KR100474133B1 - Plasma electrode structure of plasma enhanced chemical vapor deposition apparatus - Google Patents

Plasma electrode structure of plasma enhanced chemical vapor deposition apparatus Download PDF

Info

Publication number
KR100474133B1
KR100474133B1 KR10-2002-0024108A KR20020024108A KR100474133B1 KR 100474133 B1 KR100474133 B1 KR 100474133B1 KR 20020024108 A KR20020024108 A KR 20020024108A KR 100474133 B1 KR100474133 B1 KR 100474133B1
Authority
KR
South Korea
Prior art keywords
plasma
quartz dome
vapor deposition
chemical vapor
heater
Prior art date
Application number
KR10-2002-0024108A
Other languages
Korean (ko)
Other versions
KR20030085825A (en
Inventor
방현일
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to KR10-2002-0024108A priority Critical patent/KR100474133B1/en
Publication of KR20030085825A publication Critical patent/KR20030085825A/en
Application granted granted Critical
Publication of KR100474133B1 publication Critical patent/KR100474133B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

벨자 히터를 갖는 플라즈마화학기상증착장치에 대하여 개시한다. 본 발명의 장치는, 상부가 석영돔에 의해 밀폐되는 진공챔버와; 석영돔과 소정간격 이격된 상태로 석영돔을 덮는 벨자히터와; 벨자히터와 석영돔 사이에 설치되는 메쉬형 플라즈마 전극을 구비하는 것을 특징으로 한다. 본 발명에 의하면, 벨자히터에서 발생한 열이 플라즈마 전극에 의하여 차단되지 않고 서셉터 상의 웨이퍼에 전달되게 되므로, 서셉터를 고온으로 가열할 필요가 없어 석영돔의 손상이 방지되며, 열효율이 향상되고 고주파 효율이 향상되어 플라즈마화학증착공정의 수율이 향상된다. A plasma chemical vapor deposition apparatus having a Belza heater is disclosed. The apparatus of the present invention comprises: a vacuum chamber whose top is sealed by a quartz dome; Belza heater covering the quartz dome in a state spaced apart from the quartz dome; It characterized in that it comprises a mesh-type plasma electrode is installed between the Belza heater and the quartz dome. According to the present invention, since the heat generated in the Belza heater is transmitted to the wafer on the susceptor without being blocked by the plasma electrode, it is not necessary to heat the susceptor to a high temperature, thereby preventing damage to the quartz dome, improving thermal efficiency, and improving high frequency. The efficiency is improved and the yield of the plasma chemical vapor deposition process is improved.

Description

플라즈마화학기상증착장치{Plasma electrode structure of plasma enhanced chemical vapor deposition apparatus} Plasma electrode structure of plasma enhanced chemical vapor deposition apparatus

본 발명은 플라즈마화학기상증착장치에 관한 것으로서, 특히 벨자히터를 갖는 플라즈마화학기상증착장치에 관한 것이다. The present invention relates to a plasma chemical vapor deposition apparatus, and more particularly, to a plasma chemical vapor deposition apparatus having a Belza heater.

플라즈마화학기상증착(Plasma Enhanced Chemical Vapor Deposition, PECVD)법은 웨이퍼에 플라즈마에 의해 활성화된 가스들을 화학적으로 증착시키는 증착법이다. Plasma Enhanced Chemical Vapor Deposition (PECVD) is a deposition method that chemically deposits gases activated by plasma on a wafer.

도 1은 종래의 벨자히터를 갖는 플라즈마화학기상증착장치를 나타낸 개략도이다. 1 is a schematic view showing a plasma chemical vapor deposition apparatus having a conventional Belza heater.

도 1을 참고하면, 진공챔버는 석영돔(10)과 하부챔버(20)로 구성된다. 하부챔버(20)는 상부가 개방되며, 석영돔(10)은 하부챔버(20)의 상부를 덮도록 설치된다. 하부챔버(20)와 석영돔(10)이 접촉되는 영역에는 O-Ring(60)이 설치된다. 석영돔(10)은, 돔형 벨자(Belljar)(31)와 히터(32) 등으로 이루어진 벨자히터(30)에 의해 덮혀진다. 벨자히터(30)와 석영돔(20) 사이에는 돔형 플라즈마 전극(40)이 설치된다. 돔형 플라즈마 전극(40)은 고주파 전력을 인가받아 석영돔(10) 내부에 플라즈마를 발생시키기 위한 것으로, 고주파 전력원(미도시)으로부터 고주파 전력을 인가받는다. 진공챔버 내에는 서셉터(Susceptor)(50)가 설치되고, 서셉터(50) 내부에는 히터(미도시)가 설치되며, 서셉터(50) 상에는 웨이퍼(W)가 안착되게 된다. Referring to Figure 1, the vacuum chamber is composed of a quartz dome 10 and the lower chamber 20. The lower chamber 20 is open at the top, and the quartz dome 10 is installed to cover the upper portion of the lower chamber 20. The O-ring 60 is installed in an area where the lower chamber 20 and the quartz dome 10 contact each other. The quartz dome 10 is covered by a bell heater 30 made of a dome shaped bell jar 31, a heater 32, and the like. A dome type plasma electrode 40 is installed between the bell heater and the quartz dome 20. The dome-type plasma electrode 40 is for generating a plasma inside the quartz dome 10 by receiving high frequency power, and receives high frequency power from a high frequency power source (not shown). A susceptor 50 is installed in the vacuum chamber, a heater (not shown) is installed inside the susceptor 50, and the wafer W is seated on the susceptor 50.

상술한 바와 같은 종래의 플라즈마화학기상증착장치에서는, 벨자히터(30)에서 발생한 열을 플라즈마 전극(40)이 차단하여 벨자히터(30)에 의한 웨이퍼(W) 가열효과가 의욕하는 만큼 나타나지 않게 되므로 서셉터(50) 내부에 설치된 히터를 이용하여 서셉터(50)의 온도를 올리게 된다. 따라서, 열효율이 저하될 뿐 아니라, 서셉터(50)의 온도에 의하여 하부챔버(20)와 석영돔(10)이 접촉되는 영역에 설치된 O-Ring(60)이 파손됨으로써 석영돔(10)이 손상되는 문제점이 있다. In the conventional plasma chemical vapor deposition apparatus as described above, since the plasma electrode 40 blocks the heat generated in the Belza heater 30, the heating effect of the wafer W by the Belza heater 30 does not appear as much as the motivation. The temperature of the susceptor 50 is increased by using a heater installed in the susceptor 50. Therefore, not only the thermal efficiency is lowered, but also the O-ring 60 installed in the region where the lower chamber 20 is in contact with the quartz dome 10 is damaged by the temperature of the susceptor 50, thereby causing the quartz dome 10 to break. There is a problem that is damaged.

따라서, 본 발명이 이루고자 하는 기술적 과제는, 열효율을 향상시키며, 석영돔의 손상을 방지할 수 있는 벨자히터를 갖는 플라즈마화학기상증착장치를 제공하는 데 있다. Therefore, the technical problem to be achieved by the present invention is to provide a plasma chemical vapor deposition apparatus having a Belza heater that can improve the thermal efficiency and prevent damage to the quartz dome.

상기 기술적 과제를 달성하기 위한 본 발명에 따른 플라즈마화학기상증착장치는: 상부가 석영돔(110)에 의해 밀폐되는 진공챔버와; 상기 석영돔(110)과 소정간격 이격된 상태로 상기 석영돔(110)을 덮는 벨자히터(130)와; 상기 벨자히터(130)와 상기 석영돔(110) 사이에 설치되는 메쉬형 플라즈마 전극(140)을 구비하는 것을 특징으로 한다. Plasma chemical vapor deposition apparatus according to the present invention for achieving the above technical problem: a vacuum chamber, the top of which is sealed by a quartz dome (110); A bell heater (130) covering the quartz dome (110) at a predetermined interval from the quartz dome (110); It characterized in that it comprises a mesh-type plasma electrode 140 is installed between the bell heater (130) and the quartz dome (110).

이 때, 상기 플라즈마 전극(140)은 10∼50메쉬인 것을 특징으로 하여도 좋다. At this time, the plasma electrode 140 may be characterized in that 10 to 50 mesh.

이하에서, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명한다. Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail.

도 2는 본 발명의 실시예에 따른 플라즈마화학기상증착장치를 설명하기 위한 개략도이다. 도 2에서 참조부호 'A'는 플라즈마 전극의 부분확대도이다.2 is a schematic view for explaining a plasma chemical vapor deposition apparatus according to an embodiment of the present invention. In FIG. 2, reference numeral 'A' is a partially enlarged view of the plasma electrode.

도 2a를 참고하면, 진공챔버는 석영돔(110)과 하부챔버(120)로 구성된다. 하부챔버(120)는 상부가 개방되며, 석영돔(110)은 하부챔버(120)의 상부를 덮도록 설치된다. 석영돔(110)과 하부챔버(120)가 접촉되는 영역에는 O-Ring(160)이 설치된다. 진공챔버 내에는 서셉터(150)가 설치되며, 서셉터(150) 상에는 웨이퍼(W)가 안착된다. 서셉터(150) 내부에는 서셉터를 가열하는 히터(미도시)가 설치된다. 서셉터(150)의 가열에 의하여 웨이퍼(W)가 가열된다. Referring to Figure 2a, the vacuum chamber is composed of a quartz dome 110 and the lower chamber 120. The lower chamber 120 has an open upper portion, and the quartz dome 110 is installed to cover the upper portion of the lower chamber 120. The O-ring 160 is installed in a region where the quartz dome 110 and the lower chamber 120 contact each other. The susceptor 150 is installed in the vacuum chamber, and the wafer W is seated on the susceptor 150. Inside the susceptor 150, a heater (not shown) for heating the susceptor is installed. The wafer W is heated by the heating of the susceptor 150.

석영돔(110)은 벨자히터(130)에 의해 덮히며, 벨자히터(130)의 전체적인 형상은 석영돔(110)과 동일한 돔형태이다. 석영돔(110)과 벨자히터(130)는 소정간격 이격된다. The quartz dome 110 is covered by the Belza heater 130, the overall shape of the bellza heater 130 is the same dome shape as the quartz dome 110. The quartz dome 110 and the Belza heater 130 are spaced apart by a predetermined interval.

벨자히터(130)는 벨자돔과 히터로 이루어진 가열부(131)와, 냉각수 통로가 있는 쿨링(Cooling)돔(132) 등을 포함한다. 히터에서 발생한 열은 벨자에서 반사되어 서셉터(150) 상에 위치된 웨이퍼(W)를 가열한다. 쿨링돔(132)은 벨자히터(130)에서 발생한 열이 외부로 방출되지 않도록 하기 위한 것으로서, 공정수율의 향상 및 안전을 고려한 것이다.The bellza heater 130 includes a heating unit 131 consisting of a bell jar dome and a heater, and a cooling dome 132 having a cooling water passage. Heat generated in the heater is reflected in the bell jar to heat the wafer W located on the susceptor 150. The cooling dome 132 is to prevent the heat generated from the Belza heater 130 from being discharged to the outside, and considers an improvement in process yield and safety.

석영돔(110)과 벨자히터(130) 사이에는 10∼50메쉬(Mesh)의 플라즈마 전극(140)이 돔형으로 설치된다. 여기서 메쉬는 1인치 x 1인치의 면적에 형성되는 구멍(141)의 개수이다. 즉, 플라즈마 전극(140)에는 1인치 x 1인치의 면적당 10∼50개의 구멍(141)이 형성된다. 플라즈마 전극(140)은 고주파 전력원(미도시)으로부터 고주파 전력을 인가받는다. Between the quartz dome 110 and the Belza heater 130, a plasma electrode 140 of 10 to 50 mesh is installed in a dome shape. Here, the mesh is the number of holes 141 formed in an area of 1 inch x 1 inch. That is, 10 to 50 holes 141 are formed in an area of 1 inch by 1 inch in the plasma electrode 140. The plasma electrode 140 receives high frequency power from a high frequency power source (not shown).

이와 같이, 플라즈마 전극(140)을 메쉬형으로 마련함으로써 벨자히터(130)에서 발생한 열은 플라즈마 전극(140)에 의하여 차단되지 않고 서셉터(150) 상의 웨이퍼(W)에 전달되게 된다. 따라서, 서셉터(150)를 고온으로 가열할 필요가 없으므로 열효율이 향상되고, 석영돔(110)과 하부챔버(120)가 접촉되는 영역에 설치되는 O-Ring(160)의 파손이 방지되므로 석영돔(110)의 손상이 방지된다. As such, by providing the plasma electrode 140 in a mesh form, heat generated in the bell heater 100 is transferred to the wafer W on the susceptor 150 without being blocked by the plasma electrode 140. Accordingly, since the susceptor 150 does not need to be heated to a high temperature, thermal efficiency is improved, and thus the breakage of the O-ring 160 installed in the region where the quartz dome 110 and the lower chamber 120 are in contact with each other is prevented. Damage to the dome 110 is prevented.

또한, 플라즈마 전극(140)의 표면적이 종래의 평판형 플라즈마 전극(40)에 비하여 작아짐으로써 플라즈마 밀도가 향상되므로 고주파 효율이 향상된다. In addition, since the surface area of the plasma electrode 140 is smaller than that of the conventional plate type plasma electrode 40, the plasma density is improved, so that the high frequency efficiency is improved.

상술한 바와 같은 본 발명에 따른 플라즈마화학기상증착장치에 의하면, 서셉터를 고온으로 가열할 필요가 없으므로 석영돔의 손상이 방지되고, 열효율과 플라즈마 전극의 표면적 감소에 의한 고주파 효율이 향상되므로 플라즈마화학증착공정의 수율이 향상된다. According to the plasma chemical vapor deposition apparatus according to the present invention as described above, since the susceptor does not need to be heated to a high temperature, damage to the quartz dome is prevented, and the high frequency efficiency is improved by thermal efficiency and reduction of the surface area of the plasma electrode. The yield of the deposition process is improved.

본 발명은 상기 실시예에만 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의해 많은 변형이 가능함은 명백하다.The present invention is not limited to the above embodiments, and it is apparent that many modifications are possible by those skilled in the art within the technical spirit of the present invention.

도 1은 종래의 벨자히터를 갖는 플라즈마화학기상증착장치를 나타낸 개략도; 및 1 is a schematic view showing a plasma chemical vapor deposition apparatus having a conventional Belza heater; And

도 2는 본 발명의 실시예에 따른 플라즈마화학기상증착장치를 설명하기 위한 개략도이다. 2 is a schematic view for explaining a plasma chemical vapor deposition apparatus according to an embodiment of the present invention.

< 도면의 주요 부분에 대한 참조번호의 설명 ><Description of Reference Numbers for Main Parts of Drawings>

10, 110 : 석영돔 20, 120 : 하부챔버10, 110: quartz dome 20, 120: lower chamber

30, 130 : 벨자히터 40, 140 : 플라즈마 전극30, 130: Belza heater 40, 140: plasma electrode

50, 150 : 서셉터 60, 160 : O-Ring50, 150: susceptor 60, 160: O-ring

W: 웨이퍼W: wafer

Claims (2)

상부가 석영돔(110)에 의해 밀폐되는 진공챔버와; A vacuum chamber whose upper part is sealed by the quartz dome 110; 상기 석영돔(110)과 소정간격 이격된 상태로 상기 석영돔(110)을 덮는 벨자히터(130)와; A bell heater (130) covering the quartz dome (110) at a predetermined interval from the quartz dome (110); 상기 벨자히터(130)와 상기 석영돔(110) 사이에 설치되는 메쉬형 플라즈마 전극(140)을 구비하는 플라즈마화학기상증착장치.Plasma chemical vapor deposition apparatus having a mesh-type plasma electrode 140 is installed between the bell heater and the quartz dome (110). 제 1항에 있어서, 상기 플라즈마 전극(140)은 10∼50메쉬인 것을 특징으로 하는 플라즈마화학기상증착장치.According to claim 1, wherein the plasma electrode 140 is a plasma chemical vapor deposition apparatus, characterized in that 10 to 50 mesh.
KR10-2002-0024108A 2002-05-02 2002-05-02 Plasma electrode structure of plasma enhanced chemical vapor deposition apparatus KR100474133B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0024108A KR100474133B1 (en) 2002-05-02 2002-05-02 Plasma electrode structure of plasma enhanced chemical vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0024108A KR100474133B1 (en) 2002-05-02 2002-05-02 Plasma electrode structure of plasma enhanced chemical vapor deposition apparatus

Publications (2)

Publication Number Publication Date
KR20030085825A KR20030085825A (en) 2003-11-07
KR100474133B1 true KR100474133B1 (en) 2005-03-08

Family

ID=32381205

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0024108A KR100474133B1 (en) 2002-05-02 2002-05-02 Plasma electrode structure of plasma enhanced chemical vapor deposition apparatus

Country Status (1)

Country Link
KR (1) KR100474133B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970023767A (en) * 1995-10-24 1997-05-30 김광호 Downstream plasma asher with device to prevent wafer damage
KR970023821A (en) * 1995-10-04 1997-05-30 김주용 STO and BTO thin film manufacturing method and device thereof having high dielectric properties
JPH1030186A (en) * 1996-07-19 1998-02-03 Mitsubishi Heavy Ind Ltd Plasma cvd device
JPH10149899A (en) * 1996-10-18 1998-06-02 Applied Materials Inc Inductively-coupled parallel flat plasma reactor with conical dome

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970023821A (en) * 1995-10-04 1997-05-30 김주용 STO and BTO thin film manufacturing method and device thereof having high dielectric properties
KR0180783B1 (en) * 1995-10-04 1999-04-15 김주용 Sto having high dielectricity and method of manufacturing bto thin film and apparatus thereof
KR970023767A (en) * 1995-10-24 1997-05-30 김광호 Downstream plasma asher with device to prevent wafer damage
JPH1030186A (en) * 1996-07-19 1998-02-03 Mitsubishi Heavy Ind Ltd Plasma cvd device
JPH10149899A (en) * 1996-10-18 1998-06-02 Applied Materials Inc Inductively-coupled parallel flat plasma reactor with conical dome

Also Published As

Publication number Publication date
KR20030085825A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
JP3925566B2 (en) Thin film forming equipment
JP4916119B2 (en) Equipment for reducing white powder during silicon nitride deposition using remote plasma source cleaning technology
KR100588774B1 (en) Wafer susceptor
KR19980033001A (en) Faceplate Heat Chokes in Chemical Vapor Deposition Reactors
US4512283A (en) Plasma reactor sidewall shield
KR100587629B1 (en) Gas distribution plate assembly for providing laminar gas flow across the surface of a substrate
KR101355729B1 (en) Plasma confinement ring assemblies having reduced polymer deposition characteristics
KR100744860B1 (en) Loading table and heat treating apparatus having the loading table
RU2000131481A (en) SEMICONDUCTOR PLATE PROCESSING CHAMBER ELECTRODE AND METHOD FOR ITS MANUFACTURE
KR100264941B1 (en) Using ceramic wafer to protect susceptor during cleaning of a processing chamber
JP2010080972A (en) Plasma reactor comprising deposition shield
KR19980018624A (en) Chemical vapor deposition, plasma enhanced chemical vapor deposition or method and apparatus for treating exhaust gas from plasma etch reactor
KR100467082B1 (en) Apparatus for fabricating a semiconductor device and method of cleaning the same
KR20030018617A (en) Hdp-cvd apparatus
JP2008091176A (en) Microwave plasma treatment apparatus, one-body type slot forming member, manufacturing method and method of use for microwave plasma treatment device
KR100474133B1 (en) Plasma electrode structure of plasma enhanced chemical vapor deposition apparatus
US4909183A (en) Apparatus for plasma CVD
JP2003229425A (en) Substrate processing apparatus
TW200411079A (en) Apparatus for chemical vapor deposition
JPH1041251A (en) Device and method for cvd
KR100704591B1 (en) Apparatus for CVD and inner cleaning method thereof
KR100639517B1 (en) Chemical vapor deposition equipment having a diffuser
KR20040045750A (en) Chemical vapor deposition with high density plasma
KR100649895B1 (en) Lid of plasma chamber
KR100741645B1 (en) Single wafer type LPCVD apparatus having a direct heating type belljar heater

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131204

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150105

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee