JPH0356631A - Production of sintered plate of porous cu alloy for anode electrode of fused carbonate type fuel cell - Google Patents

Production of sintered plate of porous cu alloy for anode electrode of fused carbonate type fuel cell

Info

Publication number
JPH0356631A
JPH0356631A JP19218889A JP19218889A JPH0356631A JP H0356631 A JPH0356631 A JP H0356631A JP 19218889 A JP19218889 A JP 19218889A JP 19218889 A JP19218889 A JP 19218889A JP H0356631 A JPH0356631 A JP H0356631A
Authority
JP
Japan
Prior art keywords
alloy
plate
porous
powder
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19218889A
Other languages
Japanese (ja)
Inventor
Koji Hoshino
孝二 星野
Toru Kono
河野 通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP19218889A priority Critical patent/JPH0356631A/en
Publication of JPH0356631A publication Critical patent/JPH0356631A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the sintered plate of a porous Cu alloy which is free from warpage and deflection by compounding a specific ratio of LiAlO2 powder with Cu alloy powder having a specific compsn. consisting of Al, Zr, Ti, Cr, etc., and Cu and subjecting the mixture to molding, oxidation sintering and then to reducing. CONSTITUTION:The LiAlO2 powder is compounded and mixed at 1 to 5% with the Cu alloy powder consisting of 2 to 6wt.% >=1 kinds of Al, Zr, Ti, and Cr and the balance Cu and unavoidable impurities. An org. binder, etc., are added to this powder mixture as a raw material and the mixture is molded to a plate molding by a doctor blade method. After this molding is solidified by removing the binder, the molding is heated to 400 to 900 deg.C in an acidic atmosphere and is thereby oxidation sintered. The resulted planar oxidation sintered body is heated to 400 to 900 deg.C in a reducing atmosphere of hydrogen, etc. The Cu is mainly reduced in this way to obtain the structure in which the fine oxide particles are uniformly dispersed in the Cu or Cu alloy base. The sintered plate of the porous Cu alloy for the anode electrode of fused carbonate type fuel cell which obviates the generation of the warpage and deflection is obtd. at a good yield in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、主としてCuを還元してCuまたはCu合
金素地中に微細なAfi,Zr,TI .およびC『の
うちIFliまたは2FIi以上からなる酸化物粒子を
均一に分散せしめた組織を有する溶融炭酸塩型燃I41
tS池のアノード電極用多孔質Cu合金焼結板の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention mainly involves reducing Cu to produce fine Afi, Zr, TI. Molten carbonate type fuel I41 having a structure in which oxide particles consisting of IFli or 2FIi or more are uniformly dispersed
The present invention relates to a method for manufacturing a porous Cu alloy sintered plate for an anode electrode of a tS pond.

〔従来の技術〕[Conventional technology]

溶進炭酸塩型燃料電池のアノード電極として、Cuまた
はCu合金素地中に微細なAJ,Zr,TI,およびC
『のうち18または2種以上(以下、合金元素という)
の酸化物粒子を均一に分散せしめた組織を有する多孔質
Cu合金焼結板が提案されている(特開昭H− 165
84号公報参照)。
As an anode electrode of a molten carbonate fuel cell, fine AJ, Zr, TI, and C are incorporated into a Cu or Cu alloy matrix.
18 or 2 or more of the following (hereinafter referred to as alloying elements)
A porous Cu alloy sintered plate having a structure in which oxide particles of
(See Publication No. 84).

この多孔ii C u合金焼結板の素地中に分散する酸
化物粒子は、多孔質Cu合金焼結板の硬度およびクリー
プ強度を向上させる作用をする。
The oxide particles dispersed in the matrix of the porous Cu alloy sintered plate serve to improve the hardness and creep strength of the porous Cu alloy sintered plate.

上記多孔質Cu合金焼結板は、上記合金元素を含有する
Cu合金粉末を成型して成型体とし、上記成型体を酸性
雰囲気中、温度:400〜900℃に加熱して酸化焼結
し、ついで、この酸化焼結体を還元雰囲気中、温度二6
00〜900℃に加熱し、主としてCuを還元せしめ、
CuまたはCu合金素地中に微細な合金元素の酸化物粒
子を均一に分散せしめることにより製造される(特開昭
62 − 281027号公報および特開昭63− 7
8833号公報参照)。
The porous Cu alloy sintered plate is obtained by molding Cu alloy powder containing the alloying element to form a molded body, heating the molded body in an acidic atmosphere at a temperature of 400 to 900°C to oxidize and sinter it, Next, this oxidized sintered body was heated at a temperature of 26°C in a reducing atmosphere.
Heating at 00 to 900°C to mainly reduce Cu,
It is manufactured by uniformly dispersing fine oxide particles of alloying elements in Cu or Cu alloy matrix (Japanese Patent Laid-Open Nos. 62-281027 and 63-7).
(See Publication No. 8833).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように、溶融炭酸塩型燃料電池のアノード電極と
して用いられる多孔質のCu合金焼結板は、上記合金元
素を含有するCu合金粉末を戊型して得られた板状成型
体を酸性雰囲気中にて加熱して酸化焼結し、ついで、こ
の板状酸化焼結体を還元雰囲気中にて加熱することによ
り製造されるが、上記酸性雰囲気中加熱に際して大きく
膨脹し、還元雰囲気中加熱に際して大きく収縮するため
に、反りまたは撓みが発生し、変形した多孔質Cu合金
焼桔板が得られやすい(ただし上記酸性雰囲気中加熱で
の膨脹量と、還元雰囲気中加熱での収縮量とは、互いに
相殺するので寸法誤差は少むい)。
As mentioned above, porous Cu alloy sintered plates used as anode electrodes of molten carbonate fuel cells are produced by molding Cu alloy powder containing the above-mentioned alloying elements. It is manufactured by heating in an atmosphere to oxidize and sinter, and then heating this plate-shaped oxidized sintered body in a reducing atmosphere, but it expands greatly when heated in the acidic atmosphere, and is heated in a reducing atmosphere. Due to the large shrinkage during heating, warping or deflection occurs, and a deformed porous Cu alloy sintered plate is likely to be obtained. , the dimensional errors are small because they cancel each other out).

上記反りまたは撓みが発生し変形した多孔質Cu合金焼
結板をアノード電極とし、このアノード電極を電解質板
と空気チャンネルの間に挟圧した状態で溶融炭酸塩型燃
料電池に組込むと、屯解質板とアノード電極の間に間隙
が生じて起電力が低下したりアノード電極に亀裂が発生
するなどの問題点があった。
When the porous Cu alloy sintered plate which has been deformed due to warping or bending is used as an anode electrode, and this anode electrode is inserted into a molten carbonate fuel cell with pressure between the electrolyte plate and the air channel, There were problems such as a gap formed between the quality plate and the anode electrode, resulting in a decrease in electromotive force and cracks in the anode electrode.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者らは、溶融炭酸塩型燃料電池のアノー
ド電極に用いる上記反りまたは撓みのない多孔質Cu合
金焼結板を製造すべく研究を行った結果、 Cu合金粉末に、アルミン酸リチウム(LIANO2)
粉末=1〜5重量%を配合し混合して得られた混合粉末
の成型体を酸性雰囲気中加熱して酸化焼結し、ついで、
この酸化焼結体を還元雰囲気中にて加熱すると、上記酸
性雰囲気中加熱での膨脹が少なく、また還元雰囲気中加
熱での収縮が少ないために、反りまたは撓みの発生が少
’t < 、変形のない多孔質Cu合金焼結板が得られ
るという知見を得たのである。
Therefore, the present inventors conducted research to produce a porous Cu alloy sintered plate that does not warp or bend as described above for use in the anode electrode of a molten carbonate fuel cell, and found that lithium aluminate was added to Cu alloy powder. (LIANO2)
A molded body of mixed powder obtained by blending and mixing powder = 1 to 5% by weight is heated in an acidic atmosphere to oxidize and sinter, and then,
When this oxidized sintered body is heated in a reducing atmosphere, there is little expansion when heated in the acidic atmosphere, and there is little contraction when heated in a reducing atmosphere, so there is little warpage or deformation. They found that it is possible to obtain a porous Cu alloy sintered plate free of porosity.

この発明は、かかる知見にもとづいてなされたものであ
って、 原料粉末からドクターブレード法により板状成型体を成
型し、脱バインダーして固化した後、上記板状成型体を
酸性雰囲気中、温度=400〜900℃に加熱して酸化
焼結し、ついで、この板状酸化焼結体を還元雰囲気中、
温度=400〜900℃に加熱し、主としてCuを還元
してCuまたはCu合金素地中に微細ti酸化物粒子を
均一に分散せしめた組織を有する溶融炭酸塩型燃料電池
のアノード電極用多孔fj C u合金焼結板を製造す
る方法において、上記原料粉末として、合金元素=2〜
6iI!Q%を含有し、残りがCuおよび不可避不純物
からなるCu合金1)末に、アルミン酸リチウムわ}末
:1〜5ffi量%を配合し混合して得られた混合わ)
末を用いる溶融炭酸塩型斑料電池のアノード電極用多孔
質Cu合金焼結板の製造方法に特徴を有するものである
The present invention was made based on this knowledge, and consists of molding a plate-shaped molded body from raw material powder by a doctor blade method, removing the binder and solidifying the plate-shaped molded body, and then heating the plate-shaped molded body in an acidic atmosphere at temperature. = 400 to 900°C for oxidative sintering, and then this plate-shaped oxidized sintered body was heated in a reducing atmosphere.
Porous fj C for an anode electrode of a molten carbonate fuel cell having a structure in which fine Ti oxide particles are uniformly dispersed in a Cu or Cu alloy matrix by heating to a temperature of 400 to 900°C and mainly reducing Cu. In the method for manufacturing a u-alloy sintered plate, the raw material powder contains alloying elements = 2 to
6iI! A mixture obtained by blending and mixing 1 to 5 ffi of lithium aluminate powder to Cu alloy 1) containing Q% and the rest consisting of Cu and unavoidable impurities.
The present invention is characterized by a method for manufacturing a porous Cu alloy sintered plate for an anode electrode of a molten carbonate type speckled material battery.

一般に、fa融炭酸塩型燃料電池のアノード電極は、5
0〜80容量%の気孔率を有することが必要であり、そ
のためには、 平均粒径:2〜20−のCu合金粉末、平均粒径: 0
.05〜5pのアルミン酸リチウム粉末、 を用いることが必要である。
Generally, the anode electrode of a fused carbonate fuel cell is 5
It is necessary to have a porosity of 0 to 80% by volume, and for that purpose, Cu alloy powder with an average particle size of 2 to 20 -, an average particle size of 0
.. It is necessary to use 05-5p lithium aluminate powder.

つぎに、この発明の溶融炭酸壇型世料電池のアノード電
極用多孔質Cu合金焼結阪の製造方法における限定理由
について説明する。
Next, the reason for the limitation in the method for manufacturing the porous Cu alloy sintered plate for the anode electrode of the molten carbonate battery of the present invention will be explained.

(a)  Cu合金粉末における合金元素の含有ユCu
合金粉末における合金元素は、Al、Zr,TI,およ
びCrのうちIFJまたは2種以上であるが、そのほと
んどが酸化物となって多孔質Cu合金焼結板の素地中に
分散する。しかし、その含有量が2ff!ffi%未満
では、製造される多孔質Cu合金焼結板における酸化物
粒子の存在効果が少なく、一方、その含有量が6重量%
を越えると、分散する酸化物粒子の成長が著しく収り、
粗大化して多孔質Cu合金焼結板に割れが生じる原因に
なる。したがって、上記Cu合金粉末における合金元素
の含有量は、2〜6重量%に定めた。
(a) Content of alloying elements in Cu alloy powder
The alloying elements in the alloy powder are IFJ or two or more of Al, Zr, TI, and Cr, and most of them become oxides and are dispersed in the matrix of the porous Cu alloy sintered plate. However, the content is 2ff! If the content is less than ffi%, the effect of the presence of oxide particles on the produced porous Cu alloy sintered plate will be small; on the other hand, if the content is less than 6% by weight,
When the value exceeds 1, the growth of the dispersed oxide particles significantly slows down.
It becomes coarse and causes cracks to occur in the porous Cu alloy sintered plate. Therefore, the content of alloying elements in the Cu alloy powder was set to 2 to 6% by weight.

(b)  アルミン酸リチウム粉末 上記Cu合金粉末にアルミン酸リチウム粉末を配合し混
合して得られた混合粉末の板状成型体を酸性雰囲気中で
加熱し酸化焼結すると、膨脹工は少なく、ついで、この
板状酸化焼桔体を還元雰囲気中で加熱すると、収縮量は
少ない。しかしながら上記アルミン酸リチウム粉末の配
合量が1重量%未満では、所望の効果が得られず、一方
、5ffi量%を越えて含有すると、板状酸化焼結体の
強度が低下し、起電力も弱くなる。
(b) Lithium aluminate powder When a plate-shaped molded body of the mixed powder obtained by blending and mixing the above-mentioned Cu alloy powder with lithium aluminate powder is heated in an acidic atmosphere and oxidized and sintered, there is little expansion. When this plate-shaped oxidized sintered body is heated in a reducing atmosphere, the amount of shrinkage is small. However, if the content of the lithium aluminate powder is less than 1% by weight, the desired effect cannot be obtained. On the other hand, if the content exceeds 5ffi, the strength of the plate-shaped oxidized sintered body decreases and the electromotive force also decreases. become weak.

したがって、Cu合金粉末に配合されるアルミン酸リチ
ウム粉末は、1〜5重量%に定めた。
Therefore, the amount of lithium aluminate powder added to the Cu alloy powder was determined to be 1 to 5% by weight.

〔実 施 例〕〔Example〕

つぎに、この発明を、実施例にもとづいて具体的に説明
する。
Next, the present invention will be specifically explained based on examples.

原料粉末として、第1表に示される成分組成を有し、平
均粒径: 10mのCu合金粉末、および平均粒径:0
.5−のアルミン酸リチウム粉末を用意し、これら粉末
を第1表に示される配合組成となるように混合して混合
粉末とし、これとは別途用意した有機バインダーとして
のポリビニルブチラール(PVB) 、溶剤としてのト
ルエンとエタノールの重量比で1=1の混合液、可塑剤
としてのポリエチレングリコール、および解膠剤として
のオレイン酸メチルを、ffl量比で、 混合粉末:有機バインダー二溶剤二可塑剤:fiII膠
剤−200: 5 :90: 2 : 3の割合いで配
合し、撹拌混合してスラリー状とし、このスラリーをド
クターブレード法によりキャリャーテープ上に塗布し、
縦: goam、横=40■、厚さ:I.Ow+C7)
塗布層を形成し、この塗布層を赤外線乾燥器にて溶剤を
揮発させて板状成型体とし、ついでこれら板状成型体を
空気中で、温度=450℃に30分間加熱保持し、脱バ
インダーして固化した後、同じく空気中で、第1表に示
される条件で酸化燐結し、引続いてこの結果得られた酸
化焼結板を水素気流中で第1表に示される条件で、主と
してCuを還元し上記合金元素の酸化物粒子は還元せず
に素地中に分散残存せしめることにより、本発明法1〜
15、比較法1〜2および従来法をそれぞれ実施し、多
孔質Cu合金焼結板を製造した。
The raw material powder was Cu alloy powder having the component composition shown in Table 1, average particle size: 10 m, and average particle size: 0.
.. 5- Lithium aluminate powder was prepared, and these powders were mixed to have the composition shown in Table 1 to form a mixed powder, and in addition to this, polyvinyl butyral (PVB) as an organic binder and a solvent prepared separately. A mixture of toluene and ethanol in a weight ratio of 1=1 as a plasticizer, polyethylene glycol as a plasticizer, and methyl oleate as a deflocculant in an ffl weight ratio: Mixed powder: Organic binder, two solvents, and two plasticizers: fiII glue-200: 5: 90: 2: 3 ratio was mixed and stirred to form a slurry, and this slurry was applied onto a carrier tape using a doctor blade method.
Length: goam, width = 40cm, thickness: I. Ow+C7)
A coating layer is formed, and the solvent is evaporated from this coating layer using an infrared dryer to form a plate-shaped molded body.The plate-shaped molded body is then heated and held in air at a temperature of 450°C for 30 minutes to remove the binder. After solidification, oxidation phosphorization was carried out under the conditions shown in Table 1, also in air, and the resulting oxidized sintered plate was then oxidized and sintered in a hydrogen stream under the conditions shown in Table 1. By mainly reducing Cu and leaving the oxide particles of the alloying elements dispersed in the matrix without reducing them, methods 1 to 1 of the present invention can be carried out.
15. Comparative Methods 1 and 2 and the conventional method were each carried out to produce porous Cu alloy sintered plates.

tlお、比較法1〜2は、いずれもCu合金粉末の合金
元素の含有量またはアルミン酸リチウムの配合量がこの
発明の範囲から外れたものであり、第1表において、こ
の発明の範囲から外れた値に※印を付して示した。
tl Oh, in Comparative Methods 1 and 2, the content of alloying elements in the Cu alloy powder or the blending amount of lithium aluminate is outside the scope of this invention, and in Table 1, Outlier values are marked with *.

また、アルミン酸リチウムを全く含まないCu合金粉末
から多孔賀Cu合金焼結板を製造し、従来法として第1
表に示した。
In addition, we have manufactured Pooka Cu alloy sintered plates from Cu alloy powder that does not contain any lithium aluminate, and have achieved the first conventional method.
Shown in the table.

このようにして製造した多孔質Cυ合金焼結板を第1図
に示されるように平板1上にatし、多孔質Cu合金焼
結板2の反り量3を川定し、その結果を第1表に示した
The porous Cυ alloy sintered plate thus produced was placed on a flat plate 1 as shown in FIG. 1, the amount of warpage 3 of the porous Cu alloy sintered plate 2 was determined, and the results were It is shown in Table 1.

さらに上記各種多孔質Cu合金焼結板をアノード電極と
して用い、これを、 バイポーラ集電板:カソード側−StlS31BB穴空
き板、アノード側−N1ネット、 カソード電¥i:多孔質NiO焼結板、電解質板: L
 i All 02 25)末:40%、L i2 C
 O 3粉末二28%、K2CO3粉末:32%からな
るホットプレス板(以上、重量%) とともに単セルの溶融炭酸垣型燃料電池に組込み、電池
温度=650℃でバイボーラ集電板のアノード側にH2
:80%、CO2:20%の混合ガスを流し、カソード
側に空気:70%、C02:30%の混合ガスを流し、
l00時間後の電池開回路電圧および電流密度:150
mA−crrr−2なる負荷時の電池電圧をM1定して
その結果を第1表に示した。
Furthermore, the above-mentioned various porous Cu alloy sintered plates are used as anode electrodes, and the bipolar current collector plate: cathode side - StlS31BB hole plate, anode side - N1 net, cathode electrode: porous NiO sintered plate, Electrolyte plate: L
i All 02 25) End: 40%, L i2 C
A hot-pressed plate consisting of 28% O3 powder and 32% K2CO3 powder (by weight) was incorporated into a single cell molten carbon dioxide wall type fuel cell, and placed on the anode side of the bibolar current collector plate at a cell temperature of 650°C. H2
A mixed gas of :80% and CO2:20% is flowed, and a mixed gas of air:70% and CO2:30% is flowed to the cathode side.
Battery open circuit voltage and current density after 100 hours: 150
The battery voltage at a load of mA-crrr-2 was fixed at M1, and the results are shown in Table 1.

【発明の効果〕【Effect of the invention〕

第1表の結果から、本発明法1〜l5によって製造され
た多孔iii C u合金焼結板は、いずれも反り量が
少むく、その多孔質Cu合金焼結板で製造されたアノー
ド電極を組込んだ単セルの溶融炭酸墳型燃料電池の電池
電圧は、優れた値を示しているのに対し、比較法1およ
び従来法で製造された多孔@ C u合金焼結板の反り
量は大きく、また、比較法2にみられるようにアルミン
酸リチウム粉末の配合量が多すぎると電池電圧は低下す
ることがわかる。
From the results in Table 1, the porous III Cu alloy sintered plates manufactured by methods 1 to 15 of the present invention all have a small amount of warpage, and the anode electrode manufactured with the porous Cu alloy sintered plates is The cell voltage of the integrated single-cell molten carbonate mound type fuel cell shows an excellent value, whereas the amount of warpage of the porous @ Cu alloy sintered plates manufactured by Comparative Method 1 and the conventional method is Furthermore, as seen in Comparative Method 2, if the amount of lithium aluminate powder blended is too large, the battery voltage will decrease.

この発明によれば、反りまたは撓みの無い溶融炭酸塩型
燃料電池のアノード電極を歩留り良く製造することがで
きるので、溶融炭酸塩型燃料電池の実用化に大いに貢献
できるものである。
According to the present invention, an anode electrode for a molten carbonate fuel cell without warping or bending can be manufactured with good yield, and therefore it can greatly contribute to the practical application of molten carbonate fuel cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、多孔質Cu合金焼結板の反りの測定法を示す
立面図である。 1二平 板    2:多孔質Cu合金焼桔板3:反り
FIG. 1 is an elevational view showing a method for measuring warpage of a porous Cu alloy sintered plate. 12 flat plate 2: Porous Cu alloy sintered plate 3: Amount of warpage

Claims (1)

【特許請求の範囲】[Claims] (1)原料粉末からドクターブレード法により板状成型
体を成型し、脱バインダーして固化した後、上記板状成
型体を酸性雰囲気中、温度=400〜900℃に加熱し
て酸化焼結し、この結果得られた板状酸化焼結体を還元
雰囲気中、温度=400〜900℃に加熱し、主として
Cuを還元してCuまたはCu合金素地中に微細な酸化
物粒子を均一に分散せしめた組織を有する溶融炭酸塩型
燃料電池のアノード電極用多孔質Cu合金焼結板の製造
方法において、 上記原料粉末として、Al、Zr、Ti、およびCrの
うち1種または2種以上:2〜6重量%を含有し、残り
がCuおよび不可避不純物からなるCu合金粉末に、ア
ルミン酸リチウム粉末:1〜5重量%を配合し混合して
得られた混合粉末を用いることを特徴とする溶融炭酸塩
型燃料電池のアノード電極用多孔質Cu合金焼結板の製
造方法。
(1) A plate-shaped molded body is molded from the raw material powder by the doctor blade method, the binder is removed and the plate-shaped molded body is solidified, and then the plate-shaped molded body is heated to a temperature of 400 to 900°C in an acidic atmosphere and oxidized and sintered. The resulting plate-shaped oxidized sintered body is heated to a temperature of 400 to 900°C in a reducing atmosphere to mainly reduce Cu and uniformly disperse fine oxide particles in the Cu or Cu alloy matrix. In the method for producing a porous Cu alloy sintered plate for an anode electrode of a molten carbonate fuel cell having a structure, the raw material powder includes one or more of Al, Zr, Ti, and Cr: 2 to 2. Molten carbonic acid characterized by using a mixed powder obtained by blending 1 to 5% by weight of lithium aluminate powder to a Cu alloy powder containing 6% by weight and the remainder consisting of Cu and unavoidable impurities. A method for manufacturing a porous Cu alloy sintered plate for an anode electrode of a salt-type fuel cell.
JP19218889A 1989-07-25 1989-07-25 Production of sintered plate of porous cu alloy for anode electrode of fused carbonate type fuel cell Pending JPH0356631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19218889A JPH0356631A (en) 1989-07-25 1989-07-25 Production of sintered plate of porous cu alloy for anode electrode of fused carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19218889A JPH0356631A (en) 1989-07-25 1989-07-25 Production of sintered plate of porous cu alloy for anode electrode of fused carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JPH0356631A true JPH0356631A (en) 1991-03-12

Family

ID=16287143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19218889A Pending JPH0356631A (en) 1989-07-25 1989-07-25 Production of sintered plate of porous cu alloy for anode electrode of fused carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPH0356631A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993005190A1 (en) * 1991-09-04 1993-03-18 Nihon Millipore Kogyo Kabushiki Kaisha Process for producing porous metallic body
US5487771A (en) * 1993-06-04 1996-01-30 Millipore Corporation High-efficiency metal membrane element, filter, and process for making
US7678470B2 (en) * 2005-03-14 2010-03-16 Korea Institute Of Science And Technology Reinforced matrix for molten carbonate fuel cell using porous aluminum support and method for preparing the molten carbonate fuel cell comprising the reinforced matrix
CN112048635A (en) * 2020-08-25 2020-12-08 西安理工大学 Micro-nano graded porous copper and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993005190A1 (en) * 1991-09-04 1993-03-18 Nihon Millipore Kogyo Kabushiki Kaisha Process for producing porous metallic body
US5417917A (en) * 1991-09-04 1995-05-23 Nihon Millipore Kabushiki Kaisha Metallic porous membrane and method of manufacture
US5487771A (en) * 1993-06-04 1996-01-30 Millipore Corporation High-efficiency metal membrane element, filter, and process for making
USRE36249E (en) * 1993-06-04 1999-07-13 Millipore Investment Holdings, Inc. High-efficiency metal membrane element, filter, and process for making
US7678470B2 (en) * 2005-03-14 2010-03-16 Korea Institute Of Science And Technology Reinforced matrix for molten carbonate fuel cell using porous aluminum support and method for preparing the molten carbonate fuel cell comprising the reinforced matrix
CN112048635A (en) * 2020-08-25 2020-12-08 西安理工大学 Micro-nano graded porous copper and preparation method thereof

Similar Documents

Publication Publication Date Title
US5169811A (en) Beneficiated lanthanum chromite for low temperature firing
EP0670820B1 (en) Fluxed lanthanum chromite for low temperature air firing
JP3003163B2 (en) Method for producing electrode for molten carbonate fuel cell
KR101892909B1 (en) A method for manufacturing protonic ceramic fuel cells
JP3260988B2 (en) Method for producing solid electrolyte
EP0259226B1 (en) Powdery raw material for manufacturing anodes of fuel cells
US20090029218A1 (en) Fabrication Method of Anode and Electrolyte in Solid Oxide Fuel Cell
JP4334894B2 (en) Method for producing solid electrolyte
US4654195A (en) Method for fabricating molten carbonate ribbed anodes
Xin et al. Fabrication of dense YSZ electrolyte membranes by a modified dry-pressing using nanocrystalline powders
US5415833A (en) Method for forming molten carbonate fuel cell anodes
JPH0356631A (en) Production of sintered plate of porous cu alloy for anode electrode of fused carbonate type fuel cell
JPH0668881A (en) Fused carbonate fuel cell
JP2002050370A (en) Current collector
JPH07249414A (en) Solid electrolytic fuel cell
JPS6376833A (en) Manufacture of porous cu-alloy sintered sheet for anode of fused carbonate fuel cell
JPH05170528A (en) Method for sintering lanthanum chromite
US6238619B1 (en) Process for the production of an electrode for a fused carbonate fuel cell
JP4511357B2 (en) Method for producing electrolyte matrix for molten carbonate fuel cell
JPH07215764A (en) Electrical conductive ceramic sintered compact and its production
JP2000044244A (en) PRODUCTION OF Sr DOPED LANTHANUM CHROMITE POWDER AND INTERCONNECTOR FOR SOLID ELECTROLYTE TYPE FUEL CELL USING SAME
JP3091086B2 (en) Cylindrical porous ceramic sintered body
JPH06349499A (en) Manufacture of electrode for molten carbonate fuel cell
JP3042141B2 (en) Raw material powder for anode production of fuel cells
JPH05290860A (en) Manufacture of solid electrolyte fuel cell