KR100432321B1 - Method for advanced wastewater treatment without excess sludge using sludge disintegration - Google Patents
Method for advanced wastewater treatment without excess sludge using sludge disintegration Download PDFInfo
- Publication number
- KR100432321B1 KR100432321B1 KR10-2002-0047747A KR20020047747A KR100432321B1 KR 100432321 B1 KR100432321 B1 KR 100432321B1 KR 20020047747 A KR20020047747 A KR 20020047747A KR 100432321 B1 KR100432321 B1 KR 100432321B1
- Authority
- KR
- South Korea
- Prior art keywords
- sludge
- treatment process
- treatment
- advanced
- sewage treatment
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1205—Particular type of activated sludge processes
- C02F3/1221—Particular type of activated sludge processes comprising treatment of the recirculated sludge
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/308—Biological phosphorus removal
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/22—Treatment of water, waste water, or sewage by freezing
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/34—Treatment of water, waste water, or sewage with mechanical oscillations
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/34—Treatment of water, waste water, or sewage with mechanical oscillations
- C02F1/36—Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/722—Oxidation by peroxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/78—Treatment of water, waste water, or sewage by oxidation with ozone
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Treatment Of Sludge (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
본 발명에 의한 슬러지를 감량하고 탄소원으로 활용하기 위한 슬러지 분해가용화 방법은, 슬러지를 감량화하고, 생물학적 고도처리공정의 탄소원으로 활용하기 위한 슬러지 분해가용화방법으로서, 원심력을 이용하는 무기고형물 분리장치를 이용하여 생물학적 하수처리공정 및 하수고도처리공정에서 발생하는 슬러지중의 비중이 높은 무기성 고형물을 분리 제거하는 단계(a); 생물학적 하수처리공정 및 하수고도처리공정에서 발생하는 슬러지를 기계적 파쇄 방법, 60℃ 내지 150℃ 온도로 열처리하는 방법, 또는 동결시킨 후 20℃ 내지 60℃ 온도에서 해동시키는 방법 중에 선택되는 물리적 방법으로 처리하는 단계(b); 및 상기 단계(b)에 순차적으로 또는 병행하여 오존을 0.1~1.0gO3/gSS 범위로 주입시켜 오존 처리하는 단계(c)를 포함하여 구성되는 것을 특징으로 한다.The sludge decomposition solubilization method for reducing sludge and utilizing it as a carbon source according to the present invention is a sludge decomposition solubilization method for reducing sludge and utilizing it as a carbon source in a high biological treatment process, using an inorganic solids separation device using centrifugal force. (A) separating and removing the inorganic solid having a high specific gravity in the sludge generated in the biological sewage treatment process and the advanced sewage treatment process; Treatment of the sludge generated in the biological sewage treatment process and the advanced sewage treatment process by mechanical crushing, heat treatment at 60 ° C to 150 ° C, or freezing and thawing at 20 ° C to 60 ° C Step (b); And injecting ozone in a range of 0.1 to 1.0 gO 3 / gSS sequentially or in parallel with step (b) to treat ozone.
Description
본 발명은 고도처리를 위한 탄소원으로서 슬러지를 활용하는 방법에 관한 것으로서, 더욱 상세하게는, 생물학적 고도처리공정에서 배출되는 슬러지를 물리적으로 처리하고, 오존을 이용하여 화학적으로 분해 처리함으로써 슬러지를 감량시키고, 탈질과 인방출을 위한 탄소원으로 활용되도록 하여 궁극적으로 영양소 제거 효율을 효과적으로 향상시킬 수 있는, 슬러지를 감량하고 탄소원으로 활용하기 위한 슬러지 분해가용화 방법에 관한 것이다.The present invention relates to a method of utilizing sludge as a carbon source for advanced treatment, and more particularly, to reduce sludge by physically treating the sludge discharged from the biological advanced treatment process and chemically decomposing the treated sludge using ozone. The present invention relates to a sludge decomposition and solubilization method for reducing sludge and utilizing it as a carbon source, which can be effectively utilized as a carbon source for denitrification and phosphorus release and ultimately effectively improve nutrient removal efficiency.
또한, 본 발명은 생물학적 하수고도처리방법에 관한 것으로서, 더욱 상세하게는, 상기 슬러지를 감량하고 탄소원으로 활용하기 위한 슬러지 분해가용화 방법을 거쳐 가용화된 슬러지를 미생물의 먹이로 활용함으로써 잉여슬러지의 배출이 없는, 슬러지 분해가용화 방법을 이용한 슬러지 무배출 하수고도처리방법에 관한 것이다.In addition, the present invention relates to a biological sewage advanced treatment method, and more particularly, by using the solubilized sludge as a food for the microorganism through the sludge decomposition solubilization method to reduce the sludge and utilize as a carbon source, the discharge of excess sludge is reduced. The present invention relates to a sludge-free sewage altitude treatment method using a sludge decomposition solubilization method.
하수처리는 미생물을 이용한 활성슬러지공정의 개발과 함께 급격히 발전되었으며, 주로 유기물 및 부유고형물 제거를 목적으로 운용되었고, 현재에는 질소와 인의 제거가 가능한 고도처리공정으로 발전되면서 다양한 변법들이 개발되고 있다. 현재 개발된 생물학적 고도처리공정의 원리를 살펴보면, 질소 제거는 질산화 미생물에 의해 NH4 +을 NO2 -또는 NO3 -으로 전환시키는 질산화 과정 후, 탈질 과정을 거쳐 N2가스로 배출시킴으로써 이루어지며, 인 제거는 혐기성 조건하에서 용출된 인을 호기성 조건에서 미생물에 의해 인을 과잉 섭취시킨 다음, 슬러지를 제거함으로써 이루어진다. 이러한 원리를 이용하여 질소, 인을 제거하는 공법으로는 A2/O, 수정 바덴포(Bardenpho), VIP(Virginia Initiative Plant) 및 UCT(University of Cape Town)공정 등이 있다.Sewage treatment has been rapidly developed with the development of activated sludge process using microorganisms, mainly for the purpose of removing organic matter and suspended solids, and now, various developments have been developed as it has been developed as an advanced treatment process capable of removing nitrogen and phosphorus. Considering the principle of the presently developed biological advanced treatment process, nitrogen removal is performed by nitrifying microorganisms that convert NH 4 + into NO 2 - or NO 3 - and then denitrifying and releasing it into N 2 gas. Phosphorus removal is achieved by overingesting phosphorus eluted under anaerobic conditions with excess phosphorus by microorganisms under aerobic conditions and then removing sludge. Nitrogen and phosphorus removal methods using this principle include A2 / O, modified Bardenpho, VIP (Virginia Initiative Plant) and UCT (University of Cape Town) processes.
상기와 같은 생물학적 고도처리공정들을 성공적으로 운영하기 위해서는 혐기, 무산소 및 호기 조건의 생물반응조를 구성해야 하고, 혐기 및 무산소 조건에서 인방출 및 탈질을 위한 충분한 탄소원이 필요하며, 과잉의 인을 섭취한 슬러지의 일정량을 배출시켜야 하는 등 높은 수준의 기술적 노하우가 요구된다. 또한, 도 1에서 보는 것 같이 공정에서 배출된 잉여슬러지 처리를 위한 농축, 탈수, 저장 등의 시설과 소각, 매립 등의 최종처분이 요구된다.In order to successfully operate such biological advanced treatment processes, a bioreactor with anaerobic, anaerobic and aerobic conditions must be constructed, and a sufficient carbon source is required for phosphorus release and denitrification under anaerobic and anaerobic conditions. A high level of technical know-how is required, such as the discharge of a certain amount of sludge. In addition, as shown in FIG. 1, a facility for concentrating, dewatering, and storing the excess sludge discharged from the process, and final disposal of incineration, landfill, etc., is required.
현재 국내에 설치된 하수처리의 문제점을 살펴보면, 국내의 하수처리시설의 대부분이 활성슬러지공정으로 유기물 및 부유물질의 제거는 가능하지만, 부영양화 원인물질인 질소, 인의 제거가 불량하여 상당부분이 미처리된 채로 방류되어 호소와 하천의 부영양화를 유발하여 양질의 수자원 확보 및 자연 생태계 보전에 심각한 문제를 야기하고 있다. 따라서 정부에서도 방류수 수질기준에서 질소, 인의 규제를 강화하였고, 질소, 인 제거를 위한 하수고도처리공정을 집중적으로 개발하여 보급하고 있는 실정이다.Looking at the problems of sewage treatment currently installed in Korea, most of the domestic sewage treatment facilities are activated sludge process to remove organic matter and suspended solids, but the removal of nitrogen and phosphorus, which is the eutrophic cause, is poor and largely untreated. It is discharged and causes eutrophication of lakes and streams, causing serious problems in securing quality water resources and preserving natural ecosystems. Therefore, the government has strengthened the regulation of nitrogen and phosphorus in the discharged water quality standards, and has been intensively developing and distributing sewage treatment processes for nitrogen and phosphorus removal.
그러나, 국내 하수처리장 유입수질을 살펴보면, 현실적으로 거의 대부분의 하수처리장에서 생물학적 탈질 및 인방출에 필요한 탄소원이 상당히 부족하거나, 아예 생물학적 처리공정의 가동을 어렵게 할 정도로 매우 낮은 농도이다. 따라서국내의 생물학적 고도처리공정을 효율적으로 운영하기 위해서는 유입수에 부족한 유기물을 메탄올과 같은 외부탄소원으로 보충하여야 한다. 그러나 메탄올 등의 탄소원은 가격이 높아 경제적인 이유로 사용이 어렵기 때문에 최근에는 유기산, 슬러지 및 음식물 쓰레기 산발효액을 활용하는 연구가 활발하다.However, looking at the influent quality of domestic sewage treatment plants, the reality is that almost all sewage treatment plants have a very low concentration of carbon sources necessary for biological denitrification and phosphorus release, or make the biological treatment process difficult to operate at all. Therefore, in order to efficiently operate the domestic biological advanced treatment process, organic matters lacking in influent should be supplemented with external carbon source such as methanol. However, since carbon sources such as methanol are difficult to use because of their high price, there is a lot of research using organic acid, sludge and food waste acid fermentation liquid.
또한, 생물학적 하수고도처리공정은 필연적으로 슬러지가 배출되는데, 국내의 슬러지 처리 기술은 대부분 농축, 저효율 혐기성소화, 탈수, 매립에 의존하고 있는 실정이다. 그러나, 이러한 종래의 폐슬러지 처리 방법은 매립을 위한 부지가 요구되므로 비용이 많이 드는 문제가 있다. 실제로, 이 경우 폐슬러지 처리에 드는 비용이 전체 하수 처리 비용의 약 40% 정도가 소요되는 것으로 알려져 있다.In addition, sludge is inevitably discharged in the biological sewage treatment process, and domestic sludge treatment technology is mostly dependent on concentration, low-efficiency anaerobic digestion, dehydration, and landfilling. However, such a conventional waste sludge treatment method is expensive because it requires a site for landfilling. In fact, in this case, it is known that the cost of waste sludge treatment is about 40% of the total sewage treatment cost.
한편, 법규제의 강화로 폐기물 최종 매립지에서도 폐슬러지의 반입이 금지될 예정이므로 폐슬러지 처리를 위한 새로운 방식이 요구된다. 따라서 생물학적 처리 공정으로부터 배출되는 유기성 슬러지를 전처리하여 고도처리를 위한 탄소원으로 재이용할 수 있다면, 슬러지를 가장 효율적으로 이용하는 것이 될 것이고, 슬러지를 매립한다거나, 소각할 때에 발생할 수 있는 환경적, 경제적 문제가 해결될 것으로 기대된다.Meanwhile, the tightening of regulations will prohibit the introduction of waste sludge in waste landfills, requiring a new method for waste sludge treatment. Therefore, if the organic sludge from the biological treatment process can be pretreated and reused as a carbon source for advanced treatment, it will be the most efficient use of the sludge, and the environmental and economic problems that can occur when the sludge is landfilled or incinerated. It is expected to be solved.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은, 생물학적 하수고도처리 공정에서 필연적으로 발생하는 슬러지를 기계적 파쇄, 가열 또는 동결해동 등의 물리적 처리와 오존을 이용한 화학적 처리를 순차적으로 또는 병행 실시하여 슬러지를 처리함으로써, 미생물을 사멸시키고 조직을 분해시켜 일차적으로 슬러지를 감량시키고, 분해된 슬러지를 탈질과 인방출을 위한 탄소원으로 활용함으로써 효과적으로 영양소 제거 효율을 높일 수 있는, 슬러지를 감량하고 탄소원으로 활용하기 위한 슬러지 분해가용화 방법을 제공하는 것이다.The present invention is to solve the conventional problems as described above, an object of the present invention, the physical treatment, such as mechanical crushing, heating or freeze thaw, which is inevitably generated in the biological sewage treatment process and chemical treatment using ozone By treating the sludge sequentially or in parallel, the microorganisms are killed and the tissue is decomposed to reduce the sludge, and the decomposed sludge can be effectively used as a carbon source for denitrification and phosphorus release. It is to provide a sludge decomposition solubilization method for reducing sludge and utilizing it as a carbon source.
또한, 본 발명의 또다른 목적은, 상기 물리적 및/또는 화학적 슬러지 분해가용화 처리를 거친 슬러지를 생물학적 고도처리를 위한 탄소원으로 활용함으로써 잉여슬러지가 거의 발생되지 않아 매립 등의 문제가 발생하지 않고, 저농도 유입수에도 효율적으로 적용 가능한, 슬러지 분해가용화 방법을 이용한 슬러지 무배출 하수고도처리방법을 제공하는 것이다.In addition, another object of the present invention, by utilizing the sludge subjected to the physical and / or chemical sludge decomposition solubilization treatment as a carbon source for the advanced biological treatment, the excess sludge is hardly generated, there is no problem such as landfill, low concentration It is to provide a sludge-free discharge sewage treatment method using sludge decomposition solubilization method that can be efficiently applied to influent.
도 1은 기존의 생물학적 하수고도처리방법을 이용한 대표적인 하수처리시설 공정도이다.1 is a representative process diagram of a typical sewage treatment plant using a conventional biological sewage treatment method.
도 2는 본 발명에 따른 슬러지 분해가용화 방법을 이용한 슬러지 무배출 생물학적 하수고도처리 방법의 일실시 예를 도식화한 도면이다.Figure 2 is a diagram illustrating an embodiment of the sludge-free biological sewage treatment method using the sludge decomposition solubilization method according to the present invention.
도 3은 본 발명의 슬러지를 감량하고 탄소원으로 활용하기 위한 슬러지 분해가용화 방법을 하수고도처리에 적용한 결과를 도시한 것이다.Figure 3 shows the result of applying the sludge decomposition solubilization method to the sewage treatment to reduce the sludge of the present invention and to utilize as a carbon source.
도 4는 본 발명의 슬러지를 감량하고 탄소원으로 활용하기 위한 슬러지 분해가용화 방법을 연속식 회분 반응조를 채용한 하수 고도처리 공정에 적용한 다른 실시예이다.4 is another embodiment in which the sludge decomposition solubilization method for reducing sludge of the present invention and utilizing it as a carbon source is applied to a sewage advanced treatment process employing a continuous ash reactor.
* 도면의 주요한 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings
20 : 혐기/무산소 생물반응조 21 : 호기성 생물반응조20: anaerobic / oxygen-free bioreactor 21: aerobic bioreactor
22 : 원심형 무기고형물 분리장치 23 : 오존을 이용하는 슬러지 분해 장치22: centrifugal inorganic solid separation device 23: sludge decomposition device using ozone
상기한 목적을 달성하기 위하여 본 발명에 의한 슬러지를 감량하고 탄소원으로 활용하기 위한 슬러지 분해가용화 방법은, 슬러지를 감량화하고, 생물학적 고도처리공정의 탄소원으로 활용하기 위한 슬러지 분해가용화방법으로서, 원심력을 이용하는 무기고형물 분리장치를 이용하여 생물학적 하수처리공정 및 하수고도처리공정에서 발생하는 슬러지중의 비중이 높은 무기성 고형물을 분리 제거하는 단계(a); 생물학적 하수처리공정 및 하수고도처리공정에서 발생하는 슬러지를 기계적 파쇄 방법, 60℃ 내지 150℃ 온도로 열처리하는 방법, 또는 동결시킨 후 20℃ 내지 60℃ 온도에서 해동시키는 방법 중에 선택되는 물리적 방법으로 처리하는 단계(b); 및 상기 단계(b)에 순차적으로 또는 병행하여 오존을 0.1~1.0gO3/gSS 범위로 주입시켜 오존 처리하는 단계(c)를 포함하여 구성되는 것을 특징으로 한다.In order to achieve the above object, the sludge decomposition solubilization method for reducing sludge according to the present invention and utilizing it as a carbon source is a sludge decomposition solubilization method for reducing sludge and utilizing it as a carbon source in a biologically advanced process. (A) separating and removing the inorganic solids having a high specific gravity in the sludge generated in the biological sewage treatment process and the sewage advanced treatment process using the inorganic solids separation device; Treatment of the sludge generated in the biological sewage treatment process and the advanced sewage treatment process by mechanical crushing, heat treatment at 60 ° C to 150 ° C, or freezing and thawing at 20 ° C to 60 ° C Step (b); And injecting ozone in a range of 0.1 to 1.0 gO 3 / gSS sequentially or in parallel with step (b) to treat ozone.
본 발명에 의한 슬러지를 감량하고 탄소원으로 활용하기 위한 슬러지 분해가용화 방법에 있어서, 상기 단계(c)는 단백질 분해 효소인 프로테아제(Protease)와 셀룰라아제(Cellulase)를 0.3g/L~3g/L 범위의 양으로 주입시켜 효소 처리하는 단계를 더 포함할 수 있다.In the sludge decomposition solubilization method for reducing sludge and utilizing as a carbon source according to the present invention, the step (c) is a protease (Protease) and cellulase (Cellulase) in the range of 0.3g / L ~ 3g / L Injecting in an amount may further comprise the step of enzyme treatment.
본 발명에 의한 슬러지를 감량하고 탄소원으로 활용하기 위한 슬러지 분해가용화 방법에 있어서, 상기 화학적 처리가 오존 또는 과산화수소 처리인 경우 슬러지 분해 효율을 향상시키기 위하여 산 또는 알칼리를 주입하여 pH를 조절한다.In the sludge decomposition solubilization method for reducing sludge according to the present invention and utilizing it as a carbon source, when the chemical treatment is ozone or hydrogen peroxide treatment, acid or alkali is injected to adjust the pH to improve sludge decomposition efficiency.
본 발명에 의한 슬러지를 감량하고 탄소원으로 활용하기 위한 슬러지 분해가용화 방법에 있어서, 상기 방법은 기존의 고도처리공정, 연속식 회분 반응조를 이용한 고도처리공정, 간헐방류 연속유입식 연속식 회분 반응조를 이용한 고도처리공정, 또는 유입수의 수질이 설계 기준치보다 낮은 빈부하 처리장에 적용되는 것을 특징으로 한다.In the sludge decomposition solubilization method for reducing sludge according to the present invention and utilizing it as a carbon source, the method is a conventional advanced treatment process, an advanced treatment process using a continuous batch reaction tank, an intermittent discharge continuous inlet continuous batch reactor. It is characterized in that the advanced treatment process, or the influent water quality is applied to the low load treatment plant lower than the design reference value.
본 발명에 의한 슬러지 분해가용화 방법을 이용한 슬러지 무배출 하수고도처리방법은, 잉여슬러지를 발생시키지 않는 생물학적 하수고도처리방법으로서, 원심력을 이용하는 무기고형물 분리장치를 이용하여 생물학적 하수처리공정 및 하수고도처리공정에서 발생하는 슬러지중의 비중이 높은 무기성 고형물을 분리 제거하는 단계(a); 생물학적 하수처리공정 및 하수고도처리공정에서 발생하는 슬러지를 기계적 파쇄 방법, 60℃ 내지 150℃ 온도로 열처리하는 방법, 또는 동결시킨 후 20℃ 내지 60℃ 온도에서 해동시키는 방법 중에 선택되는 물리적 방법으로 처리하는 단계(b); 상기 단계(b)에 순차적으로 또는 병행하여 오존을 0.1~1.0gO3/gSS 범위로 주입시켜 오존 처리하는 단계(c); 및 분해된 슬러지를 생물학적 하수고도처리공정의 혐기/무산소 생물반응조에 투입하여 탈질과 인방출을 위한 탄소원으로 활용하는 단계(d)를 포함하여 구성되는 것을 특징으로 한다.Sludge-free sewage altitude treatment method using the sludge decomposition solubilization method according to the present invention is a biological sewage altitude treatment method that does not generate excess sludge, biological sewage treatment process and sewage altitude treatment using an inorganic solids separation device using centrifugal force. (A) separating and removing the inorganic solid having a high specific gravity in the sludge generated in the process; Treatment of the sludge generated in the biological sewage treatment process and the advanced sewage treatment process by mechanical crushing, heat treatment at 60 ° C to 150 ° C, or freezing and thawing at 20 ° C to 60 ° C Step (b); (C) ozone treatment by injecting ozone in a range of 0.1 to 1.0 gO 3 / gSS sequentially or in parallel with step (b); And (d) using the decomposed sludge as a carbon source for denitrification and phosphorus release by inputting the anaerobic / anoxic bioreactor in the biological sewage treatment process.
본 발명에 의한 슬러지 분해가용화 방법을 이용한 슬러지 무배출 하수고도처리방법에 있어서, 상기 단계(c)는 단백질 분해 효소인 프로테아제(Protease)와 셀룰라아제(Cellulase)를 0.3g/L~3g/L 범위의 양으로 주입시켜 효소 처리하는 단계를 더 포함할 수 있다.In the sludge free discharge sewage treatment method using the sludge decomposition solubilization method according to the present invention, the step (c) is a protease (Protease) and cellulase (Cellulase) in the range of 0.3g / L ~ 3g / L Injecting in an amount may further comprise the step of enzyme treatment.
본 발명에 의한 슬러지 분해가용화 방법을 이용한 슬러지 무배출 하수고도처리방법에 있어서, 상기 화학적 처리가 오존 또는 과산화수소 처리인 경우 슬러지 분해 효율을 향상시키기 위하여 산 또는 알칼리를 주입하여 pH를 조절한다.In the sludge free discharge sewage treatment method using the sludge decomposition solubilization method according to the present invention, when the chemical treatment is ozone or hydrogen peroxide treatment, the pH is adjusted by injecting acid or alkali to improve the sludge decomposition efficiency.
본 발명에 의한 슬러지 분해가용화 방법을 이용한 슬러지 무배출 하수고도처리방법에 있어서, 상기 방법은 기존의 고도처리공정, 연속식 회분 반응조를 이용한 고도처리공정, 간헐방류 연속유입식 연속식 회분 반응조를 이용한 고도처리공정, 또는 유입수의 수질이 설계 기준치보다 낮은 빈부하 처리장에 적용되는 것을 특징으로 한다.In the sludge-free sewage altitude treatment method using the sludge decomposition solubilization method according to the present invention, the method is a conventional high-treatment process, an advanced treatment process using a continuous ash reactor, an intermittent discharge continuous inlet continuous ash reactor It is characterized in that the advanced treatment process, or the influent water quality is applied to the low load treatment plant lower than the design reference value.
본 발명에서는 물리적 처리 방법으로서, 기계적 파쇄, 가열 또는 동결해동 방법 이외에도 초음파 조사법을 사용할 수 있다. 또한, 본 발명에서는 화학적 처리 방법으로서, 오존 처리 방법 이외에도 산·알카리 처리 또는 과산화수소 처리법을 사용할 수 있다.In the present invention, as the physical treatment method, ultrasonic irradiation can be used in addition to mechanical crushing, heating or freeze thawing. In addition, in the present invention, an acid-alkali treatment or a hydrogen peroxide treatment method can be used in addition to the ozone treatment method.
이하에서 첨부된 도면을 참조하면서 본 발명에 의한 슬러지 분해가용화 방법을 이용한 슬러지 무배출 하수고도처리방법 및 그 장치를 상세하게 설명한다. 그러나, 하기에 설명되는 도면은 본 발명에 대한 이해를 돕기 위해 예시의 목적으로만 제공된 것일 뿐 본 발명의 범주 및 범위가 여기에 한정되지 않음을 밝혀둔다.Hereinafter, the sludge-free sewage treatment method and apparatus using the sludge decomposition solubilization method according to the present invention will be described in detail with reference to the accompanying drawings. However, it is to be understood that the drawings described below are provided only for the purpose of illustration in order to facilitate understanding of the present invention, and the scope and scope of the present invention are not limited thereto.
도 2는 본 발명에 따른 슬러지 분해가용화 방법을 이용한 슬러지 무배출 하수고도처리방법의 일실시예로서 특히 오존을 이용하는 슬러지 분해가용화 방법을 포함하는 공정도이다.Figure 2 is a process diagram including a sludge decomposition solubilization method using ozone as an embodiment of the sludge-free sewage altitude treatment method using the sludge decomposition solubilization method according to the present invention.
도 2에 도시된 바와 같이, 본 발명에 의한 슬러지 무배출 생물학적 하수 고도처리방법에 의하면, 호기성 생물반응조(21)로부터의 슬러지 중 일부를 원심형 무기고형물 분리장치(22)를 이용하여 상대적으로 비중이 큰 무기 고형물을 분리 제거하고, 오존을 이용하는 슬러지 분해 장치(23)를 이용하여 분해가용화하여 혐기/무산소 생물반응조(20)로 보낸다. 혐기/무산소 생물반응조(20)로 보내진 분해 슬러지는 혐기/무산소 조건에서 탈질 및 인방출을 위한 탄소원으로 활용되고 나머지는 호기성 생물반응조(21)에서 미생물의 먹이로 이용된다.As shown in FIG. 2, according to the sludge-free biological sewage advanced treatment method according to the present invention, a portion of the sludge from the aerobic bioreactor 21 is relatively concentrated using a centrifugal inorganic solids separator 22. The large inorganic solids are separated and removed, and decomposed and solubilized using a sludge decomposition device 23 using ozone to be sent to the anaerobic / oxygen-free bioreactor 20. Decomposed sludge sent to the anaerobic / anoxic bioreactor 20 is used as a carbon source for denitrification and phosphorus release under anaerobic / anoxic conditions, and the remainder is used as microbial feed in the aerobic bioreactor 21.
이를 더욱 구체적으로 설명하면 다음과 같다.This will be described in more detail as follows.
원심형 무기 고형물 분리장치(22)는 원심력을 이용하여 상대적으로 비중이 큰 무기 고형물을 슬러지로부터 분리 제거하여 생물반응조내에 무기고형물의 축적을 억제함으로써 궁극적으로 유기성 슬러지의 무배출이 가능하도록 한다.The centrifugal inorganic solids separator 22 separates and removes relatively large inorganic solids from sludge by using centrifugal force to suppress the accumulation of inorganic solids in the bioreactor, thereby ultimately allowing organic sludge to be discharged.
오존을 이용하는 슬러지 분해 장치는 오존의 강력한 산화력을 이용하여 잉여 슬러지내의 미생물을 분해시킴으로써, 생물학적으로 보다 빠르고 쉽게 분해 가능하도록 한다. 미생물의 파괴는 잉여 슬러지내의 미생물이 강력한 산화제인 오존과 접촉되어 세포막이 손상되고 파괴됨으로써 달성되고, 이와 같은 과정에 의하여 파괴된 미생물은 혐기/무산소 생물반응조(20)에서 탈질 및 인방출을 위한 탄소원으로 활용되고, 나머지는 호기성 생물반응조(21)로 이송되어 호기성 미생물의 먹이로 이용된다.The sludge decomposing apparatus using ozone decomposes the microorganisms in the excess sludge by using the strong oxidizing power of ozone, so that it can be decomposed biologically faster and easier. The destruction of the microorganisms is achieved by contacting ozone, a powerful oxidant, with the microorganisms in the excess sludge and damaging and destroying the cell membrane. The microorganisms destroyed by this process are the carbon source for denitrification and phosphorus release in the anaerobic / oxygen-free bioreactor 20. And the rest is transferred to the aerobic bioreactor 21 is used as a food for aerobic microorganisms.
도 3은 본 발명에 의한 슬러지 분해 결과로 오존주입량 0.1-5.0 gO3/gSS의 오존 처리, 초음파 처리, 30-150℃ 온도에서의 열처리, 효소 처리 및 동결해동의 방법으로 처리하였을 경우의 탄소원 용출을 나타내는 것으로 슬러지중 다량이 유기물로 용출되는 것을 볼 수 있다.도 3(a)의 초음파처리는 49kW의 생성출력을 가지는 초음파 장치를 이용하여 실시하였으며, 실험 결과, 30분 처리시간까지는 가용화 효과가 상승하는 것을 확인할 수 있었으며, 30분 이후에는 별다른 차이가 없었다.도 3(b)의 열처리는 슬러지를 가열하여 세포로 구성된 슬러지를 파괴시키고, 가용화하는 방법으로서, 열처리시 온도 범위는 10∼150℃였으며, 처리시간은 각각의 온도조건에서 30분씩으로 하여 동일하게 처리하였다. 도 3(b)에서 보는 바와 같이, 열처리에 따른 폐활성슬러지의 가용화 반응은 60℃까지는 별다른 효과가 없다가 그 이후에 급격히 용출되어 나오는 것을 알 수 있다. 또한, 열처리 온도가 90℃, 120℃, 150℃로 증가함에 따라 가용화된 유기물도 비례하여 증가하였다.도 3(c)의 효소처리는 단백질 분해 효소인 프로테아제와 셀룰라아제를 혼합 투여하여 슬러지의 생화학적 크기를 감소시키는 방법으로서, 도면에서 보는 바와 같이, 투여량에 비례하여 가용화 유기물의 용출 농도가 증가하는 경향을 보였다.도 3(d)의 동결융해처리는 미생물을 동결한 후 해동시켜 슬러지를 가용화하는 방법으로서, -10℃의 동일한 조건에서 동결한 후, 해동하는 온도를 0℃ 내지 60℃로 달리하였으며, 도면에서 보는 바와 같이, 급격한 해동에서 가용화 효율이 높아지는 것을 알 수 있다. 특히, 60℃의 비교적 높은 온도로 해동시킨 경우, 60℃로 열처리한 경우 보다 용해성 유기물의 용출량(도 3(b) 참조)이 더 많았는데, 이는 동결해동의 영향임을 알 수 있다. 동결융해시에는 높은 온도(60℃)로 해동한 경우가 낮은 온도(20℃)로 해동한 경우보다 가용화된 유기물을 더 얻을 수 있었다.도 3(e)는 오존주입량을 0.05 - 2.0 gO3/gSS로 달리하여 오존처리를 수행하고, 슬러지의 분해 정도를 분석한 것이다. 도 3(e)에서 보는 바와 같이, 오존 주입량의 변화에 따라 가용화 유기물은 증가하였으며, 오존 주입량 0.5gO3/gSS에서 높은 가용화 유기물을 얻을 수 있었다. 또한, 오존 주입량 1.0gO3/gSS까지는 SCOD의 변화가 크게 관찰되지 않았으나, 오존 주입량이 1.0gO3/gSS 이상으로 될 경우 가용화의 지표인 SCOD가 오존 산화에 의해 오히려 감소하는 것이 확인되었다.슬러지 분해 장치(23)에 사용되는 상기의 방법들 가운데 초음파, 가열, 동결해동 및 기계적 파쇄 등의 물리적 처리 방법은 생물학적 처리공정에 전혀 문제를 발생시키지 않고, 화학적 처리인 오존처리의 경우는 산화력이 강력하여 효과적으로 슬러지를 분해시키지만, 잔류성이 거의 없으므로 생물학적 처리 공정과 결합시키기에 적합하고, 반응후 수중의 잔류오존은 산소로 전환되기 때문에 독성이 전혀 없다.Figure 3 shows the elution of carbon source when treated by ozone treatment, ultrasonic treatment, heat treatment at a temperature of 30-150 ° C., enzyme treatment and freeze thaw as ozone injection amount 0.1-5.0 gO 3 / gSS as a result of sludge decomposition according to the present invention. It can be seen that a large amount of sludge is eluted as organic matter. The ultrasonic treatment in FIG. 3 (a) was performed using an ultrasonic device having a generation power of 49 kW. As a result of the experiment, the solubilization effect was up to 30 minutes. After 30 minutes, there was no difference. The heat treatment of FIG. 3 (b) is a method of heating the sludge to destroy the sludge composed of cells and solubilizing the temperature range during the heat treatment. The treatment time was the same as 30 minutes at each temperature condition. As shown in Figure 3 (b), the solubilization reaction of the waste activated sludge according to the heat treatment has no effect up to 60 ℃ it can be seen that rapidly eluted after that. In addition, the solubilized organic matter increased proportionally as the heat treatment temperature increased to 90 ° C., 120 ° C., and 150 ° C. The enzymatic treatment of FIG. 3 (c) was performed by mixing and administering a protease, a protease, and a cellulase. As a method of reducing the size, as shown in the figure, the elution concentration of the solubilized organic material tended to increase in proportion to the dose. The freeze-thawing treatment of FIG. 3 (d) freezes the microorganisms and thaws solubilizing the sludge. As a method, after freezing under the same conditions of -10 ℃, the thawing temperature was varied from 0 ℃ to 60 ℃, as shown in the figure, it can be seen that the solubilization efficiency is increased in the rapid thawing. In particular, when thawed at a relatively high temperature of 60 ℃, the amount of soluble organics elution (see Figure 3 (b)) was more than when the heat treatment at 60 ℃, it can be seen that the effect of freeze thaw. In freezing and thawing, solubilized organic matter was obtained more when thawed at a high temperature (60 ° C.) than at a low temperature (20 ° C.). FIG. 3 (e) shows an ozone injection amount of 0.05-2.0 gO 3 /. Ozone treatment was performed by different gSS, and the degree of decomposition of sludge was analyzed. As shown in FIG. 3 (e), the solubilized organic material increased with the change of the ozone injection amount, and a high solubilized organic material was obtained at the ozone injection amount of 0.5gO 3 / gSS. In addition, no significant change in SCOD was observed until the ozone injection amount of 1.0 gO 3 / gSS, but when the ozone injection amount was 1.0 gO 3 / gSS or more, it was confirmed that SCOD, which is an indicator of solubilization, was reduced by ozone oxidation. Among the above methods used in the apparatus 23, physical treatment methods such as ultrasonic wave, heating, freeze thaw and mechanical crushing do not cause any problem in biological treatment process, and in the case of ozone treatment which is chemical treatment, the oxidizing power is strong. It effectively decomposes the sludge, but it is suitable for incorporation into biological treatment processes because it has little residual, and there is no toxicity since residual ozone in water after the reaction is converted into oxygen.
본 발명의 슬러지를 감량하고 탄소원으로 활용하기 위한 슬러지 분해가용화방법을 빈부하 처리장에도 적용할 수 있다. 일반적인 생물학적 하폐수 처리 공정에서는 안정된 처리 효율을 얻기 위하여, 미생물과 먹이가 적당한 비율로 운전되어야 한다. 그러나, 국내의 하수처리장에서 유입수의 수질이 설계 기준치보다 매우 낮게 유입되어 생물학적 처리 공정이 어려운 경우가 있다. 이를 빈부하 처리장이라고 하는데, 이 경우 안정적인 생물학적 처리를 위하여 본 발명에 의한 슬러지를 감량하고 탄소원으로 활용하기 위한 슬러지 분해가용화 방법을 적용하면, 원수 중에 부족한 미생물의 먹이를 보충할 수 있으므로 빈부하의 문제를 해결할 수 있다.The sludge decomposition solubilization method for reducing the sludge of the present invention and utilizing it as a carbon source can be applied to a poor load treatment plant. In general biological sewage treatment processes, microorganisms and food must be operated at an appropriate ratio in order to obtain stable treatment efficiency. However, there is a case that the biological treatment process is difficult because the water quality of the inflow water in the domestic sewage treatment plant is much lower than the design reference value. This is referred to as a poor load treatment plant. In this case, if the sludge decomposition solubilization method for reducing sludge according to the present invention and utilizing it as a carbon source is applied for stable biological treatment, it is possible to supplement the food of the microorganisms lacked in raw water. I can solve it.
이상에서 설명한 바와 같이, 본 발명에 의한 슬러지를 감량하고 탄소원으로 활용하기 위한 슬러지 분해가용화 방법은, 생물학적 하수고도처리 공정에서 필연적으로 발생하는 슬러지를 물리적 및/또는 화학적 분해 처리를 순차적으로 또는 병행 실시함으로써 미생물을 사멸시키고 조직을 분해시켜 일차적으로 슬러지를 감량시키고, 분해된 슬러지를 생물학적 고도처리공정의 혐기/무산소 조건에 투입하여 탈질과 인방출을 위한 탄소원으로 활용함으로써 처리 시스템 내에서 유기물을 확보하고, 효과적으로 영양소 제거 효율을 높일 수 있다.As described above, the sludge decomposition solubilization method for reducing sludge according to the present invention and utilizing it as a carbon source is to sequentially or concurrently perform physical and / or chemical decomposition treatment of sludge inevitably generated in a biological sewage treatment process. By killing microorganisms and decomposing tissues, the sludge is firstly reduced and the decomposed sludge is put into anaerobic / anoxic conditions of the biological advanced treatment process to utilize organic carbon as a carbon source for denitrification and phosphorus release. , Can effectively increase the efficiency of nutrient removal.
또한, 본 발명의 슬러지 분해가용화 방법을 이용한 슬러지 무배출 하수고도처리방법은, 확보된 탄소원을 생물반응조에 투입하여 질소 및 인을 효과적으로 제거함으로써 잉여슬러지가 거의 발생되지 않기 때문에 매립 등의 문제가 발생하지 않고, 저농도 유입수에도 효율적으로 적용 가능하다.In addition, in the sludge-free sewage treatment method using the sludge decomposition solubilization method of the present invention, a problem such as landfilling is generated because almost no excess sludge is generated by effectively removing nitrogen and phosphorus by introducing a secured carbon source into a bioreactor. Instead, it can be efficiently applied to low concentration influent.
Claims (10)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0047747A KR100432321B1 (en) | 2002-08-13 | 2002-08-13 | Method for advanced wastewater treatment without excess sludge using sludge disintegration |
AU2002368241A AU2002368241A1 (en) | 2002-08-13 | 2002-09-02 | Method for advanced wastewater treatment without excess sludge using sludge disintegration |
PCT/KR2002/001658 WO2004026773A1 (en) | 2002-08-13 | 2002-09-02 | Method for advanced wastewater treatment without excess sludge using sludge disintegration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0047747A KR100432321B1 (en) | 2002-08-13 | 2002-08-13 | Method for advanced wastewater treatment without excess sludge using sludge disintegration |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020080285A KR20020080285A (en) | 2002-10-23 |
KR100432321B1 true KR100432321B1 (en) | 2004-05-20 |
Family
ID=27727738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0047747A KR100432321B1 (en) | 2002-08-13 | 2002-08-13 | Method for advanced wastewater treatment without excess sludge using sludge disintegration |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR100432321B1 (en) |
AU (1) | AU2002368241A1 (en) |
WO (1) | WO2004026773A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100995096B1 (en) * | 2008-06-21 | 2010-11-22 | (주)티에스이엔씨 | Sludge reforming method and the equipment |
CN105541070A (en) * | 2015-12-11 | 2016-05-04 | 清华大学 | Method for disintegrating residual sludge of sewage treatment plant and application in biological hydrogen production |
KR20210116782A (en) | 2020-03-16 | 2021-09-28 | (주)비썬 | Advanced wastewater treatment apparatus with reduced sludge production and method of wastewater treatment using the same |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100758804B1 (en) * | 2001-07-03 | 2007-09-13 | 현대중공업 주식회사 | Pre-ozonation Equipment of Molasses for Advanced Sewage and Wastewater Treatment |
JP3789096B2 (en) * | 2002-01-30 | 2006-06-21 | 昇 阪野 | Biological sludge treatment method and treatment apparatus |
KR20040021147A (en) * | 2002-09-02 | 2004-03-10 | 환경관리공단 | The excess sludge treatment system by sonication in biological nutrient removal process |
KR100731846B1 (en) * | 2005-09-23 | 2007-06-25 | 오준성 | A sewage disposal system using a hydraulic cyclone |
DE102006009880A1 (en) * | 2006-03-03 | 2007-09-06 | Linde Ag | High pressure reactor for treatment of biomass containing sludge, comprises a sludge inlet, a sludge outlet and a supplying line for gas standing under pressure with a gas entry device consisting of nozzles |
KR100859594B1 (en) * | 2007-05-15 | 2008-09-23 | 한국수자원공사 | Advanced wastewater treatment method with the biosolids reduction and the recovery of rbdcod |
KR100861418B1 (en) * | 2008-01-14 | 2008-10-08 | 주식회사 부강테크 | Method for recovering carbon source using byproducts and carbon source using the same method |
WO2009094855A1 (en) * | 2008-01-22 | 2009-08-06 | Beijing Violet & Millenary Environmental Equipment Co., Ltd. | A wastewater treatment method |
DE102008052111A1 (en) * | 2008-10-20 | 2010-04-22 | Terranova Energy Gmbh & Co. Kg | Stabilization, hygienization and volume reduction of sewage sludge, comprises reducing the pH value of sewage sludge, draining sewage sludge, heating the sewage sludge under air and keeping sewage sludge under exclusion of air |
CN103974910B (en) | 2011-12-01 | 2016-10-19 | 普莱克斯技术有限公司 | For carrying out the method and system of sludge ozonation in Waste Water Treatment |
CN102583737A (en) * | 2012-02-13 | 2012-07-18 | 山西太钢不锈钢股份有限公司 | Method for processing coking sludge |
CN104386819B (en) * | 2014-12-05 | 2018-01-23 | 张培君 | A kind of sewage treatment process of bioelectric detecting resolution sludge in situ |
FR3047002B1 (en) * | 2016-01-21 | 2020-01-31 | Degremont | METHOD AND DEVICE FOR TREATING WASTEWATER BY OXIDATION |
CN108314274B (en) * | 2018-04-20 | 2019-01-25 | 李思琦 | A kind of circulation cleaning sewage water treatment method reducing sludge quantity |
CN114873872A (en) * | 2022-06-13 | 2022-08-09 | 兰州铁道设计院有限公司 | Zero-emission distributed photovoltaic sewage treatment process |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5658593A (en) * | 1979-10-16 | 1981-05-21 | Nippon Kokan Kk <Nkk> | Sewage denitrifying method |
JPH02273600A (en) * | 1989-01-11 | 1990-11-08 | Kemira Kemi Ab | Process for purifying water |
KR20000035299A (en) * | 1998-11-11 | 2000-06-26 | 후지무라 마사지카, 아키모토 유미 | Method for recovering phosphate from sludge and system therefor |
KR20000051538A (en) * | 1999-01-22 | 2000-08-16 | 이규남 | Method and apparatus for treating sewage and organic waste-water by circulation and filter of 3 divided biofilm |
KR20010016310A (en) * | 2000-12-01 | 2001-03-05 | 김영규 | N,P,VOC removal and disinfection of microorganism using ultrasonic system in wastewater treament system |
KR20010035160A (en) * | 2000-09-29 | 2001-05-07 | 김재규 | Waste Water Disposal System And Method |
KR200233109Y1 (en) * | 2001-03-19 | 2001-10-18 | 김종제 | Purifying apparatus of excrementitious matter for lomestic animals |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63141700A (en) * | 1986-12-04 | 1988-06-14 | Sanyo Sekiyu Kagaku Kk | Degradation treatment of oil-containing water sludge |
JP3867326B2 (en) * | 1996-10-30 | 2007-01-10 | 富士電機システムズ株式会社 | Ozone treatment method for activated sludge process water |
JPH11347592A (en) * | 1998-06-09 | 1999-12-21 | Ebara Corp | Method for treating sewage containing hardly decomposable organic matter |
KR100425552B1 (en) * | 2001-11-08 | 2004-04-03 | 김학로 | Nitrogen and phosphorus removal method of advanced sewage or wastewater treatment in SBR method and sludge discharge system |
-
2002
- 2002-08-13 KR KR10-2002-0047747A patent/KR100432321B1/en not_active IP Right Cessation
- 2002-09-02 WO PCT/KR2002/001658 patent/WO2004026773A1/en not_active Application Discontinuation
- 2002-09-02 AU AU2002368241A patent/AU2002368241A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5658593A (en) * | 1979-10-16 | 1981-05-21 | Nippon Kokan Kk <Nkk> | Sewage denitrifying method |
JPH02273600A (en) * | 1989-01-11 | 1990-11-08 | Kemira Kemi Ab | Process for purifying water |
KR20000035299A (en) * | 1998-11-11 | 2000-06-26 | 후지무라 마사지카, 아키모토 유미 | Method for recovering phosphate from sludge and system therefor |
KR20000051538A (en) * | 1999-01-22 | 2000-08-16 | 이규남 | Method and apparatus for treating sewage and organic waste-water by circulation and filter of 3 divided biofilm |
KR20010035160A (en) * | 2000-09-29 | 2001-05-07 | 김재규 | Waste Water Disposal System And Method |
KR20010016310A (en) * | 2000-12-01 | 2001-03-05 | 김영규 | N,P,VOC removal and disinfection of microorganism using ultrasonic system in wastewater treament system |
KR200233109Y1 (en) * | 2001-03-19 | 2001-10-18 | 김종제 | Purifying apparatus of excrementitious matter for lomestic animals |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100995096B1 (en) * | 2008-06-21 | 2010-11-22 | (주)티에스이엔씨 | Sludge reforming method and the equipment |
CN105541070A (en) * | 2015-12-11 | 2016-05-04 | 清华大学 | Method for disintegrating residual sludge of sewage treatment plant and application in biological hydrogen production |
KR20210116782A (en) | 2020-03-16 | 2021-09-28 | (주)비썬 | Advanced wastewater treatment apparatus with reduced sludge production and method of wastewater treatment using the same |
Also Published As
Publication number | Publication date |
---|---|
KR20020080285A (en) | 2002-10-23 |
WO2004026773A1 (en) | 2004-04-01 |
AU2002368241A8 (en) | 2004-04-08 |
AU2002368241A1 (en) | 2004-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100432321B1 (en) | Method for advanced wastewater treatment without excess sludge using sludge disintegration | |
US5762809A (en) | Process for treating a medium containing organic constituents | |
JP4685385B2 (en) | Power generation method using surplus sludge | |
KR101003482B1 (en) | Disposal method of high concentration organic matter waste water | |
JP3738699B2 (en) | Sludge treatment method and treatment apparatus, and sewage treatment method and treatment equipment using the same | |
JP3959843B2 (en) | Biological treatment method for organic drainage | |
JP4631162B2 (en) | Organic waste treatment methods | |
KR19990041261A (en) | Nitrogen and phosphorus removal method using fermentation waste | |
JP3409728B2 (en) | Organic waste treatment method | |
JP2006043649A (en) | Treatment method of organic waste and its treatment apparatus | |
JP2006239625A (en) | Method and equipment for treating organic waste | |
JP3813846B2 (en) | Organic waste treatment method and apparatus | |
JP2007021367A (en) | Method and apparatus for treating organic sludge | |
JP2002059190A (en) | Method of treating sewage and sludge | |
KR20020075635A (en) | Process and apparatus for treating sewage or waste water without emitting excess sludge | |
CN116137857A (en) | Household toilet waste treatment system including biological treatment apparatus and combustion apparatus, and method of treating toilet waste by using the same | |
JP2004024929A (en) | Methane fermentation method and system for the same | |
JP2009195783A (en) | Organic wastewater treatment method | |
KR100337758B1 (en) | Sludge-Free Biological Process For Wastewater Treatment | |
JP2003334589A (en) | Wastewater treatment method and treatment apparatus therefor | |
JP2002059200A (en) | Method of treating sewage and sludge | |
JP3699999B2 (en) | Treatment method of organic sludge | |
JP3756827B2 (en) | Sludge reduction method and apparatus | |
JP2005246347A (en) | Method and apparatus for treating sewage | |
JP2001149981A (en) | Method for treating sewage and sludge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
G15R | Request for early opening | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130430 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20140507 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20150430 Year of fee payment: 12 |
|
LAPS | Lapse due to unpaid annual fee |