KR100477590B1 - Method for the reverse osmosis membrane with high flux - Google Patents

Method for the reverse osmosis membrane with high flux Download PDF

Info

Publication number
KR100477590B1
KR100477590B1 KR10-1999-0007679A KR19990007679A KR100477590B1 KR 100477590 B1 KR100477590 B1 KR 100477590B1 KR 19990007679 A KR19990007679 A KR 19990007679A KR 100477590 B1 KR100477590 B1 KR 100477590B1
Authority
KR
South Korea
Prior art keywords
reverse osmosis
polyfunctional
support layer
solution
osmosis membrane
Prior art date
Application number
KR10-1999-0007679A
Other languages
Korean (ko)
Other versions
KR20000059809A (en
Inventor
김노원
임대우
김순식
Original Assignee
주식회사 새 한
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 새 한 filed Critical 주식회사 새 한
Priority to KR10-1999-0007679A priority Critical patent/KR100477590B1/en
Publication of KR20000059809A publication Critical patent/KR20000059809A/en
Application granted granted Critical
Publication of KR100477590B1 publication Critical patent/KR100477590B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/26Spraying processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Abstract

본 발명은 분자수준의 물질을 분리하고 기수 혹은 해수에서 염을 제거하여 가정용, 건축용 및 화학공정의 용수를 공급하는데 유용하게 사용되는 역삼투막의 제조방법에 관한 것으로서, 특히 기수 및 해수처리에 유용한 고유량과 우수한 염배제율을 지닌 반투과성 역삼투막을 제공하는데 그 목적이 있는 것이다.The present invention relates to a method for producing a reverse osmosis membrane which is useful for separating water at a molecular level and removing salts from brackish water or seawater, which is useful for supplying water for household, construction, and chemical processes. The purpose is to provide a semi-permeable reverse osmosis membrane with excellent salt rejection.

본 발명은 1종 또는 2종 이상의 수용성 다관능성 아민 수용액을 다공성 지지층상에 피복하고 잉여의 용액을 제거한 후 다관능성 아실 할라이드 등의 아민 반응성 화합물과 포스피닐 알킬클로라이드가 함께 용해되어 있는 유기용매로 상기 지지층을 접촉시켜 지지층의 표면에서 계면중합이 일어나게 하여 형성된 막을 염기성 수용액으로 수세하여 제조하는 것을 특징으로 한 것으로서, 이와 같은 방법에 의해 제조된 역삼투막은 특히 고유량의 특성을 지니므로 기수나 해수처리시 유용하다.The present invention is coated with an aqueous solution of one or two or more water-soluble polyfunctional amines on a porous support layer and the excess solution is removed, and then an organic solvent in which an amine-reactive compound such as polyfunctional acyl halide and phosphinyl alkyl chloride are dissolved together. The membrane formed by contacting the support layer to cause interfacial polymerization on the surface of the support layer is produced by washing with a basic aqueous solution. The reverse osmosis membrane prepared by the above method has a characteristic of high flow rate, and thus, during braking or seawater treatment. useful.

Description

고유량 역삼투막 제조방법{METHOD FOR THE REVERSE OSMOSIS MEMBRANE WITH HIGH FLUX}High-flow reverse osmosis membrane manufacturing method {METHOD FOR THE REVERSE OSMOSIS MEMBRANE WITH HIGH FLUX}

본 발명은 해수 또는 반염수 등의 처리에 유용한 고유량과 우수한 염배제율을 지닌 역삼투막의 제조에 관한 것이다.The present invention relates to the preparation of a reverse osmosis membrane having a high flow rate and excellent salt rejection rate useful for treatment of seawater or semi-saline water.

일반적으로 해리된 물질은 정밀여과, 한외여과, 역삼투막과 같은 선택성을 갖는 막에 의해 용매에서 분리되어질 수 있다. 역삼투막은 분자 수준의 물질을 분리하고 기수 혹은 해수에서 염을 제거하여 가정용, 건축용 및 화학 공정의 용수를 공급하는데 경제적이다. 탈염화에서 중요한 인자는 막의 염배제율과 유량이며, 막공정의 경제성을 고려했을 때 해수에서는 800psi 압력에서 10gallon/ft2-day(gfd) 이상, 기수에서는 220psi 압력에서 15gfd 이상의 유량을 나타내어야만 한다.In general, dissociated materials can be separated from the solvent by membranes having selectivity such as microfiltration, ultrafiltration, and reverse osmosis membranes. Reverse osmosis membranes are economical for the separation of molecular materials and for the removal of salts from brackish or seawater to provide water for domestic, construction and chemical processes. Important desalination factors are membrane desalination and flow rates, and considering the economics of the membrane process, the flow rate should be at least 10 gallon / ft 2 -day (gfd) at 800 psi in seawater and at least 15 gfd at 220 psi in brackish water. .

탈염화에서 사용된 알려진 반투과역삼투막은 폴리아마이드막의 여러 형태이며, 특히 가교 방향족 폴리아마이드 막은 미국특허 3,904,519, 3,996,318, 4,277,344에 언급되어 있다.Known semipermeable reverse osmosis membranes used in desalination are several forms of polyamide membranes, in particular crosslinked aromatic polyamide membranes are mentioned in US Pat. Nos. 3,904,519, 3,996,318, 4,277,344.

케도트(Cadotte)에 의해 출원된 미국특허 4,277,344에 따르면, 해수담수화 조건에서 염배제율 99.5%, 유량은 35gfd의 막을 제조할 수 있다고 언급되어 있다. 이러한 역삼투막은 두 개의 1급아민 치환체를 함유하는 방향족 폴리아민과 세 개 이상의 아실할라이드관능기를 갖는 방향족의 아실할라이드를 미세 다공성 폴리술폰 지지체 상에서 계면중합함으로써 얻어진다. 특히 물에 녹인 메타페닐디아민(MPD)을 프레온(trichlorotrifluoroethane, Freon TF, DuPont사)에 녹인 트리메조일클로라이드(TMC)와 반응시켰을 때 그 성능이 아주 우수하다고 발표하였다.According to US Pat. No. 4,277,344, filed by Cadette, it is mentioned that a salt removal rate of 99.5% and a flow rate of 35 gfd can be produced under seawater desalination conditions. Such reverse osmosis membranes are obtained by interfacial polymerization of aromatic polyamines containing two primary amine substituents and aromatic acyl halides having three or more acyl halide functional groups on the microporous polysulfone support. In particular, it was reported that its performance was excellent when the methylphenyldiamine (MPD) dissolved in water was reacted with trimesoyl chloride (TMC) dissolved in Freon (trichlorotrifluoroethane, Freon TF, DuPont).

프레온은 그 비활성 때문에 계면 중합반응에 있어 아주 훌륭한 용매로 사용되어져 왔으나 1990년 이후 프레온의 오존층 파괴 효과로 사용에 제약이 가해지고 2002년 이후에는 모든 프레온의 생산이 금지되어짐에 따라 새로운 유기 용매로의 대체가 요구되어졌다. 그 이후 헥산을 대체용매로 하는 특허가 발표되어졌으며, 헥산의 휘발성 때문에 생겨날 수 있는 화재 위험성 때문에 헥산보다 고온의 비등점을 갖는 용매의 사용이 제안되었으나, 이 경우 계면 중합 이후 건조시간이 길어지거나 고온의 건조요건이 요구되어졌으며, 이러한 제조조건의 변화는 막의 투과성을 저하시켰다. 그리고 건조 과정동안 막의 물성 저하를 방지하기 위해 첨가제를 투입하거나 후처리공법에 관한 연구가 진행되었다.Freon has been used as a very good solvent for interfacial polymerization because of its inertness, but since 1990 it is restricted to use due to the ozone depletion effect of freon, and since 2002, all freon production is banned. Replacement was required. Since then, a patent has been published that uses hexane as an alternative solvent, and it has been proposed to use a solvent having a boiling point higher than that of hexane due to the risk of fire that may occur due to the volatility of hexane. Drying requirements were required, and this change in manufacturing conditions lowered the permeability of the membrane. In order to prevent degradation of the properties of the membrane during the drying process, additives were added or a study on the post treatment method was conducted.

토마스케(Tomashke)의 미국특허 4,872,984에 따르면 탄소수 8~12개의 탄화수소 용매에 해리된 아실할라이드와 계면중합하는 아민수용액층에 아민염을 첨가하여 계면 중합시킨 후 막을 70℃~100℃ 범위에서 건조하면 아민염의 작용으로 기수 조건인 220psi 압력하에서 20gfd 이상의 성능을 나타낸다고 언급하고 있다.According to Tomashke, U.S. Patent No. 4,872,984, when an amine salt is added to an amine aqueous solution layer interfacially polymerized with an acyl halide dissociated in a hydrocarbon solvent having 8 to 12 carbon atoms, the surface is polymerized, and the membrane is dried in the range of 70 to 100 ° It is said that the performance of the amine salt is more than 20gfd under the brackish condition of 220psi.

쵸(Chau)등에 의해 발명된 미국특허 4,950,404와 4,983,291에서는 아민 용액내에 비극성 및 극성 용매를 첨가하는 막 제조법과 산으로 후처리하는 방법이 발표되었다. 이 방법 역시 막 제조 후 100℃로 승온 처리함으로써 유량의 감소를 막아 준다.U.S. Patents 4,950,404 and 4,983,291, invented by Chau et al., Disclose a membrane preparation method for adding nonpolar and polar solvents in an amine solution and post-treatment with acid. This method also prevents the decrease in flow rate by increasing the temperature to 100 ° C. after the membrane is manufactured.

히로세(Hirose)등에 의해 발명된 미국특허 5,576,057은 미국특허 4,872,984와 유사한 아민 용액에 10~50중량%의 알콜을 첨가함으로서 담수화 공정조건에서 유량을 24gfd로 개선하는 방법을 보여준다. 또한 미국특허 5,614,099에서는 첨가제로 알콜, 에테르, 에틸렌글리콜 유도체, 케톤, 그리고 황을 함유하는 다양한 유기용매를 사용하는 방법을 제시하였다. 예를 들면, 아민염을 함유하는 아민용액에 20중량%알콜을 첨가함으로서 기수 처리조건에서 40gfd를 상회하는 유량을 보인다고 발표하였다. 이의 실시예에 의해 제조된 막의 향상된 유량은 표피층의 러프니스 (roughness)의 증가에 기인한 것으로 설명하고 있다. 또한 위에서 10~20중량%알콜과 6중량%아민염을 첨가하여 120℃에서 건조하는 공법으로 제조된 역삼투복합막은 고유량을 나타냈으나, 만족스럽지 못한 수준으로 더욱 경제적인 공법의 개발이 요구되어지고 있다.U.S. Patent 5,576,057, invented by Hirose et al., Shows a method for improving the flow rate to 24 gfd in desalination process by adding 10-50 wt% alcohol to an amine solution similar to U.S. Patent 4,872,984. U.S. Patent 5,614,099 also proposes a method of using various organic solvents containing alcohol, ether, ethylene glycol derivatives, ketones, and sulfur as additives. For example, by adding 20% by weight alcohol to an amine solution containing an amine salt, it was announced that the flow rate exceeded 40 gfd under brackish water treatment conditions. The improved flow rate of the membrane produced by this example is explained by the increase in roughness of the epidermal layer. In addition, the reverse osmosis composite membrane prepared by the method of drying at 120 ° C. by adding 10-20% by weight of alcohol and 6% by weight of amine salt showed high flow rate, but it was not satisfactory and required to develop a more economical method. It is done.

본 발명은 전술한 공법들에 비해 더욱 성능이 향상된 역삼투막을 제공하는 것을 그 목적으로 한 것으로서, 특히 기수 및 해수처리에 유용한 고유량과 우수한 염배제율을 지닌 반투과성 역삼투막을 제조하는데 그 목적이 있는 것이다.It is an object of the present invention to provide a reverse osmosis membrane with improved performance compared to the above-described methods, and is particularly intended to produce a semipermeable reverse osmosis membrane having a high flow rate and excellent salt rejection useful for brackish water and seawater treatment. .

본 발명은 1종 이상의 수용성 다관능성아민 0.1~20중량%를 함유하는 다관능성아민 수용액을 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리아미드, 폴리프로필렌 및 폴리비닐리덴 디플로라이드로 이루어진 군에서 선택된 어느 하나의 다공성 지지층 상에 피복하고 잉여의 용액을 제거하고, 다관능성 아실 할라이드, 다관능성술포닐 할라이드 및 다관능성 이소시아네이트로 이루어진 군에서 선택된 어느 하나의 아민반응성 화합물 0.005~5중량% 및 포스피닐 알킬클로라이드 0.01~1중량%가 함께 유기용매에 용해되어 있는 용액을 제조하고, 상기 지지층의 표면에 상기에서 제조된 용액을 5초~10분동안 침지법 또는 스프레이법으로 접촉시켜 계면 중합 반응시켜 막을 형성하고, 상기 형성된 막을 염기성 수용액으로 수세하여 제조되는 것을 특징으로 하는 고유량 역삼투막의 제조방법을 제공한다.보다 구체적으로, 포스피닐 알킬클로라이드는 하기 화학식 1로 표시되는 3-페닐클로로포스피닐 프로피오닐클로라이드이며, 0.01~0.2중량%를 첨가하는 것이 보다 바람직하다. 또한, 상기 유기용매로는 헥산, 시클로헥산, 헵탄, 탄소수 8~12개의 알칸 및 프레온을 포함하는 할로겐화 탄화수소로 이루어진 군에서 선택된다.The present invention is a polyfunctional amine aqueous solution containing 0.1 to 20% by weight of at least one water-soluble polyfunctional amine selected from the group consisting of polysulfone, polyethersulfone, polyimide, polyamide, polypropylene and polyvinylidene difluoride. 0.005-5% by weight of any one amine-reactive compound selected from the group consisting of a polyfunctional acyl halide, a polyfunctional sulfonyl halide and a polyfunctional isocyanate, coated on either porous support layer, and removing excess solution A solution in which 0.01 to 1% by weight of chloride is dissolved together in an organic solvent is prepared, and the solution prepared above is brought into contact with the surface of the support layer by dipping or spraying for 5 seconds to 10 minutes to form an interfacial polymerization reaction to form a film. And washing the formed membrane with a basic aqueous solution. It provides a method of making the amount of the reverse osmosis membrane. More specifically, phosphinylmethyl alkyl chloride to a chloride there was obtained: 3-Chloro-phenyl phosphinylmethyl propionyl represented by the general formula (1), it is more preferable to add 0.01 to 0.2% by weight. In addition, the organic solvent is selected from the group consisting of hexane, cyclohexane, heptane, halogenated hydrocarbons containing alkanes having 8 to 12 carbon atoms and freon.

이하에서 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서 사용되는 미세 다공성 지지층은 대략 지지층의 공경이 1~500㎚의 범위에 있는 물질을 사용한다. 500㎚ 이상의 공경을 가진 지지층을 사용할 경우 계면중합으로 얻어진 표면층의 막이 지지층의 공경 사이로 스며들어 정상적인 평막을 형성하지 못하게 된다. 이런 미세 다공성 지지층으로 현재 사용되고 있는 것으로는 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리아미드, 폴리프로필렌 및 폴리비닐리덴 디플로라이드 등과 같은 할로겐화 고분자들이 있다.The microporous support layer used in the present invention uses a material having a pore size of approximately 1 to 500 nm. When the support layer having a pore size of 500 nm or more is used, the film of the surface layer obtained by interfacial polymerization penetrates between the pore diameters of the support layer, thereby preventing the formation of a normal flat film. Currently used as such a microporous support layer are halogenated polymers such as polysulfone, polyethersulfone, polyimide, polyamide, polypropylene and polyvinylidene difluoride.

다관능성 아민 수용액은 1,3-프로판디아민 같은 N-알킬 또는 아릴 유도체를 함유하거나 함유하지 않는 알칸 디아민, 시클로헥산디아민, 피페라진 및 피페라진 유도체 등과 같은 시클릭 다관능성아민, 메타페닐렌디아민, 파라페닐렌디아민 및 그 유도체와 같은 방향족의 다관능성아민으로 조액된 것으로서, 다공성 지지층 상에서 핸드 코팅 또는 연속 기계 코팅함으로서 침지 과정이 이루어진다. 여기서 유도체란 메틸, 에틸 같은 알킬그룹, 메톡시, 에톡시 같은 알콕시 그룹, 히드록시 알킬 그룹, 히드록시 그룹, 할로겐 원자 등을 포함한다. 다른 사용가능한 다관능성아민들로는 N,N-디메틸-1,3-페닐렌디아민, 크시렌디아민, 벤지딘, 벤지딘 유도체 및 이들의 혼합물 등이 있다. 현재 널리 사용되고 있는 다관능성 아민으로는 방향족 1급아민을 2개 가지고 있는 메타페닐렌디아민이 있다. 다관능성아민 수용액은 0.1~20 중량%(보다 좋게는 0.5~8 중량%)의 다관능성아민을 포함하는 것이 바람직하며, 다관능성아민 수용액의 pH는 산 수용체(acid acceptor) 물질을 0.001~5% 정도 가함으로서 조절할 수 있다. 이런 산 수용체 물질로는 알칼리 금속 히드록시드, 알칼리 금속 카르복실레이트, 알칼리 금속 카보네이트, 알칼리 금속 포스페이트 및 3급 아민이 널리 사용된다.Aqueous polyfunctional amine solutions include cyclic polyfunctional amines, metaphenylenediamines, such as alkane diamines, cyclohexanediamines, piperazine and piperazine derivatives, with or without N-alkyl or aryl derivatives such as 1,3-propanediamine, Dilution is carried out by preparation of aromatic polyfunctional amines such as paraphenylenediamine and derivatives thereof by hand coating or continuous mechanical coating on a porous support layer. Derivatives here include alkyl groups such as methyl, ethyl, alkoxy groups such as methoxy, ethoxy, hydroxy alkyl groups, hydroxy groups, halogen atoms and the like. Other usable polyfunctional amines include N, N-dimethyl-1,3-phenylenediamine, xylenediamine, benzidine, benzidine derivatives and mixtures thereof. Currently, polyfunctional amines widely used include metaphenylenediamine having two aromatic primary amines. The aqueous polyfunctional amine solution preferably contains 0.1 to 20% by weight (preferably 0.5 to 8% by weight) of the polyfunctional amine, and the pH of the aqueous polyfunctional amine solution is 0.001 to 5% of the acid acceptor material. It can be adjusted by adding degree. Alkali metal hydroxides, alkali metal carboxylates, alkali metal carbonates, alkali metal phosphates and tertiary amines are widely used as such acid acceptor materials.

본 발명에서는 다관능성아민 용액을 코팅한 다공성 지지층 표면의 잉여 용액을 제거한 후, 다관능성아실 할라이드 다관능성술포닐 할라이드, 다관능성 이소시아네이트와 같은 아민 반응성 화합물과 포스피닐 알킬 클로라이드가 함유된 유기용액과 계면반응을 시킨다. 유기 용액과의 접촉은 약 5초~10분간 침지법이나 스프레이법으로 이루어지는 것이 일반적이며 20초~4분 정도면 충분한 반응 진행이 이루어진다.In the present invention, after removing the excess solution on the surface of the porous support layer coated with the polyfunctional amine solution, and the interface with the organic solution containing an amine-reactive compound such as polyfunctional acyl halide polyfunctional sulfonyl halide, polyfunctional isocyanate and phosphinyl alkyl chloride Let reaction. The contact with the organic solution is generally performed by dipping or spraying for about 5 seconds to 10 minutes, and sufficient reaction proceeds in about 20 seconds to 4 minutes.

계면 중합 반응에 사용되어지는 다관능성 아실 할라이드는 2~3개의 카르복실산 할라이드를 갖는 방향족 화합물로 트리메조일클로라이드, 이소프탈로일 클로라이드, 테레프탈로일 클로라이드 및 이들의 혼합물이 널리 사용되며, 이들의 유기용매 내의 함량은 0.005~5 중량% 범위가 바람직하다.The polyfunctional acyl halides used in the interfacial polymerization reaction are aromatic compounds having 2 to 3 carboxylic acid halides, and trimezoyl chloride, isophthaloyl chloride, terephthaloyl chloride and mixtures thereof are widely used. The content in the organic solvent is preferably in the range of 0.005 to 5% by weight.

본 발명에 사용되어지는 유기용매는 물과 섞이지 않는 성질을 가진 것으로 헥산, 시클로헥산, 헵탄, 탄소수 8~12개의 알칸, 프레온 같은 할로겐화 탄화수소 등이 주로 사용되며, 특히 탄소수 8~12개의 알칸 혼합용액이 적당한데, 이런 종류의 혼합물로 상업화된 것으로는 아이소파(ISOPAR) 용매가 있다.The organic solvent used in the present invention has a property of not being mixed with water, and hexane, cyclohexane, heptane, halogenated hydrocarbons such as alkenes having 8 to 12 carbon atoms and freon are mainly used, and especially mixed solutions of alkanes having 8 to 12 carbon atoms. Suitable for this is the ISOPAR solvent commercialized as a mixture of this kind.

한편, 본 발명에서는 상기와 같은 아민 반응성 화합물과 함께 포스피닐알킬클로라이드 화합물을 0.01~1 중량% 범위에서 첨가하는데, 예를 들어, 하기 화학 반응식에서와 같이 벤젠 포스포러스 디클로라이드(BPO)와 아크릴산(AA)으로 합성한 3-페닐클로로포스피닐 프로피오닐클로라이드를 첨가함으로서 반염수 정제 테스트 (brackistest)조건으로 유량을 15~18gfd에서 25~40gfd 수준으로 향상 개선시키는 효과를 일으킨다.Meanwhile, in the present invention, a phosphinylalkyl chloride compound is added in the range of 0.01 to 1% by weight together with the amine reactive compound as described above. For example, benzene phosphorus dichloride (BPO) and acrylic acid ( By adding 3-phenylchlorophosphinyl propionyl chloride synthesized in AA), the effect of improving the flow rate was improved from 15-18 gfd to 25-40 gfd in the brackish test condition.

상기 포스피닐 알킬클로라이드 화합물은 알킬기와 인에 아실 할라이드를 가지는 특정한 구조를 갖는 다관능성 아실 화합물로, 이미 알려진 트리메조일클로라이드, 이소프탈로일 클로라이드와는 관능기가 유사하나 구조상의 차이가 있는데, 즉, 트리메조일클로라이드, 이소프탈로일 클로라이드와 같은 방향족 다관능성 아실 화합물의 경우 폴리머 형성시 일정한 대칭성을 가지나, 상기 화합물은 관능기는 가지되 대칭성에 변화를 주어 한쪽은 견고한 구조를, 다른 한쪽은 유동성을 갖는 구조를 갖게 함으로서 방향족 다관능성 아실 화합물만으로 이루어진 화합물에 비해 유동성 및 일체성을 크게 가지면서 미세 표면 구조를 조밀하게 하는 역할을 하는 것으로 해석할 수 있다.The phosphinyl alkyl chloride compound is a polyfunctional acyl compound having a specific structure having an alkyl group and an acyl halide in phosphorus. The phosphinyl alkyl chloride compound has a functional group similar to the known trimezoyl chloride and isophthaloyl chloride, but there are structural differences, that is, Aromatic polyfunctional acyl compounds, such as trimezoyl chloride and isophthaloyl chloride, have a certain symmetry in polymer formation, but the compound has a functional group but a change in symmetry, so that one side has a rigid structure and the other side has fluidity. By having a structure, it can be interpreted that it has a fluidity | liquidity and unity, compared with the compound which consists only of an aromatic polyfunctional acyl compound, and plays a role which densifies a fine surface structure.

상기와 같이 계면중합에 의해 얻어진 역삼투막은 최종적으로 pH 7~14의 염기성 수용액으로 5초 이상 세정하는 공정을 거치게 된다.The reverse osmosis membrane obtained by the interfacial polymerization as described above is finally subjected to a step of washing for 5 seconds or more with a basic aqueous solution of pH 7-14.

이하, 실시예 및 비교예를 들어 본 발명을 좀 더 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

<실시예 1><Example 1>

아크릴산 93.6g을 1L 둥근 플라스크에 넣고 온도를 70℃로 승온시킨 후 용기를 질소 분위기로 만들고, 이 용기에 포스포러스 디클로라이드 179g을 1시간 동안 서서히 가하며 충분히 섞일 수 있도록 교반하였다. 이때 발열 반응이 극심하므로 온도를 80 ± 5℃로 조정하고, 첨가가 완료되면 온도를 90℃로 유지하며 2시간 동안 교반하였다. 이렇게 얻어진 옅은 황색의 액체를 1 torr, 160℃에서 감압 증류하여 3-페닐클로로포스피닐 프로피오닐클로라이드(화합물 1)을 얻었다.93.6 g of acrylic acid was placed in a 1 L round flask, and the temperature was raised to 70 ° C., and the vessel was placed in a nitrogen atmosphere, and 179 g of phosphorus dichloride was slowly added to the vessel for 1 hour, followed by stirring to be sufficiently mixed. At this time, since the exothermic reaction was severe, the temperature was adjusted to 80 ± 5 ° C., and when the addition was completed, the temperature was maintained at 90 ° C. and stirred for 2 hours. The pale yellow liquid thus obtained was distilled under reduced pressure at 1 torr and 160 ° C. to obtain 3-phenylchlorophosphinyl propionyl chloride (Compound 1).

부직포에 폴리술폰을 도포하여 만든 140㎛ 두께의 미세 다공성 지지층상에 2 중량%의 메타페닐렌디아민 수용액을 40초간 침지한 다음 이 지지층에서 잉여의 아민용액을 제거한 후 이 지지층을 아이소파(ISOPAR : EXXON 사 제품) 용매에 0.09 중량%의 트리메조일클로라이드와 0.01 중량%의 화합물 1을 녹인 유기용액에 1분간 침지하고 잉여의 유기 용매를 흘려내렸다. 이렇게 얻은 역삼투 복합막을 40~60℃의 카본산 나트륨 용액으로 씻어준 후 다시 수세하여 물성을 측정하여 표 1에 나타내었다. 이때 역삼투막의 물성은 2000 PPM의 염화나트륨 수용액을 225 PSI에서 막을 통과시킴으로서 측정하였다. A 2 wt% aqueous solution of metaphenylenediamine was immersed for 40 seconds on a 140 μm-thick microporous support layer made by applying polysulfone to a nonwoven fabric, and then the excess amine solution was removed from the support layer. EXXON Co., Ltd.) was immersed in an organic solution in which 0.09% by weight of trimezoyl chloride and 0.01% by weight of Compound 1 were dissolved for 1 minute, and excess organic solvent was poured out. The reverse osmosis composite membrane thus obtained was washed with sodium carbonate solution at 40 ° C. to 60 ° C. and washed again with water to measure physical properties. In this case, the physical properties of the reverse osmosis membrane was measured by passing the membrane at 225 PSI aqueous sodium chloride solution of 2000 PPM.

<실시예 2-15><Example 2-15>

상기 실시예 1에서 아이소파 용매에 용해시킨 다관능성 아실 할라이드와 화합물 1의 종류와 사용량을 표 1에서와 같이 변경시킨 것을 제외하고는 실시예 1과 동일하게 실시하였다.Except for changing the type and the amount of the polyfunctional acyl halide and compound 1 dissolved in the isowave solvent in Example 1 as shown in Table 1 was carried out in the same manner as in Example 1.

<비교예 1-3><Comparative Example 1-3>

상기 실시예 1에서 화합물 1을 사용하지 않고 아실할라이드의 종류와 사용량을 표 1에서와 같이 변경시킨 것을 제외하고는 실시예 1과 동일하게 실시하였다.Except for using the compound 1 in Example 1 and changing the type and amount of acyl halide as shown in Table 1 and was carried out in the same manner as in Example 1.

아실 할라이드Acyl halides 농도(중량 %)Concentration (% by weight) 유량(GFD)Flow rate (GFD) 염제거율(%)Salt removal rate (%) 실시예 1Example 1 트리메조일클로라이드/화합물 1Trimesoylchloride / Compound 1 0.09/0.010.09 / 0.01 27.527.5 98.298.2 실시예 1Example 1 트리메조일클로라이드/화합물 1Trimesoylchloride / Compound 1 0.05/0.050.05 / 0.05 31.031.0 96.896.8 실시예 1Example 1 트리메조일클로라이드/화합물 1Trimesoylchloride / Compound 1 0.1/0.10.1 / 0.1 40.240.2 89.189.1 비교예 1Comparative Example 1 이소프타로일클로라이드Isoftharoyl chloride 0.10.1 14.414.4 98.798.7 실시예 4Example 4 이소프타로일클로라이드/화합물 1Isophthaloylchloride / Compound 1 0.09/0.010.09 / 0.01 22.022.0 98.198.1 실시예 5Example 5 이소프타로일클로라이드/화합물 1Isophthaloylchloride / Compound 1 0.07/0.030.07 / 0.03 26.426.4 95.495.4 실시예 6Example 6 이소프타로일클로라이드/화합물 1Isophthaloylchloride / Compound 1 0.05/0.050.05 / 0.05 28.728.7 92.992.9 실시예 7Example 7 이소프타로일클로라이드/화합물 1Isophthaloylchloride / Compound 1 0.1/0.10.1 / 0.1 36.736.7 88.488.4 비교예 2Comparative Example 2 트리메조일클로라이드/이소프타로일클로라이드Trimesoyl chloride / isophtharoyl chloride 0.05/0.050.05 / 0.05 16.116.1 98.598.5 실시예 8Example 8 트리메조일클로라이드/이소프타로일클로라이드/화합물 1Trimesoylchloride / Isophthaloylchloride / Compound 1 0.05/0.05/0.010.05 / 0.05 / 0.01 20.120.1 97.597.5 실시예 9Example 9 트리메조일클로라이드/이소프타로일클로라이드/화합물 1Trimesoylchloride / Isophthaloylchloride / Compound 1 0.05/0.05/0.030.05 / 0.05 / 0.03 23.323.3 94.494.4 실시예 10Example 10 트리메조일클로라이드/이소프타로일클로라이드/화합물 1Trimesoylchloride / Isophthaloylchloride / Compound 1 0.05/0.05/0.050.05 / 0.05 / 0.05 29.329.3 92.692.6 실시예 11Example 11 트리메조일클로라이드/이소프타로일클로라이드/화합물 1Trimesoylchloride / Isophthaloylchloride / Compound 1 0.05/0.05/0.10.05 / 0.05 / 0.1 34.334.3 85.085.0 비교예 3Comparative Example 3 트리메조일클로라이드/테레프타로일클로라이드Trimesoyl chloride / terephthaloyl chloride 0.05/0.050.05 / 0.05 20.120.1 94.594.5 실시예 12Example 12 트리메조일클로라이드/테레프타로일클로라이드/화합물 1Trimesoylchloride / terephthaloylchloride / Compound 1 0.05/0.05/0.010.05 / 0.05 / 0.01 24.124.1 94.194.1 실시예 13Example 13 트리메조일클로라이드/테레프타로일클로라이드/화합물 1Trimesoylchloride / terephthaloylchloride / Compound 1 0.05/0.05/0.030.05 / 0.05 / 0.03 29.329.3 91.991.9 실시예 14Example 14 트리메조일클로라이드/테레프타로일클로라이드/화합물 1Trimesoylchloride / terephthaloylchloride / Compound 1 0.05/0.05/0.050.05 / 0.05 / 0.05 33.333.3 84.484.4 실시예 15Example 15 트리메조일클로라이드/테레프타로일클로라이드/화합물 1Trimesoylchloride / terephthaloylchloride / Compound 1 0.05/0.05/0.10.05 / 0.05 / 0.1 40.340.3 80.180.1

표 1에서 일반적인 역삼투막의 제법인 비교예들의 경우에서 방향족 디아실 또는 트리아실 할라이드만으로 제조한 역삼투막은 높은 염제거율을 갖는 반면 본 발명에 따라 화합물 1을 사용한 경우 염제거율은 떨어지나 유량의 증가가 큰 효과를 갖는 것을 보여준다. 이러한 현상은 알킬 할라이드의 유연성과 포스피닐 할라이드의 입체성이 반응성이 뛰어난 방향족 디아실 또는 트리아실 할라이드 사이에서 공중합된 결과로 여겨진다. 산업용 역삼투막의 경우 98% 이상의 염제거율을 보여야만 실용화가 가능하지만, 가정용 역삼투막은 염제거율보다는 고유량화를 원하는 추세이므로 본 발명은 90%대의 적당한 염제거율 원하는 역삼투막의 영역에서 크게 유용하다.In Table 1, the reverse osmosis membrane prepared by using only aromatic diacyl or triacyl halides has a high salt removal rate in the case of comparative examples of general reverse osmosis membranes. Show that having This phenomenon is believed to be the result of copolymerization between aromatic diacyl or triacyl halides, which are highly reactive with the flexibility of alkyl halides and the stericity of phosphinyl halides. In the case of industrial reverse osmosis membranes can be put to practical use only to show the salt removal rate of 98% or more, the domestic reverse osmosis membrane is a trend that wants to high flow rate than the salt removal rate, the present invention is very useful in the region of the reverse osmosis membrane desired 90% moderate salt removal rate.

Claims (3)

1종 이상의 수용성 다관능성아민 0.1~20중량%를 함유하는 다관능성아민 수용액을 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리아미드, 폴리프로필렌 및 폴리비닐리덴 디플로라이드로 이루어진 군에서 선택된 어느 하나의 다공성 지지층 상에 피복하고 잉여의 용액을 제거하고, The aqueous polyfunctional amine solution containing 0.1 to 20% by weight of one or more water-soluble polyfunctional amines is any one selected from the group consisting of polysulfone, polyethersulfone, polyimide, polyamide, polypropylene and polyvinylidene difluoride. Coating on the porous support layer and removing excess solution, 다관능성 아실 할라이드, 다관능성술포닐 할라이드 및 다관능성 이소시아네이트로 이루어진 군에서 선택된 어느 하나의 아민반응성 화합물 0.005~5중량% 및 포스피닐 알킬클로라이드 0.01~1중량%가 함께 유기용매에 용해되어 있는 용액을 제조하고, A solution in which 0.005 to 5% by weight of an amine-reactive compound selected from the group consisting of polyfunctional acyl halides, polyfunctional sulfonyl halides and polyfunctional isocyanates and 0.01 to 1% by weight of phosphinyl alkyl chloride are dissolved in an organic solvent together. Manufacturing, 상기 지지층의 표면에 상기에서 제조된 용액을 5초~10분동안 침지법 또는 스프레이법으로 접촉시켜 계면 중합 반응시켜 막을 형성하고, The solution prepared above is brought into contact with the surface of the support layer for 5 seconds to 10 minutes by dipping or spraying to form an interfacial polymerization reaction to form a film. 상기 형성된 막을 염기성 수용액으로 수세하여 제조되는 것을 특징으로 하는 고유량 역삼투막의 제조방법.Method for producing a high flow rate reverse osmosis membrane, characterized in that the membrane is prepared by washing with a basic aqueous solution. 제1항에 있어서, 상기 포스피닐 알킬클로라이드가 하기 화학식 1로 표시되는 3-페닐클로로포스피닐 프로피오닐클로라이드이며, 0.01~0.2중량%가 첨가되는 것을 특징으로 하는 상기 고유량 역삼투막 제조방법.The method of claim 1, wherein the phosphinyl alkyl chloride is 3-phenylchlorophosphinyl propionyl chloride represented by the following Chemical Formula 1, and 0.01 to 0.2% by weight is added. 화학식 1Formula 1 제1항에 있어서, 상기 유기용매가 헥산, 시클로헥산, 헵탄, 탄소수 8~12개의 알칸 및 프레온을 포함하는 할로겐화 탄화수소로 이루어진 군에서 선택되는 것을 특징으로 하는 상기 고유량 역삼투막 제조방법.The method of claim 1, wherein the organic solvent is selected from the group consisting of hexane, cyclohexane, heptane, a halogenated hydrocarbon containing 8 to 12 carbon atoms and a freon.
KR10-1999-0007679A 1999-03-09 1999-03-09 Method for the reverse osmosis membrane with high flux KR100477590B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0007679A KR100477590B1 (en) 1999-03-09 1999-03-09 Method for the reverse osmosis membrane with high flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0007679A KR100477590B1 (en) 1999-03-09 1999-03-09 Method for the reverse osmosis membrane with high flux

Publications (2)

Publication Number Publication Date
KR20000059809A KR20000059809A (en) 2000-10-05
KR100477590B1 true KR100477590B1 (en) 2005-03-18

Family

ID=19575922

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0007679A KR100477590B1 (en) 1999-03-09 1999-03-09 Method for the reverse osmosis membrane with high flux

Country Status (1)

Country Link
KR (1) KR100477590B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521494A (en) 2012-06-08 2014-08-28 エルジー・ケム・リミテッド High permeation flow reverse osmosis membrane containing surface-treated zeolite and method for producing the same
CN114832644B (en) * 2022-05-12 2023-05-12 浙江美易膜科技有限公司 High-flux composite nanofiltration membrane containing double electric layers, preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890008212A (en) * 1987-11-18 1989-07-10 리챠드 지.워터맨 Polyamide reverse osmosis membrane
US4948507A (en) * 1988-09-28 1990-08-14 Hydranautics Corporation Interfacially synthesized reverse osmosis membrane containing an amine salt and processes for preparing the same
JPH0576740A (en) * 1991-03-12 1993-03-30 Toray Ind Inc Production for composite semipermeable membrane
JPH0592130A (en) * 1991-10-01 1993-04-16 Toray Ind Inc Production of composite membrane for reverse osmosis method
KR960021121A (en) * 1994-12-27 1996-07-18 박홍기 Manufacturing method of reverse osmosis composite semipermeable membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890008212A (en) * 1987-11-18 1989-07-10 리챠드 지.워터맨 Polyamide reverse osmosis membrane
US4948507A (en) * 1988-09-28 1990-08-14 Hydranautics Corporation Interfacially synthesized reverse osmosis membrane containing an amine salt and processes for preparing the same
JPH0576740A (en) * 1991-03-12 1993-03-30 Toray Ind Inc Production for composite semipermeable membrane
JPH0592130A (en) * 1991-10-01 1993-04-16 Toray Ind Inc Production of composite membrane for reverse osmosis method
KR960021121A (en) * 1994-12-27 1996-07-18 박홍기 Manufacturing method of reverse osmosis composite semipermeable membrane

Also Published As

Publication number Publication date
KR20000059809A (en) 2000-10-05

Similar Documents

Publication Publication Date Title
JP5215276B2 (en) Polyamide reverse osmosis composite membrane and method for producing the same
EP0316525B1 (en) Polyamide reverse osmosis membranes
KR20120140214A (en) Reveres osmosis membrane having properties of high salt rejection and high flux and manufacturing method thereof
KR101240956B1 (en) Reverse osmosis composite having high fouling resistance and manufacturing method thereof
KR20070017740A (en) Method of manufacturing for aromatic polyamide composite membrane
KR20100078822A (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
KR100477589B1 (en) Method for producing polyamide reverse osmosis composite membrane
KR100211338B1 (en) Producing method of the polyamide type crosslinked reverse osmosis separation membrane
KR20130076498A (en) Reverse osmosis membrane having ultra hydrophilic layer and method of manufacturing the same
KR100477590B1 (en) Method for the reverse osmosis membrane with high flux
KR102169137B1 (en) A polyamide composite membrane having improved salt and boron rejection and method for preparation thereof
KR100477587B1 (en) Polyamide Composite Membrane Manufacturing Method
KR20050103992A (en) Silane-polyamide composite membrane and method thereof
KR100480989B1 (en) Manufacturing method of reverse osmosis membrane with high flux and high exclusion ratio of salts
KR101653414B1 (en) Method for Manufacturing Polyamide-based Reverse Osmosis Membrane having Antifouling Property
KR100477583B1 (en) High Flow Reverse Osmosis Polyamide Membrane Manufacturing Method
KR20000051528A (en) Method for the perparation of the high flux reverse osmosis membrane
KR100460011B1 (en) Post Treatment Process of Polyamide Reverse Osmosis Membrane
KR101296108B1 (en) High boron rejection polyamide composite membrane and manufacturing method thereof
KR101552734B1 (en) Manufacturing method for polyamide-based reverse osmosis membrane with high flux
KR20000051527A (en) Method for the preparation of the high flux and semi-permeation reverse osmosis membrane
KR20030022915A (en) Producing method of composite polyamide reverse osmosis membrane
KR100474170B1 (en) Composite polyamide nano membrane and method of producing the same
KR19990070134A (en) Manufacturing Method of Polyamide Composite Membrane
KR20040089888A (en) Method for preparation of high flux polyamide nanofiltration composite membrane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130311

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140311

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150309

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160310

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170306

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180306

Year of fee payment: 14

EXPY Expiration of term