KR100418931B1 - Method for Forming of Electrode Material - Google Patents

Method for Forming of Electrode Material Download PDF

Info

Publication number
KR100418931B1
KR100418931B1 KR10-2001-0081202A KR20010081202A KR100418931B1 KR 100418931 B1 KR100418931 B1 KR 100418931B1 KR 20010081202 A KR20010081202 A KR 20010081202A KR 100418931 B1 KR100418931 B1 KR 100418931B1
Authority
KR
South Korea
Prior art keywords
particles
electrode material
droplets
droplet
charging
Prior art date
Application number
KR10-2001-0081202A
Other languages
Korean (ko)
Other versions
KR20030050696A (en
Inventor
정현진
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR10-2001-0081202A priority Critical patent/KR100418931B1/en
Publication of KR20030050696A publication Critical patent/KR20030050696A/en
Application granted granted Critical
Publication of KR100418931B1 publication Critical patent/KR100418931B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명은 균일한 크기를 갖는 나노 사이즈 파티클(nano size particle)을 제조하기 위한 전극 물질 형성 방법에 관한 것으로, 액적을 급속 냉각하여 고체화하는 단계와, 상기 고체화된 액적을 단일 도전형의 전하로 하전시키어 액적간 합체를 방지하는 단계와, 하전된 액적을 열처리하여 나노 사이즈의 파티클을 형성하는 단계와, 상기 파티클을 단일 도전형의 전하로 하전시키어 파티클을 응집 없이 부유시키는 단계와, 구조물 또는 판상에 상기 파티클을 포집하는 단계를 포함하여 형성한다.The present invention relates to a method of forming an electrode material for producing nano-size particles having a uniform size, comprising the steps of rapidly cooling a solid to solidify the droplet, and charging the solidified droplet to a single conductivity type charge. Preventing the coalescence of droplets, heat treating the charged droplets to form nano-sized particles, and charging the particles with a single conductivity type of charge to float the particles without flocculation; And collecting the particles.

Description

전극 물질 형성 방법{Method for Forming of Electrode Material}Method for Forming Electrode Material

본 발명은 반도체 제조방법에 관한 것으로 특히, 균일한 크기 분포를 갖는 나노 사이즈 파티클(nano size particle)을 제조하기 위한 전극 물질 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor, and more particularly to a method of forming an electrode material for producing nano size particles having a uniform size distribution.

이하, 첨부된 도면을 참조하여 종래 기술에 따른 전극 물질 형성 방법을 설명하면 다음과 같다.Hereinafter, an electrode material forming method according to the related art will be described with reference to the accompanying drawings.

도 1a 내지 도 1c는 종래 기술에 따른 전극 물질 형성 방법을 도시한 도면이다.1A to 1C illustrate a method of forming an electrode material according to the prior art.

우선, 도 1a에 도시된 바와 같이 금속 전구체를 포함하는 액적(11)을 제조하고, 상기 액적(11)을 열처리하여 도 1b에 도시된 바와 같이 나노(nano) 사이즈의 파티클(12)을 형성한다.First, a droplet 11 including a metal precursor is prepared as shown in FIG. 1A, and the droplet 11 is heat-treated to form nano-sized particles 12 as shown in FIG. 1B. .

이때, 상기 액적(11)의 응집에 의하여 파티클(12)은 사이즈가 증가되게 되며 균일도가 저하되어 파티클(12)은 다양한 사이즈를 갖게 된다.At this time, due to the aggregation of the droplet 11, the particle 12 is increased in size and uniformity is reduced, so that the particle 12 has a variety of sizes.

이후, 도 1c에 도시된 바와 같이, 구조물 또는 판상(13)에 상기 파티클(13)을 포집하여 2차 전지, 연료 전지용 귀금속 전극 물질 또는 캐패시터 전극 물질 등으로 사용되는 전극 물질을 형성한다.Thereafter, as illustrated in FIG. 1C, the particles 13 are collected on the structure or plate 13 to form an electrode material used as a secondary battery, a noble metal electrode material for a fuel cell, a capacitor electrode material, or the like.

그러나, 상기와 같은 종래의 전극 물질 형성방법은 다음과 같은 문제점이 있다.However, the conventional electrode material formation method as described above has the following problems.

첫째, 파티클의 사이즈가 크고 불균일하므로 캐패시터 전극용으로 사용하기에 곤란하다.First, since the particle size is large and uneven, it is difficult to use for capacitor electrodes.

둘째, 파티클의 사이즈가 크고 불균일하여 2차 전지 또는 귀금속 전극으로 적용될 경우 전극의 면적을 감소시키게 되므로 전지 효율이 감소되는 문제점이 있다.Second, when the particle size is large and non-uniform, when applied to a secondary battery or a noble metal electrode, the area of the electrode is reduced, thereby reducing battery efficiency.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출한 것으로 균일한 크기를 갖는 나노 사이즈 파티클을 제조할 수 있는 전극 물질 형성방법을 제공하는데 그 목적이 있다.An object of the present invention is to provide a method for forming an electrode material capable of producing nano-sized particles having a uniform size to solve the above problems.

도 1a 내지 도 1c는 종래 기술에 따른 전극 물질 형성 방법을 도시한 도면1A to 1C illustrate an electrode material forming method according to the prior art.

도 2a 내지 도 2f는 본 발명의 실시예에 따른 전극 물질 형성 방법을 도시한 도면2A to 2F illustrate a method of forming an electrode material according to an embodiment of the present invention.

도면의 주요 부분에 대한 부호 설명Explanation of symbols for the main parts of drawings

21 : 액적 22 : 파티클21: Drop 22: Particle

23 : 구조물 또는 판23: structures or plates

상기와 같은 목적을 달성하기 위한 본 발명에 따른 전극 물질 형성방법은 액적을 급속 냉각하여 고체화하는 단계와, 상기 고체화된 액적을 단일 도전형의 전하로 하전시키어 액적간 합체를 방지하는 단계와, 하전된 액적을 열처리하여 나노 사이즈의 파티클을 형성하는 단계와, 상기 파티클을 단일 도전형의 전하로 하전시키어 파티클을 응집없이 부유시키는 단계와, 구조물 또는 판상에 상기 파티클을 포집하는 단계를 포함하여 형성함을 특징으로 한다.The electrode material forming method according to the present invention for achieving the above object comprises the steps of rapidly cooling and solidifying the droplets, and charging the solidified droplets with a single conductive charge to prevent coalescence between the droplets; Heat treating the droplets to form nano-sized particles; charging the particles with a single conductivity type charge to float the particles without aggregation; and collecting the particles on a structure or plate. It is characterized by.

이하, 첨부된 도면을 참조하여 본 발명에 따른 전극 물질 형성방법을 설명하면 다음과 같다.Hereinafter, an electrode material forming method according to the present invention will be described with reference to the accompanying drawings.

도 2a 내지 도 2f는 본 발명의 실시예에 따른 전극 물질 형성 방법을 도시한 도면이다.2A through 2F illustrate a method of forming an electrode material according to an exemplary embodiment of the present invention.

우선, 도 2a에 도시된 바와 같이 금속 전구체를 포함한 액적(21)을 형성하고, 이를 급속 냉각시켜 고체화하여 2b에 도시된 바와 같이 고체화된 액적(21)을 형성한다.First, a droplet 21 including a metal precursor is formed as shown in FIG. 2A, and it is rapidly cooled to solidify to form a solidified droplet 21 as shown in 2b.

이어, 도 2c에 도시된 바와 같이, 단일 도전형의 전하로 상기 고체화된 액적(21)들의 표면을 하전시키어 액적(21)들간에 전기적 반발력을 유도하므로써 상기 액적(21)들 간에 합체를 억제한다.Then, as shown in FIG. 2C, the surface of the solidified droplets 21 is charged with a single conductivity type charge, thereby inducing electrical repulsion between the droplets 21, thereby suppressing coalescence between the droplets 21. .

상기 단일 도전형의 전하를 이용하여 하전시킨다 함은, 도면에서와 같이 마이너스(-) 도전형의 전하만으로 액적(21) 표면을 하전시키거나, 도면에는 도시되지 않았지만 플러스(+) 도전형의 전하만을 이용하여 액적(21) 표면을 하전시키는 것을 의미한다.The charge using the single conductivity type charge is performed by charging the surface of the droplet 21 only with the negative conductivity type charge as shown in the figure, or by the positive conductivity type (not shown). It means to charge the surface of the droplet 21 using only.

이어, 도 2d에 도시된 바와 같이, 상기 하전된 액적(21)을 열처리하여 나노(nano) 크기의 파티클(22)을 형성한다.Subsequently, as shown in FIG. 2D, the charged droplets 21 are heat-treated to form nano-sized particles 22.

이어, 도 2e에 도시된 바와 같이, 상기 파티클(22)을 단일 도전형의 전하로 하전시키어 파티클(22)간에 응집을 방지한다.Then, as shown in FIG. 2E, the particles 22 are charged with a single conductivity type charge to prevent aggregation between the particles 22.

즉, 하전을 통해 파티클(22)간에 전기적 반발력을 유도하므로써 응집됨없이 파티클(22)을 부유시킨다.That is, the particles 22 are suspended without agglomeration by inducing electrical repulsion between the particles 22 through charge.

이후, 도 2f에 도시된 바와 같이, 구조물 또는 판상(23)에 상기 파티클(22)을 포집하여 본 발명에 따른 전극 물질을 완성한다.Thereafter, as shown in FIG. 2F, the particles 22 are collected on the structure or plate 23 to complete the electrode material according to the present invention.

이와 같은 전극 물질은 디램(DRAM), FeRAM의 캐패시터로 이용되는 MIM 구조, 연료 전지나 2차 전지의 전극으로 이용되는 귀금속, 다금속산화물 등의 제조에 널리 적용 가능하다.Such electrode materials are widely applicable to the manufacture of DRAMs, MIM structures used as capacitors in FeRAM, precious metals and polymetal oxides used as electrodes in fuel cells or secondary cells.

상기와 같은 본 발명의 전극 물질 형성 방법은 균일한 크기의 나노 파티클을 형성할 수 있으므로 이를 제품에 적용할 경우 다음과 같은 효과가 있다.The electrode material forming method of the present invention as described above can form nanoparticles of uniform size, when applied to the product has the following effects.

첫째, 캐패시터 전극의 메탈 씨드(Metal Seed)로 이용되어 캐패시터의 면적을 증가시킬 수 있으므로 캐패시터 용량을 향상시킬 수 있다.First, it can be used as a metal seed (Metal Seed) of the capacitor electrode can increase the area of the capacitor can improve the capacitor capacity.

둘째, 연료 전지나 2차 전지의 전극으로 이용되는 귀금속의 면적을 확대하여 전지 효율을 향상시킬 수 있다.Second, the battery efficiency can be improved by enlarging the area of the noble metal used as the electrode of the fuel cell or the secondary battery.

셋째, 고유전율 세라믹 캐패시터의 축적용량을 향상시킬 수 있으며, 고품질화를 달성할 수 있다.Third, the storage capacity of the high dielectric constant ceramic capacitor can be improved, and high quality can be achieved.

Claims (2)

액적을 급속 냉각하여 고체화하는 단계;Rapidly cooling the droplets to solidify; 상기 고체화된 액적을 단일 도전형의 전하로 하전시키어 액적간 합체를 방지하는 단계;Charging the solidified droplets with a single conductive charge to prevent inter-droplet coalescence; 하전된 액적을 열처리하여 나노 사이즈의 파티클을 형성하는 단계;Heat treating the charged droplets to form nano-sized particles; 상기 파티클을 단일 도전형의 전하로 하전시키어 파티클을 응집없이 부유시키는 단계와;Charging the particles with a single conductivity type charge to cause the particles to float without flocculation; 구조물 또는 판상에 상기 파티클을 포집하는 단계를 포함하여 형성함을 특징으로 하는 전극 물질 형성방법.And collecting the particles on a structure or plate. 제 1항에 있어서, 상기 액적은 금속 전구체를 포함하는 것을 특징으로 하는 전극 물질 형성 방법.The method of claim 1, wherein the droplet comprises a metal precursor.
KR10-2001-0081202A 2001-12-19 2001-12-19 Method for Forming of Electrode Material KR100418931B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0081202A KR100418931B1 (en) 2001-12-19 2001-12-19 Method for Forming of Electrode Material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0081202A KR100418931B1 (en) 2001-12-19 2001-12-19 Method for Forming of Electrode Material

Publications (2)

Publication Number Publication Date
KR20030050696A KR20030050696A (en) 2003-06-25
KR100418931B1 true KR100418931B1 (en) 2004-02-14

Family

ID=29576402

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0081202A KR100418931B1 (en) 2001-12-19 2001-12-19 Method for Forming of Electrode Material

Country Status (1)

Country Link
KR (1) KR100418931B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100745155B1 (en) * 2005-09-21 2007-08-01 한국과학기술원 An Uniform Charging Device Of Nanometer Particle Using Condensation And Evaporation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012195A (en) * 1989-12-28 1991-04-30 Abb Power T&D Company, Inc. Method for improving the electrical strength of vapor-mist dielectrics
KR930024087A (en) * 1992-05-16 1993-12-21 문정환 Method and apparatus for forming electrical wiring layer of semiconductor integrated circuit
KR970059323A (en) * 1996-01-30 1997-08-12 김광호 Thin film deposition apparatus and thin film deposition method using the same
US6224985B1 (en) * 1997-05-01 2001-05-01 Wilson Greatbatch Ltd. One step ultrasonically coated substrate for use in a capacitor
KR20010066444A (en) * 1999-12-31 2001-07-11 이경수 Method of forming metal interconnects

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012195A (en) * 1989-12-28 1991-04-30 Abb Power T&D Company, Inc. Method for improving the electrical strength of vapor-mist dielectrics
KR930024087A (en) * 1992-05-16 1993-12-21 문정환 Method and apparatus for forming electrical wiring layer of semiconductor integrated circuit
KR970059323A (en) * 1996-01-30 1997-08-12 김광호 Thin film deposition apparatus and thin film deposition method using the same
US6224985B1 (en) * 1997-05-01 2001-05-01 Wilson Greatbatch Ltd. One step ultrasonically coated substrate for use in a capacitor
KR20010066444A (en) * 1999-12-31 2001-07-11 이경수 Method of forming metal interconnects

Also Published As

Publication number Publication date
KR20030050696A (en) 2003-06-25

Similar Documents

Publication Publication Date Title
DE69027965T2 (en) Secondary nickel metal hydride cell
JP5424806B2 (en) Secondary battery electrode, method for producing the same, and secondary battery using secondary battery electrode
US20170214052A1 (en) Electrode having nanocrystal assembled active clusters embodied in conductive network structures, and battery having same, and fabrication method of same
CN110635109B (en) Lithium metal electrode prepared by 3D printing technology and preparation method thereof
TWI504047B (en) Materials and manufacture method for a battery
US10811679B2 (en) Method for preparing silicon nanocomposite dispersion using plasma, and anode active material and lithium secondary battery using same
CN104766966A (en) A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
KR20080032037A (en) Alloy for negative electrode of lithium secondary battery
KR101142534B1 (en) Process for producing si-based nanocomposite anode material for lithium secondary battery and lithium secondary battery including the same
JP3640511B2 (en) Nickel super fine powder
JP2006339184A (en) Method of manufacturing composite particle for electrochemical element
CN111799449A (en) Preparation method of composite negative electrode material and composite negative electrode material for lithium secondary battery
JP5767431B2 (en) Electrochemical element electrode forming material, method for producing the same, and electrochemical element electrode
CN112164780B (en) Silicon-based negative electrode material, preparation method thereof and related product
KR20160071926A (en) Method for recovering of silicon particles, and manufacturing of cathode material for secondary battery
WO2010044447A1 (en) Carbon material, and storage element
KR100418931B1 (en) Method for Forming of Electrode Material
JP4069710B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
Wu et al. Agglomeration and the surface passivating film of Ag nano-brush electrode in lithium batteries
CN113130857A (en) Nano silicon material and preparation method thereof
JPH0423381B2 (en)
USRE49419E1 (en) Nano-scale/nanostructured Si coating on valve metal substrate for lib anodes
KR20180086000A (en) Negative electrode active material for lithium secondary battery comprising silicon nanoparticles and method for manufacturing the same
WO2009119553A1 (en) Method for production of electrode for hybrid capacitor
KR20180042701A (en) Apparatus and method for producing nanopowder by nanosecond pulse discharge

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110126

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee