명의 경우 상기 지르코니아의 혼합비를 40% 미만으로 하면 미반응의 티타니아가 존재하고, 60%를 초과하면 미세구조 조직이 치밀하여 낮은 열팽창계수를 갖는 재료로서는 바람직하지 않다.In the case of the present invention, if the mixing ratio of zirconia is less than 40%, unreacted titania is present, and if it exceeds 60%, the microstructure is dense, which is not preferable as a material having a low coefficient of thermal expansion.

마지막으로, 상기와 같이 제조된 두 분말은 적절히 혼합하여 성형, 소결한다. 알루미늄 티타네이트와 지르코늄 티타네이트 분말 입자들은 서로 새로운 화합물질을 형성하는 고용체로 합성되지 않고, 물리적으로 균일하게 혼합된 미세구조를 나타낸다. 본 발명에 첨가되는 지르코늄 티타네이트는 알루미늄 티타네이트의 입성장을 억제하며 치밀한 조직을 갖도록 한다. 상기 지르코늄 티타네이트의 상이 증가할수록 알루미늄 티타네이트의 입자는 작아진다. 따라서, 본 발명에서는 상기 지르코늄 티타네이트 분말의 혼합비를 적정 범위로 제어할 필요가 있다. 바람직하게는 상기 알루미늄 티타네이트 분말과 지르코늄 티타네이트 분말은 40: 60~ 90: 10%의 비율로 혼합하는 것이다. 상기 지르코늄 티타네이트의 분말은 10% 미만으로 혼합하면 알루미늄 티타네이트가 열적으로 불안정하고, 60%를 초과하면 비교적 높은 열팽창성으로 인하여 바람직하지 않다. 더 바람직하게는, 상기 알루미늄 티타네이트 분말과 지르코늄 티타네이트 분말은 40: 60~ 70: 30의 비율로 혼합하는 것이다.Finally, the two powders prepared as above are appropriately mixed, molded and sintered. Aluminum titanate and zirconium titanate powder particles do not synthesize into solid solutions that form new compounds of each other, but exhibit physically uniformly mixed microstructures. The zirconium titanate added to the present invention inhibits grain growth of aluminum titanate and has a dense structure. As the zirconium titanate phase increases, the particles of aluminum titanate become smaller. Therefore, in this invention, it is necessary to control the mixing ratio of the said zirconium titanate powder to an appropriate range. Preferably, the aluminum titanate powder and the zirconium titanate powder are mixed at a ratio of 40: 60 to 90: 10%. The powder of zirconium titanate is undesirable due to the thermally unstable aluminum titanate when mixed to less than 10% and relatively high thermal expandability above 60%. More preferably, the aluminum titanate powder and zirconium titanate powder are mixed at a ratio of 40: 60 to 70: 30.

본 발명에서 알루미늄 티타네이트와 지르코늄 티타네이트의 두 상은 그 경계가 확실하고 입자면에 따라 형성된 미세균열은 상기 지르코늄 티타네이트로 채워져 약 1350℃인 비교적 높은 고온에서도 낮은 열팽창계수를 나타낸다. 또한, 본 발명의 경우 약 1300℃에서 일어나는 알루미늄 티타네이트의 급격한 입성장이 지르코늄 티타네이트 상으로 억제되어 열적으로 안정화된다.In the present invention, the two phases of aluminum titanate and zirconium titanate have a definite boundary, and the microcracks formed along the particle surface are filled with the zirconium titanate and exhibit low coefficient of thermal expansion even at a relatively high temperature of about 1350 ° C. In addition, in the case of the present invention, rapid grain growth of aluminum titanate occurring at about 1300 ° C. is suppressed onto the zirconium titanate phase and thermally stabilized.

상기 소결은 1350~ 1600℃의 범위에서 행하는 것이 바람직하다. 만일 1350℃ 미만에서 소결을 행하게 되는 경우에는 상대밀도가 낮고, 1600℃를 초과하여 소결을 행하게 되는 경우 알루미늄 티타네이트의 입성장으로 인하여 바람직하지 않다.It is preferable to perform the said sintering in the range of 1350-1600 degreeC. If sintering is performed at less than 1350 ° C., the relative density is low, and if sintering is more than 1600 ° C., it is not preferable due to grain growth of aluminum titanate.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

50mol% Al2O3와 50mol% TiO2에 5mol%의 Mg0를 첨가하여 10시간 볼밀에서 혼합한 후, 약 150MPa로 성형하고, 이 성형체를 소성하여 알루미늄 티타네이트 분말을 얻었다. 이때, 소성은 500℃까지 100℃/h로 승온하여 2시간 유지한 후, 1600℃에서 4시간 유지하고, 상온까지 600℃/h로 냉각하는 조건으로 행하였다.5 mol% of Mg0 was added to 50 mol% Al 2 O 3 and 50 mol% TiO 2 , mixed in a ball mill for 10 hours, and then molded to about 150 MPa, and the molded body was calcined to obtain aluminum titanate powder. At this time, baking was performed by heating up to 500 degreeC at 100 degreeC / h, hold | maintaining for 2 hours, holding at 1600 degreeC for 4 hours, and performing on the conditions to cool to 600 degreeC / h to normal temperature.

그 다음, 50mol% ZrO2와 50mol% TiO2를 10시간 볼밀에서 혼합한 후, 1600℃에서 4시간 소결하여 지르코늄 티타네이트 분말을 얻었다.Then, 50 mol% ZrO 2 and 50 mol% TiO 2 were mixed in a ball mill for 10 hours, and then sintered at 1600 ° C. for 4 hours to obtain a zirconium titanate powder.

이렇게 합성된 각 소결 분말의 특성은 표 1과 같았다.The properties of each of the sintered powders thus synthesized are shown in Table 1.

재료 material Prize 소결밀도(g/㎤)Sintered Density (g / cm3) 이론밀도(g/㎤)Theoretical density (g / cm3) 상대밀도(%)Relative Density (%) 입자크기Particle size 25~ 1350℃에서의 열팽창계수(x10-6/K)Coefficient of thermal expansion at 25 ~ 1350 ℃ (x10 -6 / K) Al2TiO5 Al 2 TiO 5 β-Al2TiO5 β-Al 2 TiO 5 3.683.68 3.703.70 93.293.2 50%<2.5mm50% <2.5mm 0.680.68 ZrTiO4 ZrTiO 4 high-ZrTiO4 high-ZrTiO 4 4.854.85 5.065.06 95.095.0 100%<4.0mm100% <4.0mm 8.298.29

이후에는 상기 합성된 소결 재료를 각각 건식 분쇄한 후, 분쇄된 분말을 체(sieve)로 체립시켜 150∼200mesh를 통과시킨 분말을 준비하였다. 이들 각 분말을 표2와 같은 몰비로 혼합하고, 여기에 3% Zusoplast 126/3, 3%의 Optapix PAF 35와 5%의 물을 바인더(binder)를 혼합하여 100∼200N/㎟로 일축 가압 성형하였다. 이 성형된 성형체를 각각 1500℃와 1600℃에서 2시간 동안 소결하여 최종 알루미늄 티타네이트- 지르코늄 티타네이트 세라믹을 제작하였다. Thereafter, the synthesized sintered materials were dry pulverized, and then the pulverized powder was sieved by a sieve to prepare a powder having passed through 150 to 200mesh. Each of these powders were mixed in the molar ratio as shown in Table 2, and 3% Zusoplast 126/3, 3% Optapix PAF 35 and 5% water were mixed with a binder to uniaxially press-form at 100 to 200 N / mm2. It was. The molded compacts were sintered at 1500 DEG C and 1600 DEG C for 2 hours, respectively, to prepare a final aluminum titanate-zirconium titanate ceramic.

이와 같이 제작된 알루미늄 티타네이트- 지르코늄 티타네이트 세라믹으로부터 시편을 채취하여 열팽창계수를 측정하고, 그 결과를 표 2에 나타내었다. 비교를 위해 뮬라이트가 첨가된 알루미늄 티타네이트 세라믹에 대한 열팽창계수를 함께 나타내었다.Specimens were taken from the aluminum titanate-zirconium titanate ceramics thus prepared, and the coefficient of thermal expansion was measured. The results are shown in Table 2. The coefficient of thermal expansion for the aluminum titanate ceramics with mullite is also shown for comparison.

상기 열팽창계수는 열팽창계(dilatometer)를 사용하여 오차를 줄이기 위해 시편에 5g의 하중을 부과한 상태에서 승온 및 냉각속도 10℃/min으로 상온에서부터 1350℃까지 측정하였다. The thermal expansion coefficient was measured from room temperature to 1350 ° C. at a temperature rising and cooling rate of 10 ° C./min with a load of 5 g applied to the specimen to reduce errors using a dilatometer.

구분division 화학조성(mol%)Chemical composition (mol%) 열팽창계수(10-6K-1)Coefficient of Thermal Expansion (10 -6 K -1 ) Al2TiO5 Al 2 TiO 5 ZrTiO4 ZrTiO 4 뮬라이트Mullite 종래재1Conventional Materials 1 5050 00 5050 4.14.1 종래재2Conventional material 2 3030 00 7070 4.74.7 발명재1Invention 1 5050 5050 00 1.31.3 발명재2Invention 2 7070 3030 00 1.21.2 발명재3Invention 3 8080 2020 00 0.90.9 발명재4Invention 4 9090 1010 00 0.30.3

표2에 나타난 바와 같이, 열팽창성을 살펴보면, 발명재들은 각각 0.3~ 1.3×10-66K-1로 기존의 대표적인 알루미늄 티타네이트 세라믹보다도 매우 낮은 열팽창 계수를 나타내었다.As shown in Table 2, when looking at the thermal expansion, the invention materials showed 0.3 ~ 1.3 × 10 -6 6K -1 , respectively, a much lower coefficient of thermal expansion than conventional aluminum titanate ceramics.

상술한 바와 같이, 본 발명에 따르면, 낮은 열팽창계수를 갖고, 특히 고융점(1830℃)에서 안정화된 알루미늄 티타네이트- 지르코늄 티타네이트 세라믹을 얻을 수 있으며, 이러한 세라믹은 자동차산업, 비금속 용융체공장 및 유리공장 등에 고품질의 열적 내구성을 갖는 단열재와 내화물로서 활용할 수 있는 기대효과가 있다. As described above, according to the present invention, aluminum titanate-zirconium titanate ceramics having a low coefficient of thermal expansion and stabilized at a high melting point (1830 ° C.), in particular, can be obtained, which are used in the automotive industry, nonmetal melt factory and glass. There is an expected effect that can be utilized as a heat insulating material and a refractory having high quality thermal durability in factories and the like.

Claims (3)

mol%로, 40~ 60%의 Al2O3와 60~ 40%의 TiO2에 3~ 7%의 MgO를 첨가 혼합하여 분쇄한 후, 성형, 소결하여 알루미늄 티타네이트 분말을 얻는 단계;mol%, 40 to 60% of Al 2 O 3 and 60 to 40% of TiO 2 by mixing 3-7% MgO, followed by grinding, shaping and sintering to obtain aluminum titanate powder; 40~ 60%의 ZrO2와 60~ 40%의 TiO2를 혼합하여 분쇄한 후, 성형, 소결하여 지르코늄 티타네이트 분말을 얻는 단계 및40 to 60% of ZrO 2 and 60 to 40% of TiO 2 are mixed and ground, followed by molding and sintering to obtain zirconium titanate powder, and 상기 알루미늄 티타네이트와 지르코늄 티타네이트 분말을 40: 60~ 90: 10의 mol%의 비율로 혼합한 후 성형하고, 1350~ 1600℃의 범위에서 소결하여 알루미늄 티타네이트- 지르코늄 티타네이트 세라믹을 얻는 단계를 포함하여 구성되는 열팽창이 낮은 알루미늄 티타네이트- 지르코늄 티타네이트 세라믹 제조방법.Mixing the aluminum titanate and the zirconium titanate powder in a ratio of 40% to 60 mol% to 90 mol% and then molding and sintering at 1350 to 1600 ° C. to obtain aluminum titanate-zirconium titanate ceramic. A low thermal expansion aluminum titanate-zirconium titanate ceramic manufacturing method comprising a. 삭제delete 삭제delete
KR10-2002-0028072A 2002-05-21 2002-05-21 A Method for Producing Aluminum titanate- Zirconium titanate Ceramics with Low Thermal Expansion Behavior KR100486121B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0028072A KR100486121B1 (en) 2002-05-21 2002-05-21 A Method for Producing Aluminum titanate- Zirconium titanate Ceramics with Low Thermal Expansion Behavior

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0028072A KR100486121B1 (en) 2002-05-21 2002-05-21 A Method for Producing Aluminum titanate- Zirconium titanate Ceramics with Low Thermal Expansion Behavior

Publications (2)

Publication Number Publication Date
KR20030090081A KR20030090081A (en) 2003-11-28
KR100486121B1 true KR100486121B1 (en) 2005-04-29

Family

ID=32383715

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0028072A KR100486121B1 (en) 2002-05-21 2002-05-21 A Method for Producing Aluminum titanate- Zirconium titanate Ceramics with Low Thermal Expansion Behavior

Country Status (1)

Country Link
KR (1) KR100486121B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200078759A (en) 2018-12-21 2020-07-02 (주) 다원산업 Manufacturing method of the aluminum titanate ceramics
US10882794B2 (en) 2015-09-28 2021-01-05 Corning Incorporated Zirconium tin titanate compositions, ceramic bodies comprising same, and methods of manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423390B (en) * 2008-11-26 2012-06-27 河北理工大学 Aluminium titanate-zircite-zirconium titanate composite material and preparation method thereof
FR2973368B1 (en) * 2011-03-31 2013-11-08 Saint Gobain Ct Recherches FATTED GRAINS ATZ
US9339791B2 (en) 2013-06-18 2016-05-17 Corning Incorporated Low thermal expansion aluminum titanate zirconium tin titanate ceramics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10882794B2 (en) 2015-09-28 2021-01-05 Corning Incorporated Zirconium tin titanate compositions, ceramic bodies comprising same, and methods of manufacturing same
KR20200078759A (en) 2018-12-21 2020-07-02 (주) 다원산업 Manufacturing method of the aluminum titanate ceramics

Also Published As

Publication number Publication date
KR20030090081A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
KR100995642B1 (en) Method for producing aluminum magnesium titanate sintered product
KR100956690B1 (en) Method for producing aluminum titanate sintered compact
KR101158383B1 (en) Magnesium aluminum titanate crystal structure and method for producing same
JP3600933B2 (en) Method for producing aluminum titanate-based sintered body
CN110128127B (en) Bismuth ferrite-barium titanate-based lead-free piezoelectric ceramic with high piezoelectric performance and high-temperature stability and preparation method thereof
KR100486121B1 (en) A Method for Producing Aluminum titanate- Zirconium titanate Ceramics with Low Thermal Expansion Behavior
JPH05345662A (en) Production of forsterite ceramic
CN114315379B (en) Glass phase coated zirconia spherical powder and preparation method thereof
JPH06305828A (en) Aluminum titanate composite material and its production
KR20050078069A (en) Method for producing aluminum titanate- mullite ceramics with low thermal expansion behavior
EP1702904B1 (en) New method for the production of NZP ceramic bodies having high porosity and high flexural strength
KR102368968B1 (en) Low thermal expansion LAS-based ceramic material, and method of manufacturing thereof
KR101442634B1 (en) Manufacturing method of aluminum titanate having high-temperature strength and manufacturing method of the same
KR102680263B1 (en) Method for producing reaction-reducing sintered body for high temperature furnace, reaction-reducing sintered body and high temperature furnace including the same
KR102143817B1 (en) HIGH THERMAL CONDUCTIVE MgO COMPOUNDS AND MgO CERAMICS
KR102216429B1 (en) Cordierite based ceramic composition for use of ceramic heater
KR20190052797A (en) HIGH THERMAL CONDUCTIVE MgO COMPOUNDS AND MgO CERAMICS
JPH08198664A (en) Alumina-base sintered body and its production
JP2611405B2 (en) Method for producing zirconia refractories
JPH052622B2 (en)
KR100335393B1 (en) the processing method of infrared radiator using composites of aluminum titanate and clay
JP4616615B2 (en) Method for producing dielectric ceramic composition
JPH04104944A (en) Al2o3-sic-zro2 composite sinter
JPH01203262A (en) Production of alumina-based refractory
KR20140044963A (en) Alumina-based sintered body and the preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130409

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140417

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150420

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160419

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170419

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee