KR100477184B1 - The manufacturing method of silicon carbide sinter with titanium ions thin film - Google Patents

The manufacturing method of silicon carbide sinter with titanium ions thin film Download PDF

Info

Publication number
KR100477184B1
KR100477184B1 KR10-2002-0027419A KR20020027419A KR100477184B1 KR 100477184 B1 KR100477184 B1 KR 100477184B1 KR 20020027419 A KR20020027419 A KR 20020027419A KR 100477184 B1 KR100477184 B1 KR 100477184B1
Authority
KR
South Korea
Prior art keywords
silicon carbide
thin film
sintered body
titanium
sintering
Prior art date
Application number
KR10-2002-0027419A
Other languages
Korean (ko)
Other versions
KR20030089271A (en
Inventor
이호진
Original Assignee
휴먼사이언스테크놀러지(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 휴먼사이언스테크놀러지(주) filed Critical 휴먼사이언스테크놀러지(주)
Priority to KR10-2002-0027419A priority Critical patent/KR100477184B1/en
Priority to AU2002319921A priority patent/AU2002319921A1/en
Priority to PCT/KR2002/001327 priority patent/WO2003097556A1/en
Publication of KR20030089271A publication Critical patent/KR20030089271A/en
Application granted granted Critical
Publication of KR100477184B1 publication Critical patent/KR100477184B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/44Applying ionised fluids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5041Titanium oxide or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium

Abstract

본 발명은 일정 크기의 입자로 분쇄된 탄화규소분말에 소결조제를 첨가하여 소결하고, 소결된 탄화규소 소결체의 표면에 티타늄을 이용하여 이온프레이팅법으로 티타늄이온박막이 형성되게 함으로써, 이렇게 제조된 티타늄이온박막을 갖는 탄화규소 소결체를 환부에 부착하여 사용하면 티타늄이온박막으로부터 전자가 환부의 표피로 이동하여 피부 전위를 정상적인 상태로 변화시켜 통증을 제거해 줄뿐만 아니라, 혈액순환이 원활히 될 수 있도록 하며, 경직된 근육을 이완시키고 체내 장부의 기능을 증진시킬 수 있도록 한 것으로, 탄화규소를 100∼200㎛의 입도로 분쇄하는 분쇄단계(S1)와: 탄화규소분말 85∼97중량%에 소결조제 3∼15중량%를 투입하는 소결조제투입단계(S2)와: 소결조제가 투입된 탄화규소분말을 금형에 투입하고 가압하여 일정형태로 성형하는 성형단계(S3)와: 탄화규소 성형물을 1800∼2100℃의 진공소성로에서 소결하는 소결단계(S4)와: 탄화규소 소결체를 원통연마법으로 24∼30시간 연마하는 연마단계(S5): 및 연마된 탄화규소 소결체와 티타늄을 증착로에 배열하고 반응가스로서 산소와 아르곤을 이용하여 이온프레이팅법으로 티타늄이온박막증착하는 박막증착단계(S6)로 이루어지는 것을 특징으로 하는 티타늄이온박막을 갖는 탄화규소 소결체의 제조방법이다.The present invention is prepared by adding a sintering aid to the silicon carbide powder pulverized into particles of a predetermined size and sintering, and by forming a titanium ion thin film by ion plating using titanium on the surface of the sintered silicon carbide sintered body. If silicon carbide sintered body with titanium ion thin film is attached to the affected part, electrons move from the titanium ion thin film to the epidermis of the affected part to change the skin potential to the normal state to remove the pain and to facilitate blood circulation. , To relax the rigid muscles and to enhance the function of the internal organs, the grinding step (S1) of grinding the silicon carbide into a particle size of 100 ~ 200㎛ and: silicon carbide powder 85 ~ 97% by weight in the sintering aid 3 ~ Sintering aid input step (S2) to inject 15% by weight: Silicon carbide powder in which the sintering aid is added to the mold and pressurized Molding step (S3) and: Sintering step (S4) for sintering the silicon carbide molding in a vacuum firing furnace at 1800-2100 ° C and: Polishing step (S5) for grinding the silicon carbide sintered body by cylindrical grinding for 24 to 30 hours: And a thin film deposition step (S6) of arranging the polished silicon carbide sintered body and titanium in a deposition furnace and depositing a titanium ion thin film by ion plating using oxygen and argon as reaction gases. It is a manufacturing method of a silicon carbide sintered compact.

Description

티타늄이온박막을 갖는 탄화규소 소결체의 제조방법{The manufacturing method of silicon carbide sinter with titanium ions thin film}The manufacturing method of silicon carbide sinter with titanium ions thin film}

본 발명은 파스, 의료기기 등에 사용되는 티타늄이온박막을 갖는 탄화규소 소결체의 제조방법에 관한 것으로, 더욱 상세하게는 일정 크기의 입자로 분쇄된 탄화규소분말에 소결조제를 첨가하여 소결하고, 소결된 탄화규소 소결체의 표면에 티타늄을 이용하여 이온프레이팅법으로 티타늄이온박막이 형성되게 함으로써, 이렇게 제조된 티타늄이온박막을 갖는 탄화규소 소결체를 환부에 부착하여 사용하면 티타늄이온박막으로부터 전자가 환부의 표피로 이동하여 피부 전위를 정상적인 상태로 변화시켜 통증을 제거해 줄뿐만 아니라, 혈액순환이 원활히 될 수 있도록 하며, 경직된 근육을 이완시키고 체내 장부의 기능을 증진시킬 수 있도록 한 것이다.The present invention relates to a method for producing a silicon carbide sintered body having a titanium ion thin film used for parsing, medical devices, and the like, and more particularly, by sintering by adding a sintering aid to a silicon carbide powder pulverized into particles of a predetermined size, By using titanium on the surface of the silicon carbide sintered body to form a titanium ion thin film by ion plating, when the silicon carbide sintered body having the titanium ion thin film thus prepared is attached to the affected part, the electrons from the titanium ion thin film are affected by the epidermis of the affected part. By shifting the skin potential to normal to remove the pain, as well as to facilitate blood circulation, to relax the rigid muscles and to promote the function of the internal organs.

일반적으로 인체에 통증이 없는 정상적인 세포상태는, 세포 외액의 나트륨 (+)이온은 세포 내액의 약 10배의 농도를 보전하고 있고, 이를 전기적으로 보면 피부의 진피는 세포 외액의 나트륨 (+)이온으로 되어 20∼30mV의 전위를 띄고 있으며, 표피는 진피쪽의 대전현상에 의해 역시 20∼30mV의 전위를 띄고 있다.In general, in normal cellular conditions where there is no pain in the human body, sodium (+) ions in the extracellular fluid retain about 10 times the concentration of the intracellular fluid. It has a potential of 20 to 30 mV, and the epidermis also has a potential of 20 to 30 mV due to the charging phenomenon on the dermis.

각종 근육 등의 통증은 물리적 충격과 같은 어떠한 원인으로 인하여 환부(국소)의 세포막 전위에 변화가 생겨 세포 내에 나트륨 (+)이온이 유입되면서 일시적으로 전위가 뒤바뀜으로써 발생되는 것이다.Pain in various muscles is caused by a change in the membrane potential of the affected area (local) due to some cause such as a physical shock, so that the potential is temporarily reversed as sodium (+) ions are introduced into the cell.

따라서, 환부의 표피에 전자를 흘려보내 주면 환부의 표피는 (-)전위로, 진피는 (+)전위로 대전되어 정상적인 상태를 유지하게 되는 것이나, 현재 사용되고 있는 파스류는 전자를 충분히 방출하지 못해 통증을 제거할 수 없었다.Therefore, if electrons are sent to the epidermis of the affected part, the epidermis of the affected part is charged to the (-) potential and the dermis is charged to the (+) potential to maintain a normal state, but the current Pass do not emit enough electrons. The pain could not be removed.

상기한 문제점을 해결하기 위해 안출된 국내 공개특허공보 제1999-030380호는 '파스조성물'에 관한 것으로, 금속티타늄과 규소를 주원료로한 소결체에 금을 코팅함으로써 통증을 완화시킴과 동시에 1∼2년간 재사용이 가능하도록 하였으나, 금속티타늄과 규소의 혼합 및 소결만으로는 전자를 충분히 방출하지 못하는 문제점이 있었으며, 또 다른 선출원인 국내 등록특허공보 제174654호는 '파괴인성이 강한 탄화규소 세라믹스의 제조방법'에 관한 것으로 파괴인성 증진원인 붕화티타늄을 탄화규소에 첨가하여 세라믹스를 제조함으로써 파괴인성이 우수하도록 하였으나, 환부의 치료에는 도움을 주지 못한 문제점이 있었다.Korean Laid-Open Patent Publication No. 1999-030380, which was devised to solve the above problems, relates to a `` parse composition, '' and at the same time, relieves pain by coating gold on a sintered body made of metal titanium and silicon. Although it was possible to reuse for years, there was a problem in that it was not enough to emit electrons only by mixing and sintering of metal titanium and silicon, and another patent application No. 174654, 'Preparation Method of Manufacturing Silicon Carbide with Strong Fracture' In this regard, by adding titanium boride, which is a source of fracture toughness, to silicon carbide to prepare ceramics, fracture toughness was excellent, but there was a problem that did not help treatment of the affected area.

따라서 본 발명의 목적은 인체의 전위변화에 그다지 도움을 줄 수 없었던 종래의 탄화규소 소결체가 지닌 제반 문제점을 해결하기 위하여, 일정 크기의 입자로 분쇄된 탄화규소분말에 소결조제를 첨가하여 소결하고, 소결된 탄화규소 소결체의 표면에 티타늄을 이용하여 이온프레이팅법으로 티타늄이온박막이 형성되게 함으로써, 이렇게 제조된 티타늄이온박막을 갖는 탄화규소 소결체를 환부에 부착하여 사용하면 티타늄이온박막으로부터 전자가 환부의 표피로 이동하여 피부 전위를 정상적인 상태로 변화시켜 통증을 제거해 줄뿐만 아니라, 혈액순환이 원활히 될 수 있도록 하며, 경직된 근육을 이완시키고 체내 장부의 기능을 증진시킬 수 있도록 한 티타늄이온박막을 갖는 탄화규소 소결체의 제조방법을 제공함에 있다.Therefore, an object of the present invention is to sinter by adding a sintering aid to the silicon carbide powder pulverized into particles of a certain size in order to solve the problems of the conventional silicon carbide sintered body that could not help much to the potential change of the human body, By using titanium on the surface of the sintered silicon carbide sintered body to form a titanium ion thin film, by attaching the silicon carbide sintered body having the titanium ion thin film thus prepared to the affected part, electrons are affected from the titanium ion thin film. Carbonized with a titanium ion thin film that moves to the epidermis of the skin and changes the skin potential to a normal state, which not only eliminates pain, but also facilitates blood circulation, relaxes rigid muscles and enhances the function of the internal organs. It is to provide a method for producing a silicon sintered body.

상기한 목적을 달성하기 위하여 본 발명에 의한 티타늄이온박막을 갖는 탄화규소 소결체의 제조방법은, 탄화규소를 100∼200㎛의 입도로 분쇄하는 분쇄단계(S1)와: 탄화규소분말 85∼97중량%에 소결조제 3∼15중량%를 투입하는 소결조제투입단계(S2)와: 소결조제가 투입된 탄화규소분말을 금형에 투입하고 가압하여 일정형태로 성형하는 성형단계(S3)와: 탄화규소 성형물을 1800∼2100℃의 진공소성로에서 소결하는 소결단계(S4)와: 탄화규소 소결체를 원통연마법으로 24∼30시간 연마하는 연마단계(S5): 및 연마된 탄화규소 소결체와 티타늄을 증착로에 배열하고 반응가스로서 산소와 아르곤을 이용하여 이온프레이팅법으로 티타늄이온박막증착하는 박막증착단계(S6)로 이루어지는 것을 특징으로 한다.In order to achieve the above object, the method for producing a silicon carbide sintered body having a titanium ion thin film according to the present invention includes a grinding step (S1) of grinding silicon carbide to a particle size of 100 to 200 μm and: 85 to 97 weight of silicon carbide powder Sintering aid injecting step (S2) to inject 3-15% by weight of sintering aid to the%: Molding step (S3) and silicon carbide molding in which the silicon carbide powder containing the sintering aid is added to the mold and pressurized The sintering step (S4) of sintering in a vacuum firing furnace at 1800-2100 ° C. and the polishing step (S5) of grinding the silicon carbide sintered body by the cylindrical polishing method (S5): and the sintered silicon carbide sintered body and titanium in the deposition furnace. Arrangement and the thin film deposition step (S6) of depositing titanium ion thin film by ion fritting method using oxygen and argon as the reaction gas.

이하 본 발명이 속하는 기술분야에서 통상의 지식을 가진자가 본 발명을 용이하게 실시할 수 있을 정도로 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings such that those skilled in the art can easily implement the present invention.

도 1은 본 발명에 의한 티타늄이온박막을 갖는 탄화규소 소결체의 제조공정도로서, 분쇄단계(S1), 소결조제투입단계(S2), 성형단계(S3), 소결단계(S4), 연마단계(S5) 및 박막증착단계(S6)로 된다.1 is a manufacturing process diagram of a silicon carbide sintered body having a titanium ion thin film according to the present invention, crushing step (S1), sintering aid input step (S2), molding step (S3), sintering step (S4), polishing step (S5) And a thin film deposition step S6.

탄화규소(SiC)를 분쇄하는 분쇄단계(S1)는 성형이 용이하도록 탄화규소를 일정 입도로 미분쇄하는 것으로, 탄화규소의 입도가 100㎛ 미만이면 입자가 분산되어 공정이 어려우며, 200㎛ 이상이면 탄화규소 성형물의 표면에 기공이 과량 발생하는 문제가 발생하므로, 100∼200㎛의 입도로 분쇄한다.Grinding step (S1) of grinding the silicon carbide (SiC) is a fine grinding of the silicon carbide to a certain particle size for easy molding, if the particle size of the silicon carbide is less than 100㎛, the process is difficult to disperse, if more than 200㎛ Since the problem of excess porosity occurs on the surface of the silicon carbide molding, it is pulverized to a particle size of 100 ~ 200㎛.

상기 탄화규소는 투명한 육각판상(六角板狀) 결정을 갖으며, 내열성, 내식성, 내산화성, 내열충격성 등이 우수하기 때문에 고온반도체, 고온구조재료, 반도체용부재 등으로의 응용이 가능한 재료로서 화학적으로 극히 비활성이지만, 공기 중에서 1,750℃로 가열하면 급속히 산화되는 성질을 갖고 있는 것으로, 반도체적 성질을 지닌 탄화규소로 인하여 티타늄이온박막의 전기적 특성을 더욱 효과적으로 발휘할 수 있도록 한다.The silicon carbide has a transparent hexagonal plate crystal and is excellent in heat resistance, corrosion resistance, oxidation resistance, thermal shock resistance, and the like, and thus can be applied to high temperature semiconductors, high temperature structural materials, and semiconductor members, and the like. Although extremely inert, it has a property of rapidly oxidizing when heated to 1,750 ° C. in air, and more effectively exhibits the electrical properties of the titanium ion thin film due to the silicon carbide having semiconductor properties.

탄화규소분말에 소결조제를 투입하는 소결조제투입단계(S2)는 탄화규소분말의 소결성을 증가시키기 위한 것으로, 소결조제의 투입량이 3중량% 미만이면 액상량이 불충분하여 치밀한 소결체의 생성이 어렵고 15중량%를 초과하면 소결성이 크게 증가하지 않으므로, 탄화규소분말 85∼97중량%에 소결조제 3∼15중량%를 투입하는 것이 바람직하며, 상기 소결조제로는 산화알루미늄(Al2O3), 산화이투륨(Y2 O3), 브롬(B), 카본(C) 중 어느 한 종을 선택하여 사용한다.The sintering aid input step (S2) of injecting the sintering aid into the silicon carbide powder (S2) is for increasing the sinterability of the silicon carbide powder. If it exceeds% does not significantly increase the degree of sintering, is preferable to put a sintering auxiliary agent 3-15% by weight of the silicon carbide powder, 85-97% by weight, as the sintering aid such as aluminum oxide (Al 2 O 3), oxide yitu One of cerium (Y 2 O 3 ), bromine (B) and carbon (C) is selected and used.

소결조제가 투입된 탄화규소분말을 일정형태로 성형하는 성형단계(S3)는 상기 탄화규소분말을 금형에 투입하고 200∼300kg/㎠의 압력을 가하여 일정형태로 성형하는 것으로, 그 성형방법이나 형태를 제한하는 것은 아니다.The molding step (S3) of molding the silicon carbide powder into which the sintering aid is introduced into a predetermined shape is performed by inserting the silicon carbide powder into a mold and applying a pressure of 200 to 300 kg / cm 2 to form a predetermined shape. It is not limiting.

탄화규소 성형물을 소결하는 소결단계(S4)는 1800∼2100℃의 진공소성로에서 소결하는 것으로, 소결온도가 1800℃ 미만이면 소결조제가 액상으로 형성되지 않아 소결이 진행되지 않으며, 2100℃를 초과하면 경제성이 좋지 못하므로 1800∼2100℃의 온도범위에서 소결한다.Sintering step (S4) of sintering the silicon carbide molding is sintering in a vacuum firing furnace of 1800 ~ 2100 ℃, if the sintering temperature is less than 1800 ℃ sintering aid is not formed in the liquid phase does not proceed sintering, if it exceeds 2100 ℃ Since it is not economical, it sinters in the temperature range of 1800-2100 degreeC.

탄화규소 소결체를 연마하는 연마단계(S5)는 탄화규소 소결체의 표면에 생성되어 있는 미세한 기공을 제거하기 위하여 원통연마법으로 24∼30시간 연마하며, 연마 시간이 24시간 미만이면 소결체 표면의 미세한 기공들이 충분히 제거되지 못하고 30시간을 초과하면 경제성이 저하되므로, 24∼30시간 연마하는 것이 바람직하다.In the polishing step (S5) of polishing the silicon carbide sintered body, polishing is performed for 24 to 30 hours by a cylindrical polishing method to remove the fine pores generated on the surface of the silicon carbide sintered body, and when the polishing time is less than 24 hours, the fine pores on the surface of the sintered body If these are not sufficiently removed and they exceed 30 hours, economical efficiency will fall, and it is preferable to grind for 24 to 30 hours.

연마된 탄화규소 소결체에 이온프레이팅법으로 티타늄이온박막증착하는 박막증착단계(S6)는 탄화규소 소결체에 박막을 형성시키기 위하여 이온프레이팅법을 사용하는 것으로, 연마된 탄화규소 소결체와 티타늄을 증착로에 배열하고, 300∼400℃의 온도범위로 가열하며 반응가스인 산소와 아르곤을 투입하면 티타늄의 증발입자가 이온화되어 탄화규소 소결체에 충돌함으로써 티타늄이온박막이 형성된다.The thin film deposition step (S6) of depositing a titanium ion thin film on the polished silicon carbide sintered body by ion plating method uses an ion fritting method to form a thin film on the silicon carbide sintered body, and deposits the polished silicon carbide sintered body and titanium Arranged in the furnace, heated to a temperature range of 300 ~ 400 ℃ and the reaction gas of oxygen and argon is added, the titanium evaporation particles are ionized to impinge on the silicon carbide sintered body to form a titanium ion thin film.

상기 티타늄이온은 인체 통증부위의 정체된 전위를 다시 활성화 및 정상화시켜 세포의 기능을 정상화함으로써 염증 및 통증을 해소시키고, 노폐물을 제거하여 체내의 막힌 혈을 뚫어줌으로써 혈액순환을 촉진시킬 뿐만 아니라, 신진대사를 증진시키는 효과를 가지고 있다The titanium ion reactivates and normalizes the dislocation potential of the human pain area to normalize the function of the cells to relieve inflammation and pain, and removes waste products to promote the blood circulation by removing the clogged blood in the body, as well as budding. Has the effect of enhancing metabolism

따라서 상기 탄화규소에 티타늄이온박막이 생성된 소결체를 환부에 부착하여 사용하면, 피부전위가 정상적인 상태로 변화됨으로써 세포막 전위의 변화에 의해 발생되는 통증을 빠른 시간 내에 완화시켜줄 뿐만 아니라, 혈액순환이 원활히 될 수 있도록 하며 경직된 근육을 이완시켜 주는 것이다.이하 본 발명에 의한 티타늄이온박막을 갖는 탄화규소 소결체의 작용효과에 대해 설명하도록 한다.신체 내부기관의 자율적인 운동은 시상하부라고 하는 간뇌 일부의 활동에 의하여 이 특별한 활동에 의거하여 간뇌에서 모든 정보를 판단, 결정하며 신경세포를 통하여 각 기관에 충격(전기적신호)을 보내게 되는 데, 이러한 전기적 파동적 충격을 보내고 전달하는 시스템의 어느 한 부분이 고장 파괴될 경우 병이 발생하는 것이다.이러한 전기적 메커니즘은 내부기관뿐만 아니라 근육, 피부 등 신체외부에도 적용되는 바, 우리 인체에는 30∼50mV의 전류가 흐르며 피부를 구성하고 있는 표피와 진피는 서로 다른 전위를 구성하고 있다.통상적으로 표피는 (-)전위이고, 진피는 (+) 전위를 띄는 것이 정상적인 상황인 데, 각종 근육 등의 통증은 물리적 충격 등어떠한 원인으로 인하여 환부의 표피 및 진피의 전위가 뒤바뀐 상황으로 해석되며, 이러한 생체전류의 이상신호를 뇌가 받아들여 통증신호를 보내게 되는 것이다.이 때 통증이 있는 환부에 본 발명에 의한 소결체를 적용하게 되면, 표피와 진피는 전위와 대전현상을 일으켜 표피는 진피의 반대 (-)전위로 되고 진피는 역시 표피의 반대인 (+) 전위로 바뀌게 된다. 즉, 소결체의 표면에 형성된 티타늄이온박막에 의해, (-)전위만 환부로 이동되도록 하여 표피의 전위를 (-)전위로 변화시키게 되고, 진피 역시 대전현상에 의해 정상적인 (+)전위를 띄게 히여 생체전류가 다시 원활히 흐르게 되면 더이상의 이상신호가 나타나지 않게되므로 통증은 소멸하게 되는 것이다. Therefore, when the sintered body in which the titanium ion thin film is formed on the silicon carbide is attached to the affected part, the skin potential is changed to a normal state, thereby relieving the pain caused by the change of the cell membrane potential in a short time, and the blood circulation is smoothly. The following describes the effect of the silicon carbide sintered body having a titanium ion thin film according to the present invention. The autonomous movement of the internal organs of the body is called the hypothalamus. Based on this particular activity, all the information in the brain is judged and determined and a shock (electrical signal) is sent to each organ through nerve cells, which part of the system that transmits and transmits this electrical shock. If breakdown occurs, the disease will occur. It is applied not only to the auxiliary organs but also to the outside of the body, such as muscles and skin, and the human body has a current of 30 to 50 mV, and the epidermis and dermis that make up the skin constitute different potentials. It is normal that the dermis has a positive potential, and the pain of various muscles is interpreted as a situation in which the epidermis and dermis of the affected area are reversed due to some cause such as a physical shock. The brain accepts and sends a pain signal. At this time, when the sintered body according to the present invention is applied to a painful affected area, the epidermis and dermis cause dislocation and electrification, and the epidermis becomes the opposite (-) potential of the dermis. The dermis is converted to a (+) dislocation, which is also the opposite of the epidermis. That is, the titanium ion thin film formed on the surface of the sintered body changes the potential of the epidermis to the negative potential by moving only the negative potential to the affected part, and the dermis also has a normal positive potential due to the charging phenomenon. When the biocurrent flows smoothly again, the pain signal disappears because no more abnormal signal appears.

상기의 방법으로 제조된 본 발명의 티타늄이온박막을 갖는 탄화규소 소결체는 파스류로 사용될 뿐만 아니라, 팬티, 브래이지어, 축구용 스타킹, 모자, 장신구, 매트, 벨트 등에 부착하여 사용할 수 도 있는 것으로 그 사용에 제한을 두는 것은 아니다.The silicon carbide sintered body having the titanium ion thin film of the present invention prepared by the above method is not only used as a paste, but also may be used by being attached to panties, bras, soccer stockings, hats, jewelry, mats, belts, and the like. It does not limit its use.

이상에서와 같이 본 발명은 비록 상기의 실시예에 한하여 설명하였지만 반드시 여기에만 한정되는 것은 아니며, 예를 들어 탄화규소에 게르마늄과 같은 반도체 물질를 혼합하여 소결체를 제조할 수도 있는 것으로, 본 발명의 범주와 사상을 벗어나지 않는 범위 내에서 다양한 변형실시가 가능함은 물론이다.As described above, although the present invention has been described with reference to the above embodiments, the present invention is not necessarily limited thereto. For example, silicon carbide may be mixed with a semiconductor material such as germanium to prepare a sintered body. Various modifications can be made without departing from the scope of the invention.

이상의 설명에서 분명히 알 수 있듯이 본 발명의 티타늄이온박막을 갖는 탄화규소 소결체의 제조방법에 의하면, 일정 크기의 입자로 분쇄된 탄화규소분말에 소결조제를 첨가하여 소결하고, 소결된 탄화규소 소결체의 표면에 티타늄을 이용하여 이온프레이팅법으로 티타늄이온박막이 형성되게 함으로써, 이렇게 제조된 티타늄이온박막을 갖는 탄화규소 소결체를 환부에 부착하여 사용하면 티타늄이온박막으로부터 전자가 환부의 표피로 이동하여 피부 전위를 정상적인 상태로 변화시켜 통증을 제거해 줄뿐만 아니라, 혈액순환이 원활히 될 수 있도록 하며, 경직된 근육을 이완시키고 체내 장부의 기능을 증진시킬 수 있게되는 등의 유용한 효과를 제공한다. As apparent from the above description, according to the method for producing a silicon carbide sintered body having the titanium ion thin film of the present invention, the sintering aid is added to the silicon carbide powder pulverized into particles of a predetermined size and sintered, and the surface of the sintered silicon carbide sintered body Titanium is used to form a titanium ion thin film by ion plating, and when the silicon carbide sintered body having the titanium ion thin film thus prepared is attached to the affected part, electrons move from the titanium ion thin film to the epidermis of the affected part, thereby causing skin potential. Changes to a normal state to remove pain, as well as to facilitate blood circulation, to relax the rigid muscles and to provide a useful effect, such as to improve the function of the internal organs.

도 1은 본 발명에 의한 티타늄이온박막을 갖는 탄화규소 소결체의 제조공정도.1 is a manufacturing process diagram of a silicon carbide sintered body having a titanium ion thin film according to the present invention.

Claims (2)

탄화규소 소결체의 제조방법에 있어서,In the manufacturing method of the silicon carbide sintered body, 탄화규소를 100∼200㎛의 입도로 분쇄하는 분쇄단계(S1)와: 탄화규소분말 85∼97중량%에 소결조제 3∼15중량%를 투입하는 소결조제투입단계(S2)와: 소결조제가 투입된 탄화규소분말을 금형에 투입하고 가압하여 일정형태로 성형하는 성형단계(S3)와: 탄화규소 성형물을 1800∼2100℃의 진공소성로에서 소결하는 소결단계(S4)와: 탄화규소 소결체를 원통연마법으로 24∼30시간 연마하는 연마단계(S5): 및 연마된 탄화규소 소결체와 티타늄을 증착로에 배열하고 반응가스로서 산소와 아르곤을 이용하여 이온프레이팅법으로 티타늄이온박막증착하는 박막증착단계(S6)로 이루어지는 것을 특징으로 하는 티타늄이온박막을 갖는 탄화규소 소결체의 제조방법.Grinding step (S1) for pulverizing silicon carbide to a particle size of 100-200 μm and: Sintering aid input step (S2) for adding 3-15% by weight of sintering aid to 85 to 97% by weight of silicon carbide powder Molding step (S3) of putting the injected silicon carbide powder into a mold and pressing to form a certain shape; Sintering step (S4) of sintering the silicon carbide molding in a vacuum firing furnace at 1800-2100 ° C. and: Sintered silicon carbide sintered body Polishing step (S5) of polishing for 24 to 30 hours with magic: and thin film deposition step of depositing titanium sintered body and titanium in a deposition furnace and depositing titanium ion thin film by ion plating using oxygen and argon as reaction gases. (S6) A method for producing a silicon carbide sintered body having a titanium ion thin film. 제 1항에 있어서, 상기 소결조제는 산화알루미늄, 산화이투륨, 브롬, 카본 중 어느 한 종을 선택하여서 되는 것을 특징으로 하는 티타늄이온박막을 갖는 탄화규소 소결체의 제조방법.The method of manufacturing a silicon carbide sintered body having a titanium ion thin film according to claim 1, wherein the sintering aid is selected from any one of aluminum oxide, yttrium oxide, bromine and carbon.
KR10-2002-0027419A 2002-05-17 2002-05-17 The manufacturing method of silicon carbide sinter with titanium ions thin film KR100477184B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-2002-0027419A KR100477184B1 (en) 2002-05-17 2002-05-17 The manufacturing method of silicon carbide sinter with titanium ions thin film
AU2002319921A AU2002319921A1 (en) 2002-05-17 2002-07-13 The manufacturing method of silicon carbide sinter with titanium ions thin film
PCT/KR2002/001327 WO2003097556A1 (en) 2002-05-17 2002-07-13 The manufacturing method of silicon carbide sinter with titanium ions thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0027419A KR100477184B1 (en) 2002-05-17 2002-05-17 The manufacturing method of silicon carbide sinter with titanium ions thin film

Publications (2)

Publication Number Publication Date
KR20030089271A KR20030089271A (en) 2003-11-21
KR100477184B1 true KR100477184B1 (en) 2005-03-17

Family

ID=29546303

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0027419A KR100477184B1 (en) 2002-05-17 2002-05-17 The manufacturing method of silicon carbide sinter with titanium ions thin film

Country Status (3)

Country Link
KR (1) KR100477184B1 (en)
AU (1) AU2002319921A1 (en)
WO (1) WO2003097556A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231472B1 (en) * 2010-12-24 2013-02-07 엘지이노텍 주식회사 Method for sintering silicon carbide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899172A (en) * 1981-12-07 1983-06-13 株式会社日立製作所 Electric insulating silicon carbide sintered body
US5011639A (en) * 1986-06-05 1991-04-30 Shin-Etsu Chemical Co., Ltd. Method for the preparation of a sintered body of silicon carbide
US5139719A (en) * 1989-08-10 1992-08-18 The British Petroleum Company P.L.C. Sintering process and novel ceramic material
KR19990030380A (en) * 1998-12-16 1999-04-26 정덕진 Pars composition
KR100321939B1 (en) * 1999-07-03 2002-02-04 최동환 Titanium diboride sintered body with silicon nitride as a sintering aid and method for manufacture thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238741A (en) * 1989-10-19 1993-08-24 United Kingdom Atomic Energy Authority Silicon carbide filaments bearing a carbon layer and a titanium carbide or titanium boride layer
JPH0864801A (en) * 1994-08-26 1996-03-08 Fuji Electric Co Ltd Silicon carbide semiconductor element and its manufacture
JPH10208848A (en) * 1997-01-22 1998-08-07 Kazuo Okano Discharging electrode for ion generating device
JP2000300681A (en) * 1999-04-16 2000-10-31 Noboru Yamanoi Minus ion generation accessory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899172A (en) * 1981-12-07 1983-06-13 株式会社日立製作所 Electric insulating silicon carbide sintered body
US5011639A (en) * 1986-06-05 1991-04-30 Shin-Etsu Chemical Co., Ltd. Method for the preparation of a sintered body of silicon carbide
US5139719A (en) * 1989-08-10 1992-08-18 The British Petroleum Company P.L.C. Sintering process and novel ceramic material
KR19990030380A (en) * 1998-12-16 1999-04-26 정덕진 Pars composition
KR100321939B1 (en) * 1999-07-03 2002-02-04 최동환 Titanium diboride sintered body with silicon nitride as a sintering aid and method for manufacture thereof

Also Published As

Publication number Publication date
KR20030089271A (en) 2003-11-21
AU2002319921A1 (en) 2003-12-02
WO2003097556A1 (en) 2003-11-27

Similar Documents

Publication Publication Date Title
JP3821730B2 (en) Manufacturing method of tungsten-copper composite powder and manufacturing method of sintered alloy for heat sink using the same
CA2817860C (en) Dental implant system and method for producing a dental implant system
CN104841009B (en) A kind of hydroxyapatite activation titanium alloy top layer Biocomposite material and preparation method thereof
CN107698252B (en) Application of ceramic material as high-temperature stable piezoelectric energy collecting material and preparation method thereof
CN108705092A (en) A kind of 3D printing original position rare-earth doped titanium-base composite active bone implant and manufacturing process
CN104894420B (en) A kind of preparation method of titanium niobium zirconium base calcium pyrophosphate Biocomposite material
US20180296720A1 (en) Functional patch beneficial to human body for pad
JP2010524834A (en) Sintered compact
KR100477184B1 (en) The manufacturing method of silicon carbide sinter with titanium ions thin film
CN106806049B (en) A kind of preparation method and medical application of novel graphite alkene material
Riaz et al. A novel approach to fabricate load-bearing Ti6Al4V-Barium titanate piezoelectric bone scaffolds by coupling electron beam melting and field-assisted sintering
He et al. Mechanical and corrosion properties of Ti-35Nb-7Zr-xHA composites fabricated by spark plasma sintering
CN108585880A (en) A kind of preparation method of silicon nitride ceramics hip joint bulb
Varma et al. Dense hydroxy apatite ceramics through gel casting technique
CN101119945A (en) Improved density and hardness pressureless sintered and post-hiped b4c
KR100536460B1 (en) The manufacturing method of sinter using zirconia
KR102151208B1 (en) Patch manufacturing method and patch for generating fine magnetic force and fine current
KR102075144B1 (en) Graphene composite sintering material, molded material using the same, and production method thereof
KR100626721B1 (en) Method for producing ceramic power
FR2703349B1 (en) Zinc oxide powder doped, manufacturing process and ceramic obtained from said powder.
Perko et al. The densification and strength of porous Y-TZP materials with a bimodal particle size distribution for dental applications
CN105174960A (en) Preparation method of carbon nanotube/fluorohydroxylapatite biological compound ceramic material
Amat et al. Influence of Presintering Parameters on the Mechanical Properties of Presintered Dental Zirconia Block
KR102511700B1 (en) Manufacturing method of magnetic substance to release magnetic energy for treatment
Lee et al. Sintering behaviour of forsterite bioceramics

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121231

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140422

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150305

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20161104

Year of fee payment: 12

R401 Registration of restoration
LAPS Lapse due to unpaid annual fee