KR100467348B1 - Precipitation-reinforced nickel-aluminum fuel electrode and manufacturing method between intermetallic compounds - Google Patents

Precipitation-reinforced nickel-aluminum fuel electrode and manufacturing method between intermetallic compounds Download PDF

Info

Publication number
KR100467348B1
KR100467348B1 KR1019970033061A KR19970033061A KR100467348B1 KR 100467348 B1 KR100467348 B1 KR 100467348B1 KR 1019970033061 A KR1019970033061 A KR 1019970033061A KR 19970033061 A KR19970033061 A KR 19970033061A KR 100467348 B1 KR100467348 B1 KR 100467348B1
Authority
KR
South Korea
Prior art keywords
aluminum
nickel
intermetallic compound
anode
powder
Prior art date
Application number
KR1019970033061A
Other languages
Korean (ko)
Other versions
KR19990010301A (en
Inventor
윤영기
최영태
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1019970033061A priority Critical patent/KR100467348B1/en
Publication of KR19990010301A publication Critical patent/KR19990010301A/en
Application granted granted Critical
Publication of KR100467348B1 publication Critical patent/KR100467348B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8857Casting, e.g. tape casting, vacuum slip casting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

개시된 내용은 금속간 화합물 석출강화형 니켈-알루미늄 연료극 및 그 제조방법에 관한 것이다.The present disclosure relates to an intermetallic compound precipitation-reinforced nickel-aluminum anode and a method of manufacturing the same.

상기와 같은 금속간화합물 석출강화형 니켈-알루미늄 연료극 및 그 제조방법은, 니켈 분말과 알루미늄분말을 혼합하는 단계; 상기 혼합물에 용매를 첨가한후 볼밀링하는 단계; 볼밀링후 얻어진 니켈-알루미늄 슬러리에 포함된 기포를 제거하기 위해 탈포하는 단계; 상기 탈포후 그린 쉬트를 얻기 위해 테이프 캐스팅을 하고 건조하는 단계 및 상기 그린 쉬트를 환원연속소결하여 금속간 화합물을 석출하는 6 단계를 포함하고 있으며, 본 발명에 의해 니켈-알루미늄 연료극의 제작단가를 낮추고, 연료극의 크립강도는 유지하면서 전도의 저하는 방지할수 있음은 물론, 또한 연료극의 전해질의 소모를 감소시키는 우수성이 있다.The intermetallic compound precipitation-reinforced nickel-aluminum fuel electrode and its manufacturing method include the steps of mixing nickel powder and aluminum powder; Ball milling after adding a solvent to the mixture; Defoaming to remove bubbles contained in the nickel-aluminum slurry obtained after ball milling; Tape casting and drying in order to obtain the green sheet after the defoaming, and reducing and sintering the green sheet to precipitate the intermetallic compound by six steps, according to the present invention to reduce the production cost of the nickel-aluminum anode In addition, while maintaining the creep strength of the anode, it is possible to prevent the fall of conduction and also to reduce the consumption of the electrolyte of the anode.

Description

금속간화합물 석출강화형 니켈-알루미늄 연료극 및 그 제조방법Precipitation-reinforced nickel-aluminum anode and intermetallic compound manufacturing method

본 발명은 금속간화합물 석출강화형 니켈-알루미늄 연료극 및 그 제조방법에 관한 것으로, 더욱 상세하게는 환원소결방법에 의한 금속간화합물 석출강화형 니켈-알루미늄 연료극 및 그것을 제조하는 방법에 관한 것이다.The present invention relates to an intermetallic compound precipitation-reinforced nickel-aluminum fuel electrode and a method of manufacturing the same, and more particularly, to an intermetallic compound precipitation-reinforced nickel-aluminum fuel electrode and a method of manufacturing the same.

용융 탄산염형 연료전지에서 사용되던 종래의 니켈(nickel)연료극은 연료전지의 장기 운전동안 소결저항성 부족과 더불어 크립(creep)과 구조적 안정성문제를 겪어왔다.Conventional nickel fuel electrodes used in molten carbonate type fuel cells have suffered from creep and structural stability problems along with a lack of sintering resistance during long operation of the fuel cell.

이러한 문제점들은 다시 여러 가지 바람직하지 못한 결과들을 초래한다. 연료극에서는 기공의 구조와 본포의 변화가 일어나며, 전기적 접촉의 상실로 인한 접촉 저항의 증가가 발견된다. 더욱이 연료극은 미세기공의 형성으로 인해 전해질의 이동을 겪게 되어 전해질 크립과 연료극내의 전해질의 양이 증가하여 연료극의 성능이 떨어지게 된다고 알려져 왔다.These problems again lead to various undesirable consequences. In the anode, changes in pore structure and main fabric occur, and an increase in contact resistance due to loss of electrical contact is found. Furthermore, it has been known that the anode undergoes the movement of the electrolyte due to the formation of micropores, thereby increasing the amount of the electrolyte creep and the electrolyte in the anode, thereby decreasing the performance of the anode.

상기의 문제점들을 해결 또는 감소시키기 위해 연료극의 크립피지(creepage)를 감소시키고 소결저항성을 증가시키려는 다양한 시도가 행하여져왔다.In order to solve or reduce the above problems, various attempts have been made to reduce the creepage of the anode and to increase the sintering resistance.

그 중 한 방법은 니켈 연료극에 리튬 알루미네이트을 물리적 또는 화학적인 방법으로 분산시키는 것이다, 그러나 이 방법은 연료극에 분산된 리튬 알루미네이트 입자들이 금속입자 표면에만 한정되어 존재하고 니켈 금속입자내의 전위(dislocation)을 방지하는 사이트(site)로서 작용하지 못하기 때문에 효과적이지 못하다. 다양한 산화물 입자, 예를들어 산화알루미늄(Al2O3), 산화지르코늄(ZrO2), 산화티탄(TiO2), 산화마그네슘(MgO) 등의 분산도 상기와 마찬가지로 니켈 금속입자내로 산화물 입자가 분산되지 않고 표면에만 존재하는 경우 효과적이지 못하다.One method is to disperse lithium aluminate in the nickel anode physically or chemically, but in this method, lithium aluminate particles dispersed in the anode are present only at the metal particle surface and dislocation in the nickel metal particle It is not effective because it does not act as a site to prevent Dispersion of various oxide particles, such as aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), magnesium oxide (MgO), and the like, is dispersed in the nickel metal particles as described above. It is not effective if it exists only on the surface.

또 다른 방법은 연료극에 니켈-크롬(nickel-chromium)합금을 사용하여 전극내에 크롬산화물(Cr2O3)입자들을 분산시키는 것이다. 니켈-크롬 합금으로 제조된 전극은 단기간의 용융 탄산염형 연료전지운전에서는 크립과 소결저항성의 상당한 증가를 보였으나, 장기간의 운전에서는 전극내에 분산된 크롬산화물입자들에 의해 형성된 불안정한 구조에 의해 크리프와 물리적 변화가 가속되는 것으로 판명되었다. 크롬의 함량이 큰 경우 크립저항성은 상당히 크게 증가하지만 합금입자 내부의 크롬산화물을 소모하면서 합금입자의 바깥쪽으로 성장하는 크롬산화물층은 전해질에 의한 전극의 지나친 적심(wetting)과 가스/금속 계면에서의 선택적인 산화물 손실을 유발한다.Another method is to disperse chromium oxide (Cr 2 O 3 ) particles in the electrode using a nickel-chromium alloy on the anode. Electrodes made of nickel-chromium alloy showed a significant increase in creep and sinter resistance in short-term molten carbonate fuel cell operation, but in long-term operation, creep and sintering were caused by unstable structures formed by chromium oxide particles dispersed in the electrode. Physical changes have been found to accelerate. When the chromium content is large, the creep resistance increases considerably, but the chromium oxide layer that grows out of the alloy particles while consuming chromium oxide inside the alloy particles has excessive wetting of the electrode by the electrolyte and the gas / metal interface. Causes selective oxide loss.

또 다른 방법으로는 연료극 제조에 금속이 코팅된 세라믹 입자를 사용하는 것이다. 그러나 이 방법은 용융 탄산염형 연료전지운전 초기에 크립이 심하고 장기운전에서의 크립저항성이 충분히 검증되지 않았다.Another method is to use ceramic particles coated with metal to manufacture the anode. However, this method is severely creep at the beginning of the molten carbonate fuel cell operation and the creep resistance in long term operation has not been sufficiently verified.

최근들어 니켈-알루미늄 합금을 사용하여 전극을 제조하는 방법이 연료극 크리프문제를 해결하는 방법중 가장 효과적이라 여겨지고 있다.Recently, a method of manufacturing an electrode using a nickel-aluminum alloy is considered to be the most effective method for solving the anode creep problem.

그러나, 종래의 니켈-알루미늄 합금분말은 그 가격이 고가여서 니켈-알루미늄 연료극의 제작단가를 높이는 단점이 있다, 또한 종래의 니켈-알루미늄 합금 연료극은 알루미늄 산화물 입자의 분산으로 인해 연료극 전도도의 감소가 일어나며, 또한 알루미늄 산화물 입자가 전해질과 반응하여 전해질을 소모하는 단점이 있다. However, the conventional nickel-aluminum alloy powder has a disadvantage of increasing the manufacturing cost of the nickel-aluminum anode because of its high price. Also, the conventional nickel-aluminum alloy anode has a decrease in anode conductivity due to dispersion of aluminum oxide particles. In addition, aluminum oxide particles have a disadvantage of reacting with the electrolyte to consume the electrolyte.

본 발명의 목적은 니켈분말과 알루미늄분말을 사용하여 금속간화합물 석출강화형 니켈-알루미늄 연료극 및 그것을 제공하는데 있다.An object of the present invention is to provide an intermetallic compound precipitation-reinforced nickel-aluminum anode using nickel powder and aluminum powder and the same.

즉, 니켈분말과 알루미늄 분말을 혼합하여 환원소결과정에서 소결온도, 온도를 내리는 속도 및 알루미늄 분말의 양을 조절하여 금속간화합물을 석출하는 금속간화합물 석출강화형 니켈-알루미늄 연료극 및 의 그의 제조방법을 제공하는데 있다.That is, an intermetallic compound precipitation-reinforced nickel-aluminum fuel electrode and a method for manufacturing the intermetallic compound which precipitate the intermetallic compound by mixing the nickel powder and the aluminum powder, and controlling the sintering temperature, the rate of decreasing the temperature and the amount of the aluminum powder in the reduction resultant. To provide.

상기와 같은 본 발명의 목적을 달성하기 위한 본 발명인 금속간화합물 석출강화형 니켈-알루미늄 연료극 및 그 제조방법은, 니켈분말과 알루미늄분말을 사용한는 것을 특징으로 한다.The intermetallic compound precipitation-reinforced nickel-aluminum fuel electrode of the present invention and its manufacturing method for achieving the object of the present invention as described above is characterized in that the use of nickel powder and aluminum powder.

즉, 본 발명은 니켈 분말과 알루미늄분말을 혼합하는 제 1단계; 상기 혼합물에 용매를 첨가한후 볼밀링하는 제 2단계; 볼밀링후 얻어진 니켈-알루미늄 슬러리에 포함된 기포를 제거하기 위해 탈포하는 제 3단계; 상기 탈포후 그린 쉬트를 얻기 위해 테이프 캐스팅을 하고 건조하는 제 4단계 및 상기 그린 쉬트를 환원연속소결하여 금속간 화합물을 석출하는 제 5단계를 포함하는 것을 특징으로 한다.That is, the present invention comprises the first step of mixing the nickel powder and aluminum powder; A second step of ball milling after adding a solvent to the mixture; A third step of defoaming to remove bubbles contained in the nickel-aluminum slurry obtained after ball milling; And a fourth step of performing tape casting and drying to obtain the green sheet after defoaming, and a fifth step of depositing intermetallic compounds by reducing continuous sintering of the green sheet.

이하에서 본 발명의 바람직한 실시례를 상세히 설명한다. 그러나 하기한 실시례는 본 발명의 구성 및 효과를 입증하기 위한 본 발명의 일실시례일뿐 본 발명이 하기한 실시례에 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in detail. However, the following examples are only examples of the present invention for demonstrating the constitution and effects of the present invention, and the present invention is not limited to the following examples.

우선, 본 발명의 바람직한 실시례에 따른 금속간화합물 석출강화형 니켈-알루미늄 연료극의 제조방법은 니켈분말과 알루미늄분말을 혼합하는 단계, 혼합물에 용매를 넣고 볼밀링하는 단계, 상기 혼합물을 탈포하는 단계, 탈포후 그린 쉬트를 만드는 단계, 그린 쉬트를 연속소결하여 금속간 화합물을 석출하는 단계로 구별되어질 수 있다.First, a method for preparing an intermetallic compound precipitation-reinforced nickel-aluminum anode according to a preferred embodiment of the present invention includes mixing a nickel powder and an aluminum powder, adding a solvent to the mixture, ball milling, and defoaming the mixture. After degassing, the green sheet may be prepared, and the green sheet may be continuously sintered to precipitate an intermetallic compound.

니켈분말과 알루미늄분말을 혼합하는 단계에서 니켈분말과 알루미늄분말을 97:3 내지 90:10, 바람직하게는 95:5의 무게비로 혼합한다. 상기의 니켈분말은 입도의 크기가 2㎛내지 3㎛인 것이 적당하다.In the step of mixing the nickel powder and the aluminum powder, the nickel powder and the aluminum powder are mixed in a weight ratio of 97: 3 to 90:10, preferably 95: 5. The nickel powder is preferably a particle size of 2㎛ to 3㎛.

상기의 혼합분말에 용매를 첨가하여 볼밀링한다.The solvent is added to the mixed powder and ball milled.

용매는 알루미늄과 혼합하지 않는 유기용제를 사용하며, 용매와 니켈-알루미늄 혼합물의 비율은 1:0.7 내지 1:1.2, 바람직하게는 1:1의 무게비로 하는 것이 적당하다. 용매로 사용이 적당한 것으로는 톨루엔, 헵탄, 헥산등이 있다.The solvent is an organic solvent which is not mixed with aluminum, and the ratio of the solvent and the nickel-aluminum mixture is suitably 1: 0.7 to 1: 1.2, preferably 1: 1. Suitable solvents include toluene, heptane, hexane and the like.

볼밀링시 상기의 혼합물에 적당량의 분산제, 소포제등을 혼합하며, 볼밀링 시간은 28시간 내지 48시간으로 하는 것이 적당하겠다.At the time of ball milling, an appropriate amount of a dispersant, an antifoaming agent, etc. is mixed with the mixture, and the ball milling time is appropriately set to 28 hours to 48 hours.

볼밀링후 얻어진 니켈-알루미늄 슬러리에 포함된 기포를 제거하기 위해 탈포한다. 탈포는 진공펌프로 하며, 탈포시간은 10분 내지 30분 가량으로 하는 것이 좋다.After ball milling, defoaming is carried out to remove bubbles contained in the obtained nickel-aluminum slurry. Defoaming is done with a vacuum pump, the defoaming time is preferably about 10 to 30 minutes.

탈포가 끝난후 테이프 캐스팅을 하고 건조하여 그린 쉬트를 얻는다. 그린 쉬트는 두께가 0.7㎜내지 0.8㎜되는 얇은 것을 얻게된다.After defoaming, the tape is cast and dried to obtain a green sheet. The green sheet is obtained with a thin thickness of 0.7 mm to 0.8 mm.

상기의 그린 쉬트를 연속소결로에서 환원연속소결한다. 환원소결을 위해 그린 쉬트를 질소/수소 환원분위기에서 연속소결한다. 연속소결로에서 최고온도부분은 1000℃내지 1300℃로 하는 것이 바람직하며, 연속소결의 시간은 30분에서 5시간사이로, 바람직하게는 30분이 적당하다.The green sheet is subjected to reduction continuous sintering in a continuous sintering furnace. The green sheet is continuously sintered in a nitrogen / hydrogen reduction atmosphere for reduction sintering. The maximum temperature portion of the continuous sintering furnace is preferably 1000 ℃ to 1300 ℃, the time of the continuous sintering is 30 minutes to 5 hours, preferably 30 minutes is appropriate.

배치(batch)형의 로일경우에도 상기와 같이 최고온도는 1000℃내지 1300℃로 하는 것이 바람직하며, 소결시간은 30분에서 5시간사이로, 바람직하게는 30분으로 하는 것이 적당하다.Even in the case of a batch furnace, the maximum temperature is preferably 1000 ° C to 1300 ° C as described above, and the sintering time is preferably 30 minutes to 5 hours, preferably 30 minutes.

소결과정에서 알루미늄은 액상을 형성하고, 알루미늄의 표면은 환원분위기 가스에 불순물을 포함한 산소와 반응하여 산화물을 형성하고, 니켈과 접촉한 알루미늄은 니켈에 고용되어 액상으로 존재하는 알루미늄은 사라지게 된다.In the sintering process, aluminum forms a liquid phase, and the surface of aluminum reacts with oxygen including impurities in a reducing atmosphere gas to form an oxide, and aluminum in contact with nickel is dissolved in nickel so that aluminum existing in the liquid phase disappears.

소결후 온도를 내리는 과정에서 석출강화과정이 이루어진다.Precipitation strengthening process takes place in the process of lowering the temperature after sintering.

즉, 소결후 온도를 내리는 과정에서 니켈에 과포화된 알루미늄은 니켈입자의 표면과 내부에서 알루미늄니켈(Ni3Al)형태의 금속간 화합물로 석출되게 된다.That is, the aluminum supersaturated in nickel in the process of lowering the temperature after sintering is precipitated as an intermetallic compound in the form of aluminum nickel (Ni 3 Al) on the surface and inside of the nickel particles.

상기와 같은 금속간 화합물의 석출은 니켈입자의 소성변형과 체적확산을 막아 크립과 후소결을 억제하는 역할을 한다. 이러한 방식을 석출강화라 한다.Precipitation of the intermetallic compound as described above serves to prevent creep and post sintering by preventing plastic deformation and volume diffusion of the nickel particles. This method is called precipitation strengthening.

석출되는 금속간 화합물의 양과 분포는 첨가되는 알루미늄 분말의 양과 소결온도 및 소결온도을 내리는 속도에 의해 결정된다.The amount and distribution of precipitated intermetallic compound is determined by the amount of aluminum powder added, the rate of sintering temperature and the sintering temperature decrease.

즉 소결온도가 높아질수록 니켈에 고용된후 석출되는 알루미늄의 양이 많으며, 온도를 내리는 속도가 빠를수록 석출되는 입자의 크기가 작아지므로 석출강화에 유리하다.That is, as the sintering temperature increases, the amount of aluminum precipitated after solid solution in nickel increases, and the faster the temperature is lowered, the smaller the size of precipitated particles is, which is advantageous for strengthening precipitation.

본 발명의 또 다른 목적인 금속간화합물 석출강화형 니켈-알루미늄 연료극의 제조에 있어서, 상기의 제 1단계 내지 제 5단계의 방법에 따라 제조된 금속간화합물 석출강화형 니켈-알루미늄 합금 연료극의 제조에 그 특징이 있다.In the production of the intermetallic compound precipitation-reinforced nickel-aluminum fuel electrode, which is another object of the present invention, to the preparation of the intermetallic compound precipitation-reinforced nickel-aluminum alloy fuel electrode prepared according to the method of the first to fifth steps. It has its features.

본 발명에 따른 금속간화합물 석출강화형 니켈-알루미늄 연료극 및 그 제조방법에 의해, 첫째 종래의 니켈-알루미늄분말을 사용할 때 보다 니켈-알루미늄 연료극의 제작단가를 획기적으로 낮출수 있으며, 둘째 니켈 입자내에 알루미늄니켈인 금속간 화합물을 석출시키므로 연료극의 크립강도는 유지하면서 전도도의 저하를 방지하는 우수성이 있다.The intermetallic compound precipitation-reinforced nickel-aluminum anode and the manufacturing method thereof according to the present invention can significantly lower the manufacturing cost of the nickel-aluminum anode than the first conventional nickel-aluminum powder, and secondly in the nickel particles. Since the intermetallic compound, which is aluminum nickel, is precipitated, there is an excellent effect of preventing the drop in conductivity while maintaining the creep strength of the anode.

또한, 본 발명은 종래의 니켈-알루미늄 합금 연료극에서 발생하는 전해질의 소모를 감소하는 우수성이 있다.In addition, the present invention is excellent in reducing the consumption of the electrolyte generated in the conventional nickel-aluminum alloy anode.

Claims (2)

금속간화합물 석출강화형 니켈-알루미늄 연료극의 제조방법에 있어서,In the method for producing an intermetallic compound precipitation strengthening nickel-aluminum anode, 니켈분말과 알루미늄 분말의 무게비를 97:3 내지 90:10, 바람직하게는 95:5로 함으로써 니켈분말과 알루미늄분말을 혼합하는 제1 단계;A first step of mixing the nickel powder and the aluminum powder by setting the weight ratio of the nickel powder and the aluminum powder to 97: 3 to 90:10, preferably 95: 5; 알루미늄과 반응하지 않는 유기용제를 상기 니켈-알루미늄 혼합물에 대해 무게비로 1:0.7 내지 1:1.2, 바람직하게는 1:1로 첨가한 후 볼밀링하는 제2 단계;A second step of ball milling the organic solvent which does not react with aluminum with respect to the nickel-aluminum mixture in a weight ratio of 1: 0.7 to 1: 1.2, preferably 1: 1; 상기 볼밀링후 얻어진 니켈-알루미늄 슬러리에 포함된 기포를 제거하기 위해 탈포하는 제3 단계;A third step of defoaming to remove bubbles contained in the nickel-aluminum slurry obtained after the ball milling; 상기 탈포후 그린쉬트를 얻기 위해 테이프 캐스팅을 하고 건조하는 제4 단계; 및 A fourth step of performing tape casting and drying to obtain the green sheet after defoaming; And 상기 그린쉬트를 100℃ 내지 1300℃의 소결온도에서 환원연속소결하여 금속간 화합물을 석출하되, 금속간 화합물의 석출량과 분포는 상기 알루미늄 분말의 양과 소결온도 및 온도를 내리는 속도에 의해 결정하는 제5단계를 포함하여 이루어지는 금속간화합물 석출강화형 니켈-알루미늄 연료극의 제조방법.The green sheet is reduced and continuously sintered at a sintering temperature of 100 ° C. to 1300 ° C. to precipitate the intermetallic compound, wherein the amount and distribution of the intermetallic compound are determined by the amount of the aluminum powder, the sintering temperature and the rate of decreasing the temperature. A method for producing an intermetallic compound precipitation-reinforced nickel-aluminum fuel electrode comprising five steps. 제1항의 방법에 의해 제조된 산화물 금속간화합물 석출강화형 니켈-알루미늄 연료극.An oxide intermetallic compound precipitation-reinforced nickel-aluminum anode prepared by the method of claim 1.
KR1019970033061A 1997-07-16 1997-07-16 Precipitation-reinforced nickel-aluminum fuel electrode and manufacturing method between intermetallic compounds KR100467348B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970033061A KR100467348B1 (en) 1997-07-16 1997-07-16 Precipitation-reinforced nickel-aluminum fuel electrode and manufacturing method between intermetallic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970033061A KR100467348B1 (en) 1997-07-16 1997-07-16 Precipitation-reinforced nickel-aluminum fuel electrode and manufacturing method between intermetallic compounds

Publications (2)

Publication Number Publication Date
KR19990010301A KR19990010301A (en) 1999-02-18
KR100467348B1 true KR100467348B1 (en) 2005-05-17

Family

ID=37302496

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970033061A KR100467348B1 (en) 1997-07-16 1997-07-16 Precipitation-reinforced nickel-aluminum fuel electrode and manufacturing method between intermetallic compounds

Country Status (1)

Country Link
KR (1) KR100467348B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100980205B1 (en) 2008-12-30 2010-09-03 두산중공업 주식회사 A method for manufacturing reinforced green sheet for in-situ sintering anode of molten carbonate fuel cell

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100314513B1 (en) * 1999-10-25 2001-11-30 박호군 An Alloy Anode for Molten Carbonate Fuel Cell and a Process for Production Thereof
KR100852759B1 (en) * 2007-03-27 2008-08-18 한국과학기술연구원 Anode for molten carbonate fuel cell of electrolyte added ni-al alloy and method for preparing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301966A (en) * 1989-05-17 1990-12-14 Matsushita Electric Ind Co Ltd Manufacture of electrode for fuel cell
JPH03141555A (en) * 1989-10-25 1991-06-17 Sanyo Electric Co Ltd Manufacture of fuel electrode for molten carbonate fuel cell
JPH0433265A (en) * 1990-05-28 1992-02-04 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of electrode for molten carbonate fuel cell
KR0123709B1 (en) * 1994-08-17 1997-12-09 김광호 Anode for molten carbonate fuel cell and its synthesizing method
KR100403133B1 (en) * 1996-06-19 2004-02-25 한국전력공사 Method for making reinforced anode by dispersing metal salt-added oxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301966A (en) * 1989-05-17 1990-12-14 Matsushita Electric Ind Co Ltd Manufacture of electrode for fuel cell
JPH03141555A (en) * 1989-10-25 1991-06-17 Sanyo Electric Co Ltd Manufacture of fuel electrode for molten carbonate fuel cell
JPH0433265A (en) * 1990-05-28 1992-02-04 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of electrode for molten carbonate fuel cell
KR0123709B1 (en) * 1994-08-17 1997-12-09 김광호 Anode for molten carbonate fuel cell and its synthesizing method
KR100403133B1 (en) * 1996-06-19 2004-02-25 한국전력공사 Method for making reinforced anode by dispersing metal salt-added oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100980205B1 (en) 2008-12-30 2010-09-03 두산중공업 주식회사 A method for manufacturing reinforced green sheet for in-situ sintering anode of molten carbonate fuel cell

Also Published As

Publication number Publication date
KR19990010301A (en) 1999-02-18

Similar Documents

Publication Publication Date Title
US5312582A (en) Porous structures from solid solutions of reduced oxides
JP3003163B2 (en) Method for producing electrode for molten carbonate fuel cell
US20230361339A1 (en) Garnet-mgo composite thin membrane and method of making
RU2336369C2 (en) Method of fabricating inert anode for production of aluminium by means of electrolisis in melt
KR100759831B1 (en) Reinforced matrix for molten carbonate fuel cell and method for preparing the same
KR100467348B1 (en) Precipitation-reinforced nickel-aluminum fuel electrode and manufacturing method between intermetallic compounds
CN1340481A (en) Manufacture method for coat of refractory member
KR100314513B1 (en) An Alloy Anode for Molten Carbonate Fuel Cell and a Process for Production Thereof
KR100441939B1 (en) Nickel-aluminum alloy fuel electrode and simplified production method thereof to improve creepage and sintering resistance, activate electrochemical reaction and porosity of the electrode
KR100441940B1 (en) Preparation method of nickel-aluminum-titanium fuel electrode for melt carbonate type fuel cell to improve performance of the resulted electrode with reduced cost
KR100681771B1 (en) Ni-Al alloy anode for molten carbonate fuel cell by in-situ sintering the Ni-Al alloy and Method for preparing the same
KR100350364B1 (en) Ceramic Fiber Reinforced Matrix for Molten Carbonate Fuel Cell and a Process for Production Thereof
KR20000043716A (en) Method for manufacturing a fuel electrode
KR100467347B1 (en) Manufacture method of oxide dispersed fuel electrode and fuel electrode
JPH02501666A (en) Stable anode made of cerium oxy compound for molten salt electrolysis acquisition and method for producing the same
KR100439855B1 (en) Anode for Molten Carbonate Fuel Cell and Molten Carbonate Fuel Cell comprising the said Anode
KR102557866B1 (en) Oxide-based solid electrolyte and manufacturing method thereof
US6238619B1 (en) Process for the production of an electrode for a fused carbonate fuel cell
JPH0520872B2 (en)
KR100779741B1 (en) The reinforced matrix containing sintering aids for molten carbonate fuel cell
KR101158317B1 (en) Preparation method of ternary alloy anode for molten carbonate fuel cell
JPH0717928B2 (en) Method for producing porous Cu alloy sintered body
JPH0356631A (en) Production of sintered plate of porous cu alloy for anode electrode of fused carbonate type fuel cell
CN117004256A (en) Metal electrode for aluminum electrolysis and coating composition and preparation method thereof
KR100331083B1 (en) An anode of molten carbonate fuel cell

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130102

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140102

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150102

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 13

EXPY Expiration of term