KR100467442B1 - A method of treatment for dyeing wastewater by using catalyst oxidizing water - Google Patents

A method of treatment for dyeing wastewater by using catalyst oxidizing water Download PDF

Info

Publication number
KR100467442B1
KR100467442B1 KR10-2002-0062790A KR20020062790A KR100467442B1 KR 100467442 B1 KR100467442 B1 KR 100467442B1 KR 20020062790 A KR20020062790 A KR 20020062790A KR 100467442 B1 KR100467442 B1 KR 100467442B1
Authority
KR
South Korea
Prior art keywords
wastewater
water
treatment
catalytic oxidation
substituent
Prior art date
Application number
KR10-2002-0062790A
Other languages
Korean (ko)
Other versions
KR20040034750A (en
Inventor
최장승
김준표
안상준
류승한
오카무라요시미즈
전장표
Original Assignee
한국염색기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국염색기술연구소 filed Critical 한국염색기술연구소
Priority to KR10-2002-0062790A priority Critical patent/KR100467442B1/en
Publication of KR20040034750A publication Critical patent/KR20040034750A/en
Application granted granted Critical
Publication of KR100467442B1 publication Critical patent/KR100467442B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 촉매산화수를 이용한 염색폐수의 처리방법에 관한 것으로, 세라믹촉매와 차아염소산나트륨 수용액의 접촉에 의해 발생기산소 치환체로 형성되는 촉매산화수를 제조하여 이를 폐수처리시설에 투입함으로써 산화수의 강력한 산화력으로 염색폐수를 정화 처리하여 유기물의 부하량을 감소시키고, 화학약품 처리공정을 없애 화학슬러지 전량의 발생을 근원적으로 억제함과 동시에 생물슬러지의 발생도 효과적으로 감소시킴으로써 종래의 화학적인 처리방법에 비하여 염색폐수의 정화율을 증대함과 동시에 폐수처리비용을 현저히 절감시키는 촉매산화수를 이용한 염색폐수의 처리방법에 관한 것이다.The present invention relates to a method for treating dyed wastewater using catalytic oxidation water. The method provides a strong oxidation power of oxidized water by preparing catalytic oxidation water formed by the generation of oxygenated substituents by contacting a ceramic catalyst with an aqueous sodium hypochlorite solution. Purifying dyeing wastewater reduces the load of organic matter, eliminates chemical treatment process and fundamentally suppresses the generation of all chemical sludge, and effectively reduces the generation of biological sludge. The present invention relates to a method for treating dyed wastewater using catalytic oxidation that significantly increases the purification rate and at the same time significantly reduces the cost of wastewater treatment.

이를 위하여 본 발명의 촉매산화수를 이용한 염색폐수의 처리방법은, 충전탑에 세라믹촉매와 280~320mg/L 농도의 차아염소산나트륨 수용액을 충전하는 제1공정; 상기 세라믹촉매와 차아염소산나트륨 수용액 중의 차아염소산이 반응하여 발생기산소 치환체를 생성하는 제2공정; 상기 발생기산소 치환체와 물을 반응시켜 하이드록실 치환체를 생성하고, 상기 발생기산소 치환체와, 하이드록실 치환체와, 차아염소산으로 구성된 촉매산화수가 만들어지는 제3공정; 및 상기 촉매산화수를 염색폐수 대비 7~15wt% 투입하여 10~15시간 동안 염색폐수 내의 유기화합물과 반응시켜 정화하는 제4공정으로 이루어진 것을 특징으로 하는 것이다.To this end, the treatment method of the dyeing wastewater using the catalytic oxidation water of the present invention, the first step of filling the packed column with a ceramic catalyst and an aqueous sodium hypochlorite solution of 280 ~ 320mg / L concentration; A second step of reacting the ceramic catalyst with hypochlorous acid in an aqueous sodium hypochlorite solution to generate a generator oxygen substituent; A third step of producing a hydroxyl substituent by reacting the generator oxygen substituent with water, and producing a catalytically oxidized water composed of the generator oxygen substituent, a hydroxyl substituent, and hypochlorous acid; And a fourth step of adding 7 to 15 wt% of the catalytic oxidation water to the dyeing wastewater and reacting with the organic compound in the dyeing wastewater for 10 to 15 hours to purify it.

Description

촉매산화수를 이용한 염색폐수의 처리방법 {A method of treatment for dyeing wastewater by using catalyst oxidizing water}A method of treatment for dyeing wastewater by using catalyst oxidizing water}

본 발명은 촉매산화수를 이용한 염색폐수의 처리방법에 관한 것으로, 구체적으로는 촉매산화수(Catalyst Oxidizing Water)를 이용하여 염색폐수를 정화 처리하여 유기물의 부하량을 감소시키고, 화학약품 처리공정을 없앰으로써 화학슬러지 및 생물슬러지의 발생을 효과적으로 감소시켜 염색폐수의 정화율을 증대함과 동시에 폐수처리비용을 절감할 수 있는 촉매산화수를 이용한 염색폐수의 처리방법에 관한 것이다.The present invention relates to a method of treating dyeing wastewater using catalytic oxidation water, specifically, by treating the dyeing wastewater using catalytic oxidation water (Catalyst Oxidizing Water) to reduce the load of organic matter and to eliminate the chemical treatment process The present invention relates to a method for treating dyed wastewater using catalytic oxidation that can effectively reduce the generation of sludge and biosludge and increase the purification rate of the dyeing wastewater and at the same time reduce the cost of wastewater treatment.

일반적으로, 인구의 증가와 산업발달에 따른 공업화, 도시화에 의해 여러 가지 공산품 및 가공품의 생산과정에서 배출되는 산업폐수, 사람들의 일상생활에서 배출되는 생활하수, 농가의 가축사육과정에서 배출되는 축산폐수 등 각종 오염물질이 함유된 하·폐수가 급속하게 증가하게 되면서 그에 따른 환경오염도 더욱 가중되고 있는 실정이다.In general, industrial wastewater discharged during the production of various industrial products and processed products by industrialization and urbanization according to population growth and industrial development, living sewage discharged from people's daily lives, and livestock wastewater discharged from farming livestock As the sewage and wastewater containing various pollutants are rapidly increasing, the environmental pollution is increasing.

이에 따라, 하·폐수로 인한 환경오염을 방지하기 위해서 대부분의 국가에서는 다양한 법규나 제도를 통해 폐수가 발생하는 사업장이나 시설 등에 대하여 폐수처리시설의 설치를 의무화하고 있다.Accordingly, in order to prevent environmental pollution due to sewage and wastewater, most countries have mandatory installation of wastewater treatment facilities for workplaces or facilities where wastewater is generated through various laws and systems.

한편, 염색공정에서 염료, 테레프탈산(TPA:Terephthalic acid), 조제 등 다양한 유기화합물이 사용됨에 따라 염색폐수 속에는 자연환경에서 분해되기 어려운 난분해성의 유기화합물이 다량 함유되어 있으며, 이들 유기화합물질들을 제거하기 위한 폐수처리법으로 강산이나 응집제 등의 화학약품에 의한 화학적인 처리 및 활성슬러지법에 의한 생물학적 처리가 보편적으로 사용되고 있다.On the other hand, as various organic compounds such as dyes, terephthalic acid (TPA), and preparations are used in the dyeing process, the dyeing wastewater contains a large amount of hardly decomposable organic compounds that are difficult to decompose in the natural environment. As a wastewater treatment method, chemical treatment with chemicals such as strong acids and flocculants and biological treatment with activated sludge are commonly used.

즉, 종래의 종합염색폐수의 처리과정을 보면, 원폐수 발생 → 여과용 스크린(체) → 집수조 → 냉각탑 → 화학처리(응집 또는 가압부상) → 화학침전조 → 표준활성슬러지 처리조 → 최종침전조 → 방류의 공정으로 처리되고, 화학침전조 및 최종침전조에서 인발(Pultrusion)된 슬러지는 농축조에서 탈수 후 처리된다.In other words, the conventional synthetic dye wastewater treatment process: raw waste water generation → screen for filtration (sieve) → collection tank → cooling tower → chemical treatment (coagulation or pressure flotation) → chemical precipitation tank → standard activated sludge treatment tank → final precipitation tank → discharge Sludge drawn out from the chemical precipitation tank and the final precipitation tank is treated after dehydration in a concentration tank.

그런데, 이러한 화학적인 처리방법에서 응집제 등의 각종 화학약품 사용에 따른 과다한 약품 구입비용이 전체 수처리 비용에 큰 영향을 미칠 뿐만 아니라, 처리과정에서 부가적으로 발생되는 다량의 화학슬러지 처리 및 처리시설의 유지, 관리에 따른 운영비가 과도하다는 여러 가지 단점이 있다.However, in the chemical treatment method, excessive chemical purchasing costs due to the use of various chemicals such as flocculants not only have a great influence on the overall water treatment cost, but also a large amount of chemical sludge treatment and treatment facilities additionally generated during the treatment process. There are a number of disadvantages of excessive operation and maintenance costs.

그리고, 종래의 화학약품에 의한 화학처리방법으로는 색도 성분이나 테레프탈산(TPA) 등의 난분해성 물질들의 제거가 어려울 뿐 만 아니라 BOD 부하를 줄일수가 없기 때문에, 후처리인 생물학적 처리법에서 체류시간이 증대되거나 생물슬러지 발생량이 증가되는 등의 문제점이 있다.In addition, it is difficult to remove chromatic components, terephthalic acid (TPA) and other hardly decomposable substances by the conventional chemical treatment method, and it is not possible to reduce the BOD load, so the residence time is increased in the post-treatment biological treatment method. There is a problem such as increase in the amount of biosludge generation.

또한, 고가의 비용을 들여 폐수처리시설을 갖춘 후에도 이러한 시설들을 제대로 활용하지 않고, 폐수를 무단으로 방류하거나 또는 제대로 정화처리도 하지 않은 채 법정 방류 기준치 이상의 폐수를 그대로 방류하는 사례가 매우 빈번히 발생하고 있는 실정이다.In addition, even after a wastewater treatment facility is installed at a high cost, there are many cases in which wastewater above the statutory discharge standard is discharged as it is without using the facilities properly, or discharging the wastewater without unauthorized treatment. There is a situation.

본 발명은 상기와 같은 문제점을 해소하기 위하여 발명된 것으로서, 본 발명의 촉매산화수를 이용한 염색폐수의 처리방법은 촉매산화수를 이용하여 염색의 전 과정에서 배출되는 염색폐수를 정화함으로써 오염물질의 양을 감소시키고 폐수처리시설의 운영비용을 절감하도록 하는 것이다.The present invention has been invented to solve the above problems, the treatment method of the dyeing wastewater using the catalytic oxidation water of the present invention by using the catalytic oxidation water to purify the dye wastewater discharged in the whole process of dyeing to reduce the amount of pollutants To reduce the operating costs of wastewater treatment facilities.

본 발명의 다른 목적은 화학적 처리공정을 촉매산화공정으로 대체하여 화학약품의 사용을 제거함으로써 화학슬러지 발생을 차단함과 동시에 화학적 처리로 불가능하였던 난분해성 물질을 제거함으로써 생물학적 처리(표준활성슬러지법)로 유입되는 부하량을 감소시켜 생물처리가 원활하도록 하는 것이다.Another object of the present invention is to replace the chemical treatment process with a catalytic oxidation process to eliminate the use of chemicals to block the chemical sludge and at the same time to remove the biodegradable substances that were impossible by chemical treatment biological treatment (standard activated sludge method) It is to reduce the load flowing into the water to facilitate the biological treatment.

도1은 본 발명에 따른 염색폐수의 처리과정을 나타낸 개략도Figure 1 is a schematic diagram showing the process of dyeing wastewater according to the present invention

도2는 도1의 블록도Figure 2 is a block diagram of Figure 1

도3은 본 발명의 다른 실시예에 따른 블록도Figure 3 is a block diagram according to another embodiment of the present invention

상기와 같은 목적을 달성하기 위해 본 발명에 따른 촉매산화수를 이용한 염색폐수의 처리방법은, 충전탑에 세라믹촉매와 차아염소산나트륨 수용액을 충전하는 제1공정; 상기 세라믹촉매와 차아염소산나트륨 수용액 중의 차아염소산이 반응하여 발생기산소 치환체를 생성하는 제2공정; 상기 발생기산소 치환체와 물을 반응시켜하이드록실 치환체를 생성하고, 상기 발생기산소 치환체와, 하이드록실 치환체와, 차아염소산으로 구성된 촉매산화수를 만드는 제3공정; 및 상기 촉매산화수를 염색폐수 집수조에 투입한 후 염색폐수의 유기물질과 반응하여 유기물질을 정화하는 제4공정으로 이루어짐을 특징으로 하는 것이다.In order to achieve the above object, a treatment method of dyeing wastewater using catalytic oxidation water according to the present invention includes a first step of filling a ceramic catalyst and an aqueous sodium hypochlorite solution in a packed column; A second step of reacting the ceramic catalyst with hypochlorous acid in an aqueous sodium hypochlorite solution to generate a generator oxygen substituent; A third step of producing a hydroxyl substituent by reacting the generator oxygen substituent with water to produce a catalytically oxidized water composed of the generator oxygen substituent, a hydroxyl substituent, and hypochlorous acid; And a fourth step of purifying the organic material by adding the catalytic oxidation water to the dye wastewater collection tank and reacting with the organic material of the dye wastewater.

이하, 본 발명의 촉매산화수를 이용한 염색폐수의 정화 처리에 대하여 상세히 설명하면 다음과 같다.Hereinafter, the purification treatment of the dyeing wastewater using the catalytic oxidation water of the present invention will be described in detail.

제1공정 : 충전단계Step 1: Filling Step

충전탑에 세라믹촉매와 차아염소산나트륨 수용액을 충전하는 단계이다.A packed column is filled with a ceramic catalyst and an aqueous sodium hypochlorite solution.

본 공정에 앞서, 상기 차아염소산나트륨 수용액이 만들어지는 과정에 대해 설명하자면, 충전탑으로 물을 공급하는 과정에서 차아염소산나트륨을 공급하여 차아염소산나트륨을 물에 용해시키면 하기 반응식1과 같이 차아염소산나트륨은 수산화나트륨(NaOH)과 차아염소산(HOCl)으로 분해된 차아염소산나트륨 수용액이 만들어지게 되며, 상기 차아염소산나트륨 수용액은 수산화나트륨(NaOH)의 영향에 의해 pH는 약 9~9.5에 이르게 된다.Prior to this step, the process of making the sodium hypochlorite aqueous solution is described, when sodium hypochlorite is dissolved in water by supplying sodium hypochlorite in the process of supplying water to the packed column, sodium hypochlorite as shown in Scheme 1 below The sodium hypochlorite aqueous solution decomposed into silver sodium hydroxide (NaOH) and hypochlorous acid (HOCl) is made, and the sodium hypochlorite aqueous solution reaches a pH of about 9 to 9.5 under the influence of sodium hydroxide (NaOH).

(반응식1)(Scheme 1)

NaOCl + H20 →NaOH +HOCl NaOCl + H 2 0 → NaOH + HOCl

상기와 같이 발생되는 차아염소산나트륨 수용액을 이용하여, 도1에 도시된 바와 같이 충전탑(packed tower) 내부에 세라믹촉매를 충전한 후, 염색폐수의 오염도에 따라서 1~1000ppm의 차아염소산나트륨(NaOCl) 수용액을 충전탑에 통과시킨다.Using the sodium hypochlorite aqueous solution generated as described above, after filling the ceramic catalyst inside the packed tower (packed tower) as shown in Figure 1, 1 ~ 1000ppm sodium hypochlorite (NaOCl depending on the degree of contamination of the dyeing wastewater) ) The aqueous solution is passed through a packed column.

제2공정 : 발생기산소 치환체 생성단계Second step: generating oxygen radical substituent

충전탑 내부에 공급된 차아염소산나트륨 수용액이 세라믹촉매에 의해 발생기산소 치환체(O*)를 생성하는 단계이다.The aqueous sodium hypochlorite solution supplied into the packed column is a step of generating a generator oxygen substituent (O *) by a ceramic catalyst.

우선, 본 발명에 따른 세라믹촉매를 사용하지 않은 상태에서의 차아염소산의 분해과정에 대해 살펴보면, 상기 반응식1에서 생성된 차아염소산은 수중에서 일반적인 분해반응에 의해 하기 반응식2a와 같이 수소이온(H+)과 차아염소이온(OCl-)의 형태로 존재하며, pH가 낮아질수록 수소이온이 형성되고 pH가 높아질수록 차아염소이온이 형성되는데, pH가 9이고 수용액의 온도가 약 20℃일 때 차아염소산(HOCl)은 약 5%, 차아염소이온(OCl-)은 약 95%의 비율로 존재하게 된다.First, the decomposition process of hypochlorous acid in the state of not using the ceramic catalyst according to the present invention, the hypochlorous acid produced in the reaction scheme 1 is a hydrogen ion (H + +) as shown in the reaction scheme 2a by a general decomposition reaction in water ) and hypochlorite ion (OCl -, and in the form of a), when the more the pH is lowered, hydrogen ions are formed and the higher the pH to form the hypochlorite ion, the pH is 9, and the temperature of the aqueous solution about 20 ℃ hypochlorite (HOCl) from about 5% hypochlorite ion (OCl -) are are present in a ratio of about 95%.

(반응식2a)(Scheme 2a)

HOCl←---→ H++ OCl- HOCl ← --- → H + + OCl -

본 공정에서는 상기 차아염소산나트륨 수용액 중의 차아염소산(HOCl)이 세라믹촉매의 존재 하에서 하기 반응식2에 나타나듯이 발생기산소 치환체를 생성하게 되며, 여기에서 상기 세라믹촉매는 철, 망간, 코발트, 티타늄, 알루미늄, 구리 등의 금속 및 금속산화물을 혼합하여 대략 1600℃ 정도의 고온에서 소결시켜 이루어진 촉매이다.In this process, hypochlorous acid (HOCl) in the aqueous sodium hypochlorite solution generates a generator-oxygen substituent as shown in Scheme 2 in the presence of a ceramic catalyst, wherein the ceramic catalyst is iron, manganese, cobalt, titanium, aluminum, A catalyst formed by mixing metals such as copper and metal oxides and sintering at a high temperature of about 1600 ° C.

(반응식2)(Scheme 2)

HOCl ---------→ HCl + O*HOCl --------- → HCl + O *

세라믹촉매Ceramic catalyst

참고적으로, 상기 차아염소산은 불안정한 물질로서 즉시 분해되어 발생기산소를 생성하기는 하나, 본 발명의 세라믹촉매를 사용한 것에 비해 생성속도나 양은 매우 적은 편이다.For reference, although hypochlorous acid is an unstable substance, it is immediately decomposed to generate oxygen, but the generation rate or amount is very small compared to using the ceramic catalyst of the present invention.

제3공정 : 산화수 생성단계Third Step: Oxidation Water Generation Step

충전탑 내의 차아염소산나트륨 수용액이 발생기산소 치환체와 반응하여 발생기산소 치환체가 풍부한 촉매산화수로 변화하는 단계이다.The aqueous sodium hypochlorite solution in the packed column reacts with the generator oxygen substituent to change the catalytic oxygen-rich catalyst into the catalytic oxidation water.

세라믹촉매의 존재 하에서 상기 차아염소산나트륨 수용액 속의 물분자와, 상기 반응식2에서 얻어진 발생기산소 치환체가 반응하여 하기 반응식3와 같이 하이드록실 치환체(H3O2*)를 생성하며, 상기 하이드록실 치환체는 강력한 산화작용을 하여 산화, 표백, 분해, 향균, 탈취, 수질정화 등의 기능을 한다.In the presence of a ceramic catalyst, the water molecules in the aqueous sodium hypochlorite solution and the oxygen-oxygen substituent obtained in the above Reaction Scheme 2 react to form a hydroxyl substituent (H 3 O 2 *) as shown in Reaction Scheme 3 below, wherein the hydroxyl substituent is It has a strong oxidizing effect and functions as oxidation, bleaching, decomposition, antibacterial, deodorization and water purification.

H2O + O* ---→ H2O2* ---→ 2*0HH 2 O + O * --- → H 2 O 2 * --- → 2 * 0H

H2O + *OH ---→ H3O2*H 2 O + * OH --- → H 3 O 2 *

이와 같이, 상기 반응식2 내지 3에 의해 만들어진 발생기산소 치환체(O*), 하이드록실 치환체(H3O2*), 차아염소산(HOCl) 등이 함유된 촉매산화수가 만들어지며, 이러한 촉매산화수는 일반적인 염소계보다 최고 80배 정도의 강력한 산화작용을 나타내어 산화, 표백, 분해, 항균, 탈취, 수질정화 등의 기능을 수행하게 된다.As such, the generator oxygen substituents (O *) and hydroxyl substituents (H) produced by the reaction schemes 2 to 3 above.3O2*), Hypochlorous acid (HOCl) Catalytic oxidation water containing light is produced, and such catalytic oxidation water exhibits up to 80 times more powerful oxidation than the general chlorine system to perform functions such as oxidation, bleaching, decomposition, antibacterial, deodorization, and water purification.

제4공정 : 염색폐수 정화단계4th process: dyeing wastewater purification

촉매산화수를 이용하여 염색폐수를 정화하는 단계이다.Purifying dyeing wastewater using catalytic oxidation water.

상기 촉매산화수를 염색폐수 처리시설의 폐수가 유입된 집수조(탱크)에 투입하게 되면 산화수 내의 발생기산소 치환체가 염색폐수 속의 C, H, O, N 등으로 이루어진 유기화합물, 예컨대, 하기 반응식4의 에탄올과 같이 산화반응을 통해 폐수를 정화하게 된다.When the catalytic oxidation water is introduced into a wastewater tank (tank) into which wastewater from a dye wastewater treatment plant is introduced, an organic compound in which the oxygen radicals in the oxidized water are composed of C, H, O, and N in the dye wastewater, for example, ethanol of Scheme 4 below. Like this, the waste water is purified through oxidation.

(반응식4)(Scheme 4)

O* O* O*O * O * O *

C2H5OH → CH3CHO → CH3COOH → CO2+ H2OC 2 H 5 OH → CH 3 CHO → CH 3 COOH → CO 2 + H 2 O

상기와 같은 정화작용에 의해 폐수 속에 함유된 유기물은 산화되거나 CO2상태로 공기 중으로 방출되거나 또는 CO3 2-형태로 처리수 속에 용해되는데, 이때 처리수의 pH는 용해된 CO3 2-의 영향에 의해 약 8~8.5 정도를 유지하게 된다.There is dissolved organic matter contained in the wastewater by the purging operation, such as is in the oxidation state or CO 2 emitted into the air or CO 3 2- in the form to be treated, whereby the pH of the wastewater influence of the dissolved CO 3 2- By about 8 ~ 8.5 will be maintained.

그리고, 상기 처리방법에 의해 폐수가 정화됨에 따라 화학적 산소요구량, 생물학적 산소요구량, 부유물질, 총질소, 총인, 계면활성제 등을 동시에 저감시킬 뿐만 아니라 종래의 화학적 처리공정을 대체함으로써 화학약품 비용 및 슬러지 처리비용을 근원적으로 없앰과 동시에, 화학처리로는 제거가 불가능한 난분해성 COD 성분 및 BOD 부하량을 집수조에서 감소시킴에 따라 후공정인 표준활성슬러지 처리조의 미생물 부하를 저감시키고 미생물활성을 증대시켜 운전효율의 향상 및 운전비를 절감할 수 있다.In addition, as the wastewater is purified by the treatment method, chemical oxygen demand, biological oxygen demand, suspended solids, total nitrogen, total phosphorus, surfactants, etc. are simultaneously reduced, and chemical costs and sludges are replaced by replacing conventional chemical treatment processes. At the same time, it reduces the microbial load and increases the microbial activity of the standard activated sludge treatment tank, which is a post-process, by reducing the amount of hardly decomposable COD components and BOD in the collection tank which cannot be removed by chemical treatment. Can improve operation and reduce operating costs.

덧붙여, 본 발명에 따른 산화수를 이용한 폐수처리공정을 거친 염색폐수는 다음 단계인 생물학적 처리공정단계로 이송되어 처리된다.In addition, the dyeing wastewater subjected to the wastewater treatment process using the oxidized water according to the present invention is transferred to a biological treatment process step, which is then treated.

이하, 실시예를 통하여 본 발명의 산화수를 이용한 염색폐수의 처리방법을 통해 다양한 종류의 염색폐수를 모은 종합 염색폐수를 정화 처리하는 예를 더욱 상세히 설명하겠다. 단, 하기의 실시예는 본 발명의 이해를 돕기 위한 예시일 뿐, 본 발명을 이로써 한정하는 것은 아니다.Hereinafter, an example of purifying and treating various dyeing wastewaters of various types of dyeing wastewater through the method of treating dyeing wastewater using the oxidized water of the present invention will be described in more detail. However, the following examples are only examples to help understanding of the present invention, and the present invention is not limited thereto.

실시예1Example 1

본 발명에 따라 만들어진 산화수를 염색공단 내의 개별 염색공정에서 배출되는 폐수를 모은 종합 염색폐수에 투입하여 염색폐수를 정화 처리하였으며, 이때, 촉매산화수를 만들기 위한 세라믹촉매는 일본 SEISUI Co.의 제품을 사용하였고 반응시간은 10~15시간 바람직하게는 12시간, 촉매산화수의 투입량은 염색폐수 대비 7~15wt% 바람직하게는 10wt%, NAOCl의 농도는 280~320mg/L 바람직하게는 300mg/L이었다.The oxidized water produced in accordance with the present invention was put into a comprehensive dyeing wastewater collected by the wastewater discharged from the individual dyeing process in the dyeing complex, and the dyeing wastewater was purified. The reaction time was 10-15 hours, preferably 12 hours, and the amount of catalytic oxidation water was 7-15 wt%, preferably 10 wt%, and the concentration of NAOCl was 280-320 mg / L, preferably 300 mg / L, compared to the dye wastewater.

본 발명의 산화수에 의한 염색폐수의 처리결과를 종래의 화학적 처리와 비교하여 화학적 산소요구량(COD), 생물학적 산소요구량(BOD), 부유물질(SS), n-헥산(n-Hexane), 색(Color) 총질소(T-N), 총인(T-P) 수치를 통해 설명하겠다. 이결과를 하기 표1에 나타내었다.Compared with the conventional chemical treatment, the result of the treatment of the dye wastewater by the oxidized water of the present invention was compared to the chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solids (SS), n-hexane (n-Hexane) and color ( Color) Total Nitrogen (TN), Total Phosphorus (TP). The results are shown in Table 1 below.

상기 표1의 결과를 보면, 폐수의 처리에 있어서 가장 중요한 인자인 생물학적 산소요구량을 화학적 처리에 비해 1/2 줄일 수 있었으며 부유물질이나 총질소 등의 수치를 대폭 낮출 수 있음을 알 수 있다.From the results in Table 1, it can be seen that the biological oxygen demand, which is the most important factor in the treatment of wastewater, can be reduced by 1/2 compared to chemical treatment, and the levels of suspended solids and total nitrogen can be greatly reduced.

이어서, 본 발명의 산화수를 이용한 염색폐수의 처리에 따른 비용을 종래의화학적 처리에 따른 비용과 비교 분석한 것을 하기 표2에 나타내었다.Subsequently, the cost of the treatment of the dye wastewater using the oxidized water of the present invention is shown in Table 2 below in comparison with the cost of the conventional chemical treatment.

상기 표2의 결과에 따르면, 본 발명의 산화수를 이용하여 염색폐수를 처리한 경우 종래의 화학적 처리에 비교하여 화학약품처리비를 1/3 이상 삭감할 수 있었으며 슬러지나 고형물질 등의 처리 등 종합적인 처리비를 살펴보건대 대략 1/5 가량으로 절약할 수 있었다.According to the results of Table 2, when the dyeing wastewater was treated using the oxidized water of the present invention, compared to the conventional chemical treatment, it was possible to reduce the chemical treatment cost by 1/3 or more, and comprehensive treatment such as treatment of sludge or solid materials. Looking at the cost of processing, we could save about 1/5.

다음으로. 본 발명에 따른 산화수를 이용한 폐수처리 및 활성슬러지법에 의한 생물학적 처리를 한 것과 종래의 화학적 처리 및 생물학적 처리를 한 것을 비교하여 화학적 산소요구량(COD), 생물학적 산소요구량(BOD), 부유물질(SS), n-헥산(n-Hexane), 색(Color) 총질소(T-N), 총인(T-P) 수치를 통해 설명하겠다. 이to the next. Chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solids (SS) by comparing wastewater treatment with oxidized water and biological treatment by activated sludge method according to the present invention and conventional chemical treatment and biological treatment ), n-hexane (n-Hexane), color total nitrogen (TN), total phosphorus (TP) values. this

결과를 하기 표3에 나타내었다.The results are shown in Table 3 below.

상기 표3의 결과에 따르면, 본 발명에 따라 염색폐수를 촉매산화처리 및 생물학적 처리를 한 것의 결과를 보면 종래의 화학적 처리 및 생물학적 처리를 한 것과 마찬가지로 방류수 수질 기준치를 만족시킬 뿐만 아니라 종래 방법에 비해 1/3에 해당되는 적은 비용으로 염색폐수를 정화 처리할 수 있었다.According to the results of Table 3, the results of the catalytic oxidation and biological treatment of the dyeing wastewater according to the present invention not only satisfies the effluent water quality standards as in the conventional chemical treatment and biological treatment, but also compared with the conventional method. It was possible to purify the dyeing wastewater at a fraction of the cost.

실시예2Example 2

본 발명에 따른 산화수를 이용하여 염색공정 시 배출되는 테레프탈산을 처리하였다.Using the oxidation water according to the present invention was treated terephthalic acid discharged during the dyeing process.

상기 테레프탈산(TPA:Terephthalic acid)은 폴리에스테르 감량공정에서 배출되는 난분해성물질 중의 하나로서 종래의 화학처리, 즉 응집침전 방식으로는 제거되지 않으며, 이러한 난분해성 물질의 다량배출로 인한 염색폐수의 단위물질당 오염부하량이 커짐에 따라 종합 염색폐수의 수질변동 및 부하변동의 큰 영향인자로 작용하게 된다.The terephthalic acid (TPA: Terephthalic acid) is one of the hardly decomposable substances discharged from the polyester weight loss process, and is not removed by conventional chemical treatment, that is, coagulation sedimentation, and is a unit of dye wastewater due to the large amount of such hardly decomposable substances. As the pollutant load per material increases, it acts as a significant factor in the water quality and load fluctuations of the dyeing wastewater.

상기 테레프탈산이 함유된 폐수에 본 발명의 촉매산화수를 투입하여 12∼24시간동안 반응시킨 결과 상기 테레프탈산이 분해됨으로써 후공정인 미생물처리에 부하를 적게 주어 생물학적 처리의 효율이 증대될 수 있었다.As a result of adding the catalytic oxidation water of the present invention to the wastewater containing terephthalic acid and reacting for 12 to 24 hours, the terephthalic acid was decomposed to reduce the load on the microbial treatment, which is a post-process, thereby increasing the efficiency of biological treatment.

하기 참고도에 본 발명에 따른 촉매산화수를 이용하여 테레프탈산을 정화하고 그 상태를 자외선 분광광도계로 측정하여 이를 종래의 화학적 처리방법에 의해 테레프탈산을 분해한 것과 비교하여 나타내었다.In the following reference figure, the terephthalic acid was purified using catalytic oxidation water according to the present invention, and the state thereof was measured by an ultraviolet spectrophotometer, and this was compared with that of terephthalic acid by conventional chemical treatment.

이상에서 살펴본 바와 같이 본 발명의 촉매산화수를 이용한 염색폐수의 처리방법은, 화학적 처리과정 없이 바로 생물학적 처리과정을 행할 수 있도록 세라믹촉매와 차아염소산나트륨 수용액의 접촉에 의해 발생기산소 치환체로 형성된 촉매산화수를 제조하고 이를 종합 염색폐수 집수조에 투입하여 수질을 정화함으로써, pH조절에 필요한 황산을 제외한 종래의 화학적 처리방법에서의 응집공정에 필요한 철염, 소석회, 고분자 등의 화학약품을 전혀 사용하지 않으므로 화학슬러지의 발생을 근원적으로 차단하여 슬러지의 처리비를 크게 절감할 수 있음과 동시에 화학약품으로는 제거할 수 없는 TPA 등의 난분해성 물질을 제거하여 생물학적 처리공정에서의 부하량을 감소시킴에 따라 생물처리를 원활히 하므로서 화학적 산소요구량(COD), 생물학적 산소요구량(BOD), 총질소(T-N), 총인(T-P), 부유물질(SS), 계면활성제(ABS), n-헥산 등을 감소시킬 수 있다.As described above, the method of treating dyeing wastewater using the catalytic oxidation water of the present invention, the catalytic oxidation water formed by the generation of oxygen-containing substituents by the contact of the ceramic catalyst and the sodium hypochlorite aqueous solution so that the biological treatment process can be performed immediately without chemical treatment process. By purifying the water quality by preparing it in a comprehensive wastewater collection tank, it does not use any chemicals such as iron salt, slaked lime, and polymer required for the coagulation process in the conventional chemical treatment method except sulfuric acid which is required for pH control. By reducing the generation of sludge, the treatment cost of sludge can be greatly reduced, and biodegradation is facilitated by reducing the load in biological treatment process by removing hardly decomposable substances such as TPA that cannot be removed by chemicals. Chemical oxygen demand (COD), biological oxygen Guryang (BOD), it is possible to reduce the total nitrogen (T-N), phosphorus (T-P), suspended solids (SS), a surfactant (ABS), such as n- hexane.

이에 따라, 종합 염색폐수의 처리효율을 극대화시킴으로서 적은 비용으로 염색폐수를 처리할 수 있어 경제적이고, 폐수처리시설의 구성을 단순화할 수 있어 초기 시설비의 부담이 적으며, 기존의 폐수처리시설에도 간편하게 부가할 수 있어 매우 효율적임과 동시에 전체적인 폐수처리시설의 운영비를 크게 절감할 수 있다.Accordingly, by maximizing the treatment efficiency of the total dyeing wastewater, it is possible to treat the dyeing wastewater at a low cost, and it is economical, and the configuration of the wastewater treatment facility can be simplified, so that the burden of the initial facility cost is small, and the existing wastewater treatment facility is easy. They can be very efficient and greatly reduce the operating costs of the entire wastewater treatment plant.

Claims (1)

충전탑에 세라믹촉매와 280~320mg/L 농도의 차아염소산나트륨 수용액을 충전하는 제1공정;A first step of filling a packed column with a ceramic catalyst and an aqueous sodium hypochlorite solution at a concentration of 280 to 320 mg / L; 상기 세라믹촉매와 차아염소산나트륨 수용액 중의 차아염소산이 반응하여 발생기산소 치환체를 생성하는 제2공정;A second step of reacting the ceramic catalyst with hypochlorous acid in an aqueous sodium hypochlorite solution to generate a generator oxygen substituent; 상기 발생기산소 치환체와 물을 반응시켜 하이드록실 치환체를 생성하고, 상기 발생기산소 치환체와, 하이드록실 치환체와, 차아염소산으로 구성된 촉매산화수가 만들어지는 제3공정; 및A third step of producing a hydroxyl substituent by reacting the generator oxygen substituent with water, and producing a catalytically oxidized water composed of the generator oxygen substituent, a hydroxyl substituent, and hypochlorous acid; And 상기 촉매산화수를 염색폐수 대비 7~15wt% 투입하여 10~15시간 동안 염색폐수 내의 유기화합물과 반응시켜 정화하는 제4공정으로 이루어진 것을 특징으로 하는 촉매산화수를 이용한 염색폐수의 처리방법.7 to 15 wt% of the catalytic oxidation water compared to the dyeing waste water treatment method of the dyeing waste water using the catalytic oxidation water, characterized in that the fourth step of reacting and purifying the organic compound in the dyeing waste water for 10 to 15 hours.
KR10-2002-0062790A 2002-10-15 2002-10-15 A method of treatment for dyeing wastewater by using catalyst oxidizing water KR100467442B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0062790A KR100467442B1 (en) 2002-10-15 2002-10-15 A method of treatment for dyeing wastewater by using catalyst oxidizing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0062790A KR100467442B1 (en) 2002-10-15 2002-10-15 A method of treatment for dyeing wastewater by using catalyst oxidizing water

Publications (2)

Publication Number Publication Date
KR20040034750A KR20040034750A (en) 2004-04-29
KR100467442B1 true KR100467442B1 (en) 2005-01-24

Family

ID=37333763

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0062790A KR100467442B1 (en) 2002-10-15 2002-10-15 A method of treatment for dyeing wastewater by using catalyst oxidizing water

Country Status (1)

Country Link
KR (1) KR100467442B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684688A (en) * 1979-12-12 1981-07-10 Nojimagumi:Kk Terminal treatment of waste water
JPH0199689A (en) * 1987-10-09 1989-04-18 Suido Kiko Kk Method for removing organic matter in water
JP2000061445A (en) * 1999-08-02 2000-02-29 Seisui:Kk Effluent treating system using catalytic water of functional ceramic
KR20030065837A (en) * 2002-02-01 2003-08-09 이세진 Treatment of polluted water using catalysis oxidation number
KR20040013369A (en) * 2002-08-06 2004-02-14 부진영 Advanced technology of dyeing wastewater treatment using ceramic catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684688A (en) * 1979-12-12 1981-07-10 Nojimagumi:Kk Terminal treatment of waste water
JPH0199689A (en) * 1987-10-09 1989-04-18 Suido Kiko Kk Method for removing organic matter in water
JP2000061445A (en) * 1999-08-02 2000-02-29 Seisui:Kk Effluent treating system using catalytic water of functional ceramic
KR20030065837A (en) * 2002-02-01 2003-08-09 이세진 Treatment of polluted water using catalysis oxidation number
KR20040013369A (en) * 2002-08-06 2004-02-14 부진영 Advanced technology of dyeing wastewater treatment using ceramic catalyst

Also Published As

Publication number Publication date
KR20040034750A (en) 2004-04-29

Similar Documents

Publication Publication Date Title
Merayo et al. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry
Kalra et al. Advanced oxidation processes for treatment of textile and dye wastewater: a review
Péerez et al. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes
Fu et al. Comparison of alkyl xanthates degradation in aqueous solution by the O3 and UV/O3 processes: efficiency, mineralization and ozone utilization
US4012321A (en) Oxidation of refractory organics in aqueous waste streams by hydrogen peroxide and ultraviolet light
Krzemińska et al. Advanced oxidation processes for food industrial wastewater decontamination
JPH06226272A (en) Method of reducing content of organic chemical substance in waste liquid
Serrano Indirect electrochemical oxidation using hydroxyl radical, active chlorine, and peroxodisulfate
CA2328045A1 (en) Device and method for treating water with ozone generated by water electrolysis
Balcioğlu et al. Treatability of kraft pulp bleaching wastewater by biochemical and photocatalytic oxidation
JP5259311B2 (en) Water treatment method and water treatment system used therefor
JP2005169304A (en) Method of treating high concentration colored organic waste water
KR20190118998A (en) Water treatment method for eating water production
KR100467442B1 (en) A method of treatment for dyeing wastewater by using catalyst oxidizing water
CN112028408B (en) Advanced treatment method and system for aromatic and heterocyclic compound wastewater
EP4208412A1 (en) Wastewater ozone treatment
KR100477203B1 (en) Oxidative radical generator, radical solution and water treatment system thereof
RU2104960C1 (en) Method for purification of sewage
JP2000263049A (en) Method and apparatus for cleaning barn effluent
KR100596666B1 (en) Method for treating waste water
KR20040025985A (en) Technology of manufacturing ceramic catalyst and the way of its use
Guvenc et al. Effects of persulfate, peroxide activated persulfate and permanganate oxidation on treatability and biodegradability of leachate nanofiltration concentrate
JPH09155378A (en) Treatment process for organic foul water
KR20000059854A (en) Method of nitrogen removal in wastewater with photocatalytic technology
WO2023139403A1 (en) Method and system for water treatment using modified advanced oxidizing technology

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130104

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140108

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141114

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee