KR100470351B1 - Bioceramic Media and It's Production Method for Wastewater Treatment - Google Patents

Bioceramic Media and It's Production Method for Wastewater Treatment Download PDF

Info

Publication number
KR100470351B1
KR100470351B1 KR10-2002-0066356A KR20020066356A KR100470351B1 KR 100470351 B1 KR100470351 B1 KR 100470351B1 KR 20020066356 A KR20020066356 A KR 20020066356A KR 100470351 B1 KR100470351 B1 KR 100470351B1
Authority
KR
South Korea
Prior art keywords
carrier
wastewater treatment
zeolite
bioceramic
hours
Prior art date
Application number
KR10-2002-0066356A
Other languages
Korean (ko)
Other versions
KR20040037742A (en
Inventor
김장규
최상훈
이제철
원종필
Original Assignee
주식회사 부강테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 부강테크 filed Critical 주식회사 부강테크
Priority to KR10-2002-0066356A priority Critical patent/KR100470351B1/en
Publication of KR20040037742A publication Critical patent/KR20040037742A/en
Application granted granted Critical
Publication of KR100470351B1 publication Critical patent/KR100470351B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/107Inorganic materials, e.g. sand, silicates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

본 발명은 오, 폐수처리용 담체 및 그 제조방법에 관한 것으로, 더 상세하게는 생물학적 질산화·탈질 공정에서 암모니아성 질소의 이온교환 및 흡착 성능을 갖는 제올라이트와 질소제거 효율을 향상 시킬 수 있는 적절한 광물질을 혼합, 소성하여 얻은 담체 및 그 제조방법, 이 담체를 이용하여 오, 폐수를 처리하는 방법에 관한 것으로서, 담체의 원료 배합에있어, 제올라이트 60~70중량%와 보조배합원료 30~40중량%의 배합비로 혼합하여 지름 1~1.5㎝ 크기 구형으로 성형하고, 이를 3~7일간 자연건조 시킨 다음, 각 소성로(10)(10')에서 600~850℃의 산화불로 3~7시간, 환원불로 1~4시간 각각 소성하는 것을 특징으로 한다. The present invention relates to a wastewater treatment carrier and a manufacturing method thereof, and more particularly, to a zeolite having an ion exchange and adsorption capacity of ammonia nitrogen in a biological nitrification and denitrification process, and a suitable mineral material capable of improving the nitrogen removal efficiency. The present invention relates to a carrier obtained by mixing and calcining the same, and a method for preparing the same, and a method for treating wastewater by using the carrier, wherein in the formulation of the carrier, 60 to 70% by weight of zeolite and 30 to 40% by weight of auxiliary compound material are used. After mixing in the mixing ratio of 1 ~ 1.5 ㎝ diameter spherical shape, which was dried for 3 to 7 days, and then fired at 600 ~ 850 ℃ fire furnace for 3 to 7 hours in each firing furnace (10) (10 '), reduced to It is characterized by firing each for 1 to 4 hours.

Description

오, 폐수처리용 담체 및 그 제조방법 {Bioceramic Media and It's Production Method for Wastewater Treatment} Oh, wastewater treatment carrier and manufacturing method {Bioceramic Media and It's Production Method for Wastewater Treatment}

본 발명은 오, 폐수처리용 담체 및 그 제조방법에 관한 것으로, 더 상세하게 는 생물학적 질산화·탈질 공정에서 암모니아성 질소의 이온교환 및 흡착 성능을 갖는 제올라이트와 질소제거 효율을 향상시킬 수 있는 적절한 광물질을 혼합, 소성하여 얻은 담체 및 그 제조방법, 이 담체를 이용하여 오, 폐수를 처리하는 방법에 관한 것이다. The present invention relates to a wastewater treatment carrier and a manufacturing method thereof, Is a carrier obtained by mixing and calcining a zeolite having ion exchange and adsorption performance of ammonia nitrogen and an appropriate mineral which can improve nitrogen removal efficiency in a biological nitrification and denitrification process, and a method for producing the same. It is about how to process.

일반적인 오, 폐수의 생물학적 처리방법은 호기성 조건하에서 질산화 미생물 등에 의해 암모니아성 질소를 질산성 질소로 산화시키는 단계를 거친 후, 무산소 조건하에서 유기물을 전자 공여체로 하여 산화된 형태의 질소가 환원되어 제거, 처리되는 방법으로 이루어져 있다. In general, the biological treatment method of wastewater is subjected to a step of oxidizing ammonia nitrogen to nitrate nitrogen by nitrifying microorganisms under aerobic conditions, and then reducing and removing the oxidized form of nitrogen using an organic substance as an electron donor under anoxic conditions. Consists of the way it is treated.

이와 같은 방법에서, 처리효율을 증진시키기 위한 방법으로, 분말상의 제올라이트를 호기성 반응조에 직접 투입시켜 순환시키며 처리하는 방법, 별도의 제올라이트 충진탑을 후속공정으로 설치하여 암모니아성 질소를 흡착, 제거 처리하는 방법 등이 있다. In such a method, as a method for improving the treatment efficiency, a method of circulating and processing powder zeolite directly into an aerobic reactor, and a separate zeolite packed column is installed in a subsequent process to adsorb and remove ammonia nitrogen. Method and the like.

그러나, 상기 일반적인 생물학적 처리방법은 유기물을 처리하는데 치중되어 있어, 암모니아성 질소의 제거, 처리가 효율적이지 못한 문제점이 있고, 또한 상기 제올라이트를 분말상으로 직접 투입, 처리하는 공정으로 되어 있어, 제올라이트의 지속적인 공급, 투입에 의한 처리비용의 상승 요인으로 경제적 손실은 물론이고, 폐슬러지의 발생량이 증가하는 문제점과, 상기 제올라이트 충진탑 재생에 의한 재생약품 비용 발생 등의 문제점이 있다. However, since the general biological treatment method is focused on treating organic matter, there is a problem that removal and treatment of ammonia nitrogen are not efficient, and the zeolite is directly added to and treated in powder form, thereby maintaining the zeolite There are problems such as economic loss as well as an increase in the amount of waste sludge generated, as well as a cost of regeneration chemicals due to the regeneration of the zeolite filling tower.

또한, 섬모상 담체 등, 생물막에 의한 처리방법이 있으나, 이 경우는 미생물에 의한 유기물 처리에 치중되어 있어, 암모니아성 질소 제거효율을 기대하기 어렵 다, 그리고 질산화 균을 부착 고정화하거나, 포괄 고정화하여 질소 제거를 유도하는 공정을 생각할 수도 있으나, 처리 운전상의 어려움, 고농도 암모니아성 질소 유입에 대한 충격 대응성 등의 효율적 대응이 어려운 문제점이 있다. In addition, there is a treatment method using a biofilm such as a ciliated carrier, but in this case, the concentration of organic matter by the microorganism is concentrated, and it is difficult to expect ammonia nitrogen removal efficiency. In addition, although a process of inducing nitrogen removal by attaching and immobilizing nitric oxide or by immobilizing it comprehensively may be considered, it is difficult to efficiently cope with difficulties in processing operation and impact response to high inflow of ammonia nitrogen.

본 발명은 이상과 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 고농도 유기성 물질의 분해와 동시에, 암모니아성 질소의 이온교환 및 생물학적 재생을 통한 질소 제거효율을 증진시키는 담체를 제공함에 있고, 이 담체의 제조 방법에 있다. The present invention has been made to solve the above problems, and an object of the present invention is to provide a carrier for improving nitrogen removal efficiency through ion exchange and biological regeneration of ammonia nitrogen at the same time as decomposition of high concentration organic materials. And a method for producing this carrier.

본 발명의 다른 목적은 상기 담체를 이용하여 고농도의 하, 폐수를 분해, 처리함과 동시에, 암모니아성 질소를 효율적으로 처리할 수 있는 방법을 제공함에 있다. Another object of the present invention is to provide a method capable of efficiently treating ammonia nitrogen while simultaneously decomposing and treating wastewater under high concentration using the carrier.

이하, 본 발명을 첨부된 도면에 따라 상세히 설명하면, 도 1은 본 발명의 오, 폐수처리에 대한 담체 제조공정 블럭도이고, 도 2는 본 발명의 담체를 오, 폐수처리 반응조에 적용시키는 상태를 나타낸 개략도이며, 도 3은 도 2에 따른 오, 폐수처리 공정에 대한 공정 블럭도이다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, Figure 1 is a block diagram of a carrier manufacturing process for wastewater treatment of the present invention, Figure 2 is a state in which the carrier of the present invention is applied to the wastewater treatment reactor 3 is a schematic block diagram of a wastewater treatment process according to FIG. 2.

도면에 도시된 바와 같이, 담체의 원료 배합에서 제올라이트 60~70중량%와 보조배합원료 30~40중량%의 배합비로 함에 있어, 상기 보조배합원료는 카올린(고령토) 40~50%, 석회석 5~10%, 도석 5~10%, 규석 2~5%, 점토 5~10%, 돌로마이트 5~10%, 옥 5~10%, 탄소 2~5%, 이산화티탄 3% 의 중량비로 배합, 혼합 후 지름 1~1.5㎝ 크기 구형으로 성형한다. As shown in the figure, in the blending ratio of 60 to 70% by weight of the zeolite and 30 to 40% by weight of the auxiliary blending material in the raw material of the carrier, the auxiliary blending material is 40-50% of kaolin (kaolin), limestone 5 ~ 10%, pottery 5-10%, silica 2-5%, clay 5-10%, dolomite 5-10%, jade 5-10%, carbon 2-5%, titanium dioxide 3% It is molded into a sphere with a diameter of 1 ~ 1.5㎝.

이를 3~7일간 자연건조 시킨 다음, 각 소성로(10)(10')에서 600~850℃의 산화불(담체가 소성될때 충분한 산소가 공급되면서 완전연소가 이루어지는 불)로 3~7시간, 환원불(담체가 소성될때 산소공급이 제한된 상태에서 연소가 이루어지면서 담체와 결합된 상소를 빼앗아가는 분위기를 만들어 주어 담체가 환원되도록 연소되는 불)로 1~4시간 각각 소성하여 다공성의 담체(11)를 얻는다. After drying for 3 to 7 days, it is reduced to 600 ~ 850 ℃ of fire oxide (fire which is completely burned by supplying sufficient oxygen when the carrier is fired) in each firing furnace (10) (10 '). The porous carrier 11 was fired for 1 to 4 hours each with fire (fire that burns in a restricted state of oxygen supply when the carrier is fired and creates an atmosphere that takes away the appeal associated with the carrier, thereby reducing the carrier). Get

이 담체(11)의 화학적 조성은 표 1과 같다. The chemical composition of this carrier 11 is shown in Table 1.

표 1. 바이오세라믹 담체의 성분 조성 Table 1.Component Composition of Bioceramic Carriers

성 분ingredient SiO2 SiO 2 Al2O3 Al 2 O 3 CaOCaO K2OK 2 O Na2ONa 2 O Fe2O3 Fe 2 O 3 기타 C등Other C 백분율(%)percentage(%) 64.3%64.3% 16.5%16.5% 3.28%3.28% 1.8%1.8% 2.61%2.61% 3.57%3.57% 7.94%7.94%

도 2는 상기 담체(11)를 충진하여 오, 폐수에 침지 사용되는 충진탑을 나타낸 것으로, 상기 담체(11)의 충진부(20)와 공간부(22), 공기분사구(21)가 직하방으로 구성 이루어져 있다. 2 shows a filling tower used for immersing in the waste water by filling the carrier 11, wherein the filling part 20, the space part 22, and the air injection port 21 of the carrier 11 are directly below. It consists of.

이상과 같이 이루어져 구성된 본 발명을 구체적으로 설명하면 다음과 같다. Referring to the present invention configured as described above in detail as follows.

바이오세라믹으로 이루어진 상기 담체(11)는 표 1과 같이 산화규소(SiO 2 )와 산화알루미늄(Al 2 O 3 )을 주성분으로 하여 NH 4 + 이온에 대한 이온교환 성능을 갖는다. 따라서, 오.폐수의 초기 유입 시 암모니아성 질소의 충격부하에 대한 완충작용 역할이 가능하며, 질산화가 진행됨에 따라 담체에 이온교환 된 암모니아성 질소가 탈 착되면서 생물학적 재생이 이루어진다.The carrier 11 made of bioceramic has ion exchange performance with respect to NH 4 + ions based on silicon oxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) as shown in Table 1 as a main component. Therefore, it is possible to act as a buffer against the impact load of ammonia nitrogen during the initial inflow of wastewater, and biological regeneration occurs by desorbing ammonia nitrogen on the carrier as nitrification proceeds.

그림 1에 이러한 메커니즘을 도시한바, 담체의 단위 중량당 이온교환능력은 산화규소(SiO 2 )와 산화알루미늄(Al 2 O 3 ) 단위격자의 산점(acid site), 즉 알루미늄 자리(Al site)의 비율에 의존한다.This mechanism is shown in Figure 1, where the ion-exchange capacity per unit weight of the carrier is determined by the acid site of the silicon oxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) unit grids. Depends on the ratio.

그림 1. 이온의 흡착과 재생과정 Figure 1. Adsorption and Regeneration Process of Ions

이온교환 단계 : Ion Exchange Steps:

바이오세라믹-Na + NH 4 + ↔ 바이오세라믹-NH 4 + Na + Bioceramic-Na + NH 4 + ↔ Bioceramic-NH 4 + Na +

생물학적 재생 단계 : Biological regeneration stages:

바이오세라믹-NH 4 + Na + ↔ 바이오세라믹-Na + NH 4 + Bioceramic-NH 4 + Na + ↔ Bioceramic-Na + NH 4 +

NH 4 + + 2O 2 → NO 3 - + 2H + + H 2 O NH 4 + + 2O 2 → NO 3 - + 2H + + H 2 O

그림 2에 오,폐수 유입수의 암모니아성 질소 농도에 따라 이온교환에 의한 질산화 저해 현상을 도시하였다. Figure 2 shows the inhibition of nitrification by ion exchange according to the ammonia nitrogen concentration in the wastewater and wastewater influent.

일반적으로 질산화 반응은 NH 4 + -N이 NO 2 - -N를 거쳐 NO 3 - -N으로 되는 과정이며 탈질 반응은 무산소 조건에서 NO 3 - -N이 질소가스(N 2 ) 형태로 되는 과정이다. 이러한 질소제거 과정에서 이온화되지 않은 NH 4 + -N과 NO 2 - -N은 질산화반응에 독성으로 작용하게 되는데, 프리암모니아(free ammonia)가 0.1mg/L 이하, 프리니트로우스산(free nitrous acid)이 0.2mg/L 이하에서만 완전 질산화가 가능하다고 알려져 있다.In general, nitrification is a process in which NH 4 + -N passes through NO 2 -- N to NO 3 -- N, and denitrification is a process in which NO 3 -- N becomes nitrogen gas (N 2 ) under anoxic conditions. . In this nitrogen removal process, the unionized NH 4 + -N and NO 2 -- N are toxic to the nitrification reaction. The free ammonia is less than 0.1mg / L and the free nitrous acid ) Is known to be able to completely nitrify only below 0.2mg / L.

따라서 고농도 암모니아성 질소가 유입되는 경우 바이오세라믹 담체에 의해 A 영역(질산화저해가 큰 부분)에서 B 영역으로(질산화저해가 작은 부분) 이동된다. 또한, 저농도의 암모니아성 질소가 유입되는 경우에도 C 영역에서 D 영역으로 전환되어 질산화저해를 완화시킬 수 있다. Therefore, when a high concentration of ammonia nitrogen is introduced, the bioceramic carrier is moved from the A region (large nitrification) to the B region (small nitrification). In addition, even when a low concentration of ammonia nitrogen is introduced, it is possible to switch from the C region to the D region to mitigate nitrification.

그림 2. Figure 2.

일반적으로 하수의 암모니아성 질소 농도는 15∼40ppm 정도로 유입되므로 저농도의 암모니아성 질소에 대한 바이오 세라믹의 암모니아성 질소의 이온교환능이 60∼80%정도를 나타내어 일반 하수로 유입되는 암모니아성 질소에 의한 질산화 저해현상을 줄일 수 있다. 축산폐수의 경우 암모니아성 질소의 농도가 2000∼4000ppm 유입되어 바이오세라믹 담체에 의한 암모니아 이온교환능이 40∼60%정도를 보여주 고 있어 고농도 암모니아성 질소에 의한 질산화 저해현상을 억제시켜 줌으로써 생물학적 질소제거 공정에 적용 가능하다. In general, since the concentration of ammonia nitrogen in sewage is about 15 to 40 ppm, the ion exchange capacity of ammonia nitrogen in bio ceramics to low concentration of ammonia nitrogen is about 60 to 80%. Inhibition can be reduced. In case of livestock wastewater, the concentration of ammonia nitrogen is 2000 ~ 4000ppm, which shows 40 ~ 60% of ammonia ion exchange capacity by bioceramic carrier. It can be applied to biological nitrogen removal process by suppressing nitrification inhibition by high concentration ammonia nitrogen.

표 3은 바이오세라믹 담체에 의한 암모니아성 질소의 이온교환능력에 의해 축산폐수의 경우 질소제거효율이 향상된 사례를 나타낸 것으로써 바이오세라믹 담체(11)를 적용한 경우에 TN 제거효율이 우수함을 알 수 있다. Table 3 shows an example in which the nitrogen removal efficiency is improved in the livestock wastewater by the ion exchange capacity of ammonia nitrogen by the bioceramic carrier, and it can be seen that the TN removal efficiency is excellent when the bioceramic carrier 11 is applied. .

표 3. 연속회분식 반응기에서 담체의 성능 비교 Table 3. Performance Comparison of Carriers in Batch Reactors

유입(mg/L)Inflow (mg / L) 처리수 농도 (mg/L)Treated water concentration (mg / L) 제거율 (%)Removal rate (%) 바이오세라믹담체 미투입Bio ceramic carrier not added 바이오세라믹담체 투입Bio ceramic carrier input 바이오세라믹담체 미투입Bio ceramic carrier not added 바이오세라믹담체 투입Bio ceramic carrier input BODBOD 28402840 296296 129129 89.589.5 95.495.4 TNTN 18651865 516516 278278 72.472.4 85.185.1

표 4, 5는 바이오세라믹 담체의 배합비와 소성온도를 결정하기 위한 실험실시 결과를 나타낸 것으로서, 표 4는 제올라이트와 보조배합원료의 배합비를 바꾸어 실험한 결과를 나타낸 것이다. Tables 4 and 5 show laboratory results for determining the blending ratio and firing temperature of the bioceramic carrier, and Table 4 shows the results of experiments by changing the blending ratio of zeolite and auxiliary blend material.

실험결과 제올라이트의 비율이 커질수록 암모니아 이온교환율이 증가하는 추세가 되어 혼합비를 7:3으로 한정하였고, 소성온도에 따른 암모니아성 질소의 이온교환율은 소성온도가 900∼1000℃일 때, 암모니아성 질소의 이온교환율이 26.2로 낮게 나타났으나 소성온도를 600∼850℃로 낮추었을 때, 암모니아성 질소의 흡착율이 약 2.5배 정도 높게 나타나므로 소성온도를 600∼850℃로 하는 것이 적정하였다. As a result of the experiment, as the ratio of zeolite increases, the ammonia ion exchange rate tends to increase, and the mixing ratio is limited to 7: 3. The ion exchange rate of ammonia nitrogen according to the firing temperature is ammonia when the firing temperature is 900 to 1000 ° C. Although the ion exchange rate of soluble nitrogen was low as 26.2, when the calcination temperature was lowered to 600 to 850 ° C, the adsorption rate of ammonia nitrogen was about 2.5 times higher, so it was appropriate to set the calcination temperature to 600 to 850 ° C. .

표 4. 바이오세라믹 담체의 원료 구성에 따른 성능비교 Table 4. Performance Comparison of Raw Material Composition of Bioceramic Carrier

바이오세라믹 재료의 배합비율 (중량%)Mixing ratio of bioceramic materials (wt%) 소성온도(℃)Firing temperature (℃) 흡착율(%)Adsorption rate (%) 제올라이트Zeolite 보조배합원료Auxiliary compound 77 33 900∼1000900-1000 35.735.7 66 44 900∼1000900-1000 31.431.4 55 55 900∼1000900-1000 30.630.6

표 5. 바이오세라믹 담체의 소성온도에 따른 성능비교 Table 5. Performance Comparison of Firing Temperatures of Bioceramic Carriers

바이오세라믹 재료의 배합비율 (중량%)Mixing ratio of bioceramic materials (wt%) 소성온도(℃)Firing temperature (℃) 암모니아성 질소 흡착율(%)Ammonia nitrogen adsorption rate (%) 제올라이트Zeolite 보조배합원료Auxiliary compound 77 33 1000∼11001000-1100 26.226.2 77 33 900∼1000900-1000 35.735.7 77 33 600∼850600 to 850 6363

이상에서 설명한 바와 같이, 본 발명은 바이오세라믹 담체를 제조하고, 이를 이용함으로 고농도 암모니아성 질소의 이온교환 및 생물학적 재생을 통한 질소 제거효율이 효율적으로 이루어지는 효과가 있고, 기존의 처리공정에도 개·보수 없이, 바로 적용 가능한 효과가 있다. As described above, the present invention provides a bioceramic carrier, and by using the same, there is an effect of efficiently removing nitrogen through ion exchange and biological regeneration of high concentration ammonia nitrogen, and renovating and repairing an existing treatment process. Without, there is an immediate effect.

도 1은 본 발명의 오, 폐수처리에 대한 담체 제조공정 블럭도. 1 is a block diagram of a carrier manufacturing process for wastewater treatment of the present invention.

도 2는 본 발명의 담체를 오, 폐수처리 반응조에 적용시키는 상태를 나타낸 개략도. 2 is a schematic view showing a state in which the carrier of the present invention is applied to a wastewater treatment reactor.

도 3은 도 2에 따른 오, 폐수처리 공정에 대한 공정 블럭도. 3 is a process block diagram for a wastewater treatment process according to FIG. 2.

※ 도면의 주요 부분에 대한 부호의 설명 ※ Explanation of codes for main parts of drawing

10, 10' : 소성로 11 : 담체 10, 10 ': kiln 11: carrier

20 : 충진부 21 : 공기분사구 20: filling part 21: air injection port

22 : 공간부 22: space part

Claims (3)

오, 폐수 처리용 담체에 있어서, In the wastewater treatment carrier, 담체의 원료 배합에 대해, 제올라이트 60~70중량%와 보조 배합원료 30~40중량%의 배합비로 함에 있어, 상기 보조배합원료는 카올린(고령토) 40~50%, 석회석 5~10%, 도석 5~10%, 규석 2~5%, 점토 5~10%, 돌로마이트 5~10%, 옥 5~10%, 탄소 2~5%, 이산화티탄 3% 의 중량비로 배합, 혼합 후 지름 1~1.5㎝ 크기 구형으로 성형하고, 이를 3~7일간 자연건조 시킨 다음, 각 소성로(10)(10')에서 600~850℃의 산화불로 3~7시간, 환원불로 1~4시간 각각 소성하는 것을 특징으로 하는 오, 폐수 처리용 담체. In the blending ratio of 60 to 70% by weight of zeolite and 30 to 40% by weight of the auxiliary compounding material, the auxiliary compounding material is 40 to 50% of kaolin (kaolin), 5 to 10% of limestone, and 5 ~ 10%, 2-5% silica, 5-10% clay, 5-10% dolomite, 5-10% jade, 2-5% carbon, 3% titanium dioxide It is shaped into a spherical shape, and then it is naturally dried for 3 to 7 days, and then calcined for 3 to 7 hours with fire oxide at 600 to 850 ° C. and 1 to 4 hours with reduced light in each firing furnace 10 (10 '). Oh, carrier for wastewater treatment. 삭제 delete 오, 폐수 처리용 담체의 제조방법에 있어서, In the manufacturing method of the carrier for wastewater treatment, 제올라이트 60~70중량%와 보조배합원료 30~40중량%의 배합비로 함에 있어, 상기 보조배합원료 카올린(고령토) 40~50%, 석회석 5~10%, 도석 5~10%, 규석 2~5%, 점토 5~10%, 돌로마이트 5~10%, 옥 5~10%, 탄소 2~5%, 이산화티탄 3% 의 중량비로 배합, 혼합한후 지름 1~1.5㎝ 크기 구형으로 성형하고, 이를 3~7일간 자연건조 시킨 다음, 각 소성로(10)(10')에서 600~850℃의 산화불로 3~7시간, 환원불로 1~4시간 각각 소성하여 다공성의 담체(11)를 제조하는 것을 특징으로 하는 오,폐수 처리용 담체의 제조방법. In the blending ratio of 60 to 70% by weight of zeolite and 30 to 40% by weight of auxiliary compound material, 40 to 50% of the above auxiliary compound material kaolin (kaolin), 5 to 10% limestone, 5 to 10% stone, 2 to 5 silica %, Clay 5 ~ 10%, dolomite 5 ~ 10%, jade 5 ~ 10%, carbon 2 ~ 5%, titanium dioxide 3% After naturally drying for 3 to 7 days, each of the firing furnace (10) (10 ') to be fired for 3 to 7 hours with a fire oxide of 600 ~ 850 ℃, respectively for 1 to 4 hours with reduced light to produce a porous carrier 11 Method for producing a wastewater treatment carrier characterized in that.
KR10-2002-0066356A 2002-10-30 2002-10-30 Bioceramic Media and It's Production Method for Wastewater Treatment KR100470351B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0066356A KR100470351B1 (en) 2002-10-30 2002-10-30 Bioceramic Media and It's Production Method for Wastewater Treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0066356A KR100470351B1 (en) 2002-10-30 2002-10-30 Bioceramic Media and It's Production Method for Wastewater Treatment

Publications (2)

Publication Number Publication Date
KR20040037742A KR20040037742A (en) 2004-05-07
KR100470351B1 true KR100470351B1 (en) 2005-02-22

Family

ID=37336024

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0066356A KR100470351B1 (en) 2002-10-30 2002-10-30 Bioceramic Media and It's Production Method for Wastewater Treatment

Country Status (1)

Country Link
KR (1) KR100470351B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100863844B1 (en) 2008-02-04 2008-10-15 최병태 Water floating body for water purification
KR101107891B1 (en) * 2011-02-21 2012-01-25 윤성윤 Media for improving quality of water
KR102327742B1 (en) 2021-04-14 2021-11-17 김순연 Microorganism carrie and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836527B1 (en) * 2008-01-31 2008-06-10 (주) 존인피니티 Composition for removing red algae, green algae or diatom using porous nano sized titania photocatalyst, manufacturing method of said composition and red algae, green algae or diatom removing method using said composition
WO2016080799A1 (en) * 2014-11-21 2016-05-26 한국건설기술연구원 Method for preparing limestone material-based porous water treatment material, porous water treatment material prepared thereby, and water treatment method using same
KR101656667B1 (en) * 2014-11-21 2016-09-12 한국건설기술연구원 Manufacturing method for porous water treatment material based on limestone base material and porous water treatment material using the method
KR102502107B1 (en) * 2021-05-28 2023-02-23 이경환 Fluidized media housing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714690A (en) * 1983-04-11 1987-12-22 Degussa Aktiengesellschaft Silicate-bound zeolite granulates, process for their production and use
US4814085A (en) * 1986-09-19 1989-03-21 Nippon Steel Corporation Fixing carrier for activated sludge in sewage or waste water treatment
KR960004272A (en) * 1994-07-27 1996-02-23 강박광 Method for preparing granular composite molecular sieve composition
KR19990051874A (en) * 1997-12-20 1999-07-05 이서봉 Granular composite molecular sieve for water treatment and its manufacturing method
KR200189472Y1 (en) * 1999-09-30 2000-07-15 성기달 Carrier for processing waste water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714690A (en) * 1983-04-11 1987-12-22 Degussa Aktiengesellschaft Silicate-bound zeolite granulates, process for their production and use
US4814085A (en) * 1986-09-19 1989-03-21 Nippon Steel Corporation Fixing carrier for activated sludge in sewage or waste water treatment
KR960004272A (en) * 1994-07-27 1996-02-23 강박광 Method for preparing granular composite molecular sieve composition
KR19990051874A (en) * 1997-12-20 1999-07-05 이서봉 Granular composite molecular sieve for water treatment and its manufacturing method
KR200189472Y1 (en) * 1999-09-30 2000-07-15 성기달 Carrier for processing waste water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100863844B1 (en) 2008-02-04 2008-10-15 최병태 Water floating body for water purification
KR101107891B1 (en) * 2011-02-21 2012-01-25 윤성윤 Media for improving quality of water
KR102327742B1 (en) 2021-04-14 2021-11-17 김순연 Microorganism carrie and method for manufacturing the same

Also Published As

Publication number Publication date
KR20040037742A (en) 2004-05-07

Similar Documents

Publication Publication Date Title
CN101708926B (en) Method for biologically treating wastewater by simultaneously desulfurizing, denitrifying and decoloring
JP4644107B2 (en) Method for treating wastewater containing ammonia
KR20020043946A (en) Oxidation catalyzer, method for fabricating the same, method for recycling the same, and method for treating waste water using the same
KR100470351B1 (en) Bioceramic Media and It's Production Method for Wastewater Treatment
Park et al. Effects of fill modes on N2O emission from the SBR treating domestic wastewater
US5820760A (en) Process for reducing nitrous oxide emission from waste water treatment
CN1173165A (en) Portland cement clinker and use thereof
Zhang et al. Polishing of Secondary Effluent by a Two-Stage Vertical-Flow Constructed Wetland.
CN109293168A (en) A kind of Ammonia-nitrogen wastewater treatment technology of reinforcing
KR102478521B1 (en) Composite adsorbent containing coffee beans and iron hydroxide
KR100358888B1 (en) The multi-pore ceramic using the slag of the by-products from iron-steel-industry and waste casting sand dust and method of making the same
JP2009189914A (en) Microorganism-carrying photocatalyst-containing sintered body for water purification and its manufacturing method, and method for purifying water in water area using the sintered body and water purification process of water area using it
KR100194265B1 (en) Hydrocarbon compound-containing wastewater treatment catalyst, preparation method thereof and wastewater treatment method using the catalyst
Hassan et al. Start‐up of partial nitrification by intermittent aeration, pH shocks and sulfide addition in a sequential batch reactor
JP3791789B2 (en) Combustion exhaust gas / drainage purification method and system
KR101240589B1 (en) Ceramic composition for removing phosphorous and manufacturing method of thereof
CN111233450A (en) Method for preparing ceramic and byproduct sulfur oxide-rich gas by using industrial byproduct gypsum
KR100733689B1 (en) Method and apparatus for treating ammonia-containing effluent water
JP2007167772A (en) Method of manufacturing catalyst
KR20210085322A (en) Media for Water Treatment Using Zeolite and Preparation Method thereof
CN115228495B (en) Calcium-based carbon-coated ozone oxidation catalyst for advanced treatment of salt-containing organic wastewater
KR20200027629A (en) Wastewater treatment method and wastewater treatment system using reaction tank containing aerobic granular sludge
CN115650426B (en) Efficient denitrification process based on micro-electrolysis waste iron mud-based filling material
CN117142778B (en) Method for preparing magnesium aluminum sulfate cement by using aluminum ash
CN112320897B (en) Spherical iron-carbon micro-electrolysis filler and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130107

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140107

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141204

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160108

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170125

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180118

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190118

Year of fee payment: 15