KR100417528B1 - Liquid-phase admixture components of dual components based on fluosilicate salt for improving waterproofing and strength of concrete and its manufacturing method - Google Patents

Liquid-phase admixture components of dual components based on fluosilicate salt for improving waterproofing and strength of concrete and its manufacturing method Download PDF

Info

Publication number
KR100417528B1
KR100417528B1 KR10-2002-0042799A KR20020042799A KR100417528B1 KR 100417528 B1 KR100417528 B1 KR 100417528B1 KR 20020042799 A KR20020042799 A KR 20020042799A KR 100417528 B1 KR100417528 B1 KR 100417528B1
Authority
KR
South Korea
Prior art keywords
silicate
magnesium
component
zinc
weight
Prior art date
Application number
KR10-2002-0042799A
Other languages
Korean (ko)
Other versions
KR20030044767A (en
Inventor
길배수
김도수
이병기
박승수
김기형
윤현도
Original Assignee
주식회사트라이포드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사트라이포드 filed Critical 주식회사트라이포드
Priority to KR10-2002-0042799A priority Critical patent/KR100417528B1/en
Publication of KR20030044767A publication Critical patent/KR20030044767A/en
Application granted granted Critical
Publication of KR100417528B1 publication Critical patent/KR100417528B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/12Acids or salts thereof containing halogen in the anion
    • C04B22/126Fluorine compounds, e.g. silico-fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/0006Waste inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/02Elements
    • C04B22/04Metals, e.g. aluminium used as blowing agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/65Water proofers or repellants

Abstract

본 발명은 규불화아연과 규불화마그네슘을 수용액 상태로 콘크리트에 첨가하여 방수성을 향상시키는 동시에 압축강도를 20% 이상 증가시키는 2성분 규불화염계 액상첨가제 조성물 및 그 제조방법에 관한 것으로서, 2성분 규불화염계 액상 첨가제는 규불화염의 유효농도가 5∼30%(w/w) 인 것을 특징으로 하고, 규불화염의 유효농도중 규불화아연의 함량이 50∼90 중량%, 규불화마그네슘의 함량이 10∼50 중량%로 구성된 것을 특징으로 한다. 2성분 규불화염계 액상 첨가제는 시멘트 중량대비 1.0∼3.0 중량%로 콘크리트에 첨가하면, 방수성을 향상시키면서도 재령에 따라 압축강도가 10∼30% 증진된 콘크리트를 제조할 수 있다.The present invention relates to a two-component silicate fluoride-based liquid additive composition and a method for manufacturing the same, in which zinc silicate and magnesium silicate are added to concrete in an aqueous state to improve waterproofness and increase compressive strength by 20% or more. Flame-based liquid additive is characterized in that the effective concentration of the silica fluoride salt is 5 to 30% (w / w), the zinc silica fluoride content is 50 to 90% by weight, magnesium magnesium fluoride content It is characterized by consisting of 10 to 50% by weight. When the two-component silicate-based liquid additive is added to the concrete at 1.0 to 3.0% by weight of the cement, it is possible to produce concrete with 10 to 30% increase in compressive strength according to age while improving waterproofness.

또한 본 발명에서 제안하는 2성분 규불화염계 액상 첨가제를 콘크리트에 첨가하면 시멘트의 수화열을 저감시키는 효과가 있으므로 부재단면이 큼으로 인해 내부수화열의 억제가 필요한 매스(mass) 콘크리트 및 서중(署中) 콘크리트에도 적용할 수 있는 장점을 지니고 있다.In addition, the addition of the two-component siliceous fluorinated salt-based liquid additive proposed in the present invention has the effect of reducing the heat of hydration of cement. Therefore, the mass of the concrete and the Seojung, which requires the suppression of the internal heat of hydration due to the large member cross-section, It can be applied to concrete.

Description

콘크리트의 방수 및 강도증진을 위한 2성분 규불화염계 액상 첨가제 조성물 및 그 제조방법{Liquid-phase admixture components of dual components based on fluosilicate salt for improving waterproofing and strength of concrete and its manufacturing method}Liquid-phase admixture components of dual components based on fluosilicate salt for improving waterproofing and strength of concrete and its manufacturing method}

본 발명은 콘크리트의 방수성 향상과 함께 20% 이상의 강도증진 효과를 지닌규불화아연(ZnSiF6)과 규불화마그네슘(MgSiF6)으로 구성된 2성분 규불화염계 액상 첨가제 조성물 및 그 제조방법에 관한 것으로서, 구체적으로는 규불화아연과 규불화마그네슘으로 구성된 2성분 규불화염 수용액을 시멘트 중량대비 1.0∼3.0 중량%로 첨가하여 콘크리트의 방수성이 향상되면서도 압축강도가 재령에 따라 10∼30% 증진되는 효과를 발휘되는 것을 특징으로 하는 2성분 규불화염계 액상 첨가제 조성물 및 그 제조방법에 관한 것이다.The present invention relates to a two-component gyubul flame-based liquid additive composition and a method of manufacturing consisting of a silicon fluoride, zinc having an increase of over 20% strength effect with improved water resistance of the concrete (ZnSiF 6) and silicon fluoride, magnesium (MgSiF 6), Specifically, by adding 1.0 to 3.0% by weight of a two-component aqueous solution of silicate fluoride consisting of zinc fluoride and magnesium fluoride relative to the weight of cement, the concrete's waterproofness is improved and its compressive strength is increased by 10-30% depending on age. It relates to a two-component siliceous salt-based liquid additive composition and a method for producing the same.

규불화아연 및 규불화마그네슘과 같은 규불화염은 수용액 상태에서 가수분해(hydrolysis)에 의해 아연 및 마그네슘과 같은 금속이온과 규불화이온(SiF6 2-)으로 해리되는 특성이 있으며, 수용액의 알카리도가 높을수록 해리되는 특성은 증가하게 된다. 수용액 중에 해리된 규불화이온은 다시 가수분해되어 비정질 실리카(amorphous silica)와 불소이온(F-)으로 생성된다. 비정질 실리카는 Ca(OH)2를 다량 함유한 토양 및 시멘트의 포졸란 반응을 촉진시키는 효과가 있으며, 수용액의 알카리도가 증가되면 규불화 이온에서 해리된 불소이온이 Ca, Al, Na와 같은 알카리 금속과 반응하여 난용성의 CaF2, NaF, AlF3등과 같은 금속불화물이 생성된다. 상기와 같은 특성때문에 규불화염은 토양 및 시멘트를 비롯한 다양한 수경성 재료의 응결 혹은 경화속도를 조절할 수 있는 기능을 지니며, 규불화염을 적절하게 조합하면 토양 혹은 시멘트 등의 강도를 증가시킬 수 있는 첨가제로 활용할 수 있다.Silica fluoride salts such as zinc fluoride and magnesium fluoride are dissociated into metal ions such as zinc and magnesium and fluoride ions (SiF 6 2- ) by hydrolysis in an aqueous solution. The higher the dissociation characteristic increases. The dissociated silicate ions in the aqueous solution are hydrolyzed again to form amorphous silica and fluorine ions (F ). Amorphous silica has the effect of promoting the pozzolanic reaction of soil and cement containing a large amount of Ca (OH) 2 , and when the alkalinity of the aqueous solution is increased, fluorine ions dissociated from silicic ions and alkali metals such as Ca, Al and Na The reaction forms metal fluorides such as CaF 2 , NaF, AlF 3, and the like. Due to the above characteristics, silicic salts have the function of controlling the condensation or curing rate of various hydraulic materials including soil and cement, and when combined properly, silicic salts are additives that can increase the strength of soil or cement. It can be utilized.

예로써, 국내 특허출원 1998-065526호[다기능성 고성능몰탈의 조성물]에서는 고성능 몰탈의 응결속도를 조절하기 위해 규불화마그네슘, 규불화칼륨(K2SiF6), 규불화나트륨(Na2SiF6)과 같은 규불화염을 0.1∼1.0 중량% 첨가하는 것이 개시되었다. 제1984-6714호[토양응결 경화제 조성물] 및 제1997-18924호[토양 응결용 경화제]에는 토양의 응결속도 및 경화속도를 조절하기 위한 첨가제로 규불화마그네슘을 사용하기도 하였다. 리(Lee) 등[규불화마그네슘에 의한 포틀랜드 시멘트의 수화지연 효과, 한국세라믹학회지, Vol. 34, No. 2])은 시멘트 모르타르의 응결시간을 지연시키기 위한 목적으로 규불화마그네슘을 사용한 연구결과를 발표한 사례가 있다.For example, in Korean Patent Application No. 1998-065526 [Composition of multifunctional high performance mortar], magnesium silicate, potassium silicate (K 2 SiF 6 ), sodium silicate (Na 2 SiF 6 ) to control the setting speed of high performance mortar The addition of 0.1 to 1.0% by weight of a silofluoride salt such as Magnesium fluoride was used in 1984-6714 [Soil coagulation hardener composition] and 1997-18924 [Soil coagulation hardener] as an additive for controlling the coagulation rate and hardening rate of soil. Lee et al. [Delayed Hydration Effect of Portland Cement by Magnesium Fluoride, Journal of the Korean Ceramic Society, Vol. 34, No. [2] published a study using magnesium silicate for the purpose of delaying the setting time of cement mortar.

한편, 대한민국 특허등록 제0233778호에서는 규불화마그네슘, 규불화나트륨, 규불화아연, 규불화망간(MnSiF6) 및 규불화칼슘(CaSiF6)으로 구성된 규불화염중 1종 이상을 Ⅱ형 무수석고, 석탄회 및 고로슬랙의 혼합분말에 5∼25 중량% 첨가하여 콘크리트의 강도증진용 첨가제로 사용하기도 하였다.On the other hand, Korean Patent Registration No. 0233778 discloses at least one of fluoride salts composed of magnesium fluoride, sodium fluoride, zinc fluoride, manganese fluoride (MnSiF 6 ) and calcium fluoride (CaSiF 6 ), type II anhydrous gypsum, 5 to 25% by weight was added to the mixed powder of coal ash and blast furnace slag to be used as an additive for increasing the strength of concrete.

또한, 시멘트 내지 콘크리트에 방수성을 부여하기 위하여 규불화염을 적용한 사례로 대한민국 특허출원 제2001-63881호[규불화아연 수용액을 사용하여 콘크리트 또는 레미콘의 방수성을 향상시키는 방법]에서는 규불화염 중에서 규불화아연 수용액을 단독으로 적용함으로써 방수효과는 우수하였으나, 콘크리트의 압축강도 증진효과가 미약하고, 특히 유동성이 현저하게 저하되는 문제점을 안고 있다.In addition, the application of silica fluoride in order to impart waterproofness to cement or concrete. In Korea Patent Application No. 2001-63881 [method of improving the waterproofness of concrete or concrete using zinc fluoride aqueous solution] zinc fluoride in the silica fluoride By applying the aqueous solution alone, the waterproof effect was excellent, but the compressive strength enhancement effect of the concrete is weak, and in particular, the fluidity has a problem that the remarkably lowered.

상기와 같이 본 발명 분야의 종래기술에 있어서, 규불화염계 수용액의 조성과 시멘트 중량대비 첨가량을 조절하는 기술이 미흡하여 시멘트의 응결시간을 과도하게 지연시키고, 시멘트를 사용한 모르타르 혹은 콘크리트의 강도 및 내구성이 저하되는 역효과가 유발될 수 있다.As described above, in the prior art in the field of the present invention, the composition of the silofluoride-based aqueous solution and the technique for adjusting the amount of addition to the weight of the cement are insufficient, thus excessively delaying the setting time of cement, and the strength and durability of mortar or concrete using cement. This degrading adverse effect can be caused.

따라서 본 출원인은 규불화염의 적용에 있어서 종래기술의 문제점을 보완하기 위하여, 규불화염의 주성분으로 규불화아연을 50∼90 중량% 함유하고, 부성분으로 규불화마그네슘을 10∼50 중량% 함유하도록 조합한 2성분 규불화염계 액상 첨가제중 규불화염의 유효농도를 5∼30%(w/w)로 제조하였는 바, 본 발명에 의해 제조된 액상 첨가제는 2성분 규불화염을 시멘트 중량대비 1.0∼3.0 중량%로 첨가함으로써, 콘크리트의 방수성을 탁월하게 향상시키는 동시에 압축강도를 20% 이상 향상시키고, 유동성의 개선에도 매우 효과적이며, 또한 시멘트의 수화열을 효과적으로 저감시키게 됨을 알 수 있다.Therefore, the present applicant has 50 to 90% by weight of zinc fluoride as a main component of the silica fluoride, and 10 to 50% by weight of magnesium silica fluoride as a secondary component in order to supplement the problems of the prior art in the application of the silica fluoride salt. The effective concentration of the silica fluoride salt in the two-component silica fluoride-based liquid additive was prepared in the range of 5-30% (w / w), and the liquid additive prepared by the present invention contained 1.0-3.0 wt. It can be seen that by adding%, the waterproofness of the concrete is excellently improved, the compressive strength is improved by 20% or more, it is very effective in improving the fluidity, and the heat of hydration of cement is effectively reduced.

본 발명의 목적은 상기와 같이 규불화염 수용액을 사용함으로써 발생될 수 있는 종전의 문제점을 개선하기 위해서, 규불화염의 주성분으로 규불화아연을 50∼90 중량% 함유하고, 부성분으로 규불화마그네슘을 10∼50 중량% 함유하도록 조합된 2성분 규불화염계 액상 첨가제중 규불화염의 유효농도가 5∼30%(w/w)인 수용액 상태로 시멘트 중량대비 1.0∼3.0 중량%로 첨가함으로써 콘크리트의 방수성이 향상되고 20% 이상 강도가 증진될 수 있는 2성분계 규불화염계 액상 첨가제 조성물 및 그 제조방법을 제공하는데 있다.An object of the present invention is to contain 50 to 90% by weight of zinc fluoride as the main component of the silica fluoride, in order to improve the conventional problems that can be generated by using the aqueous solution of silica fluoride as described above, magnesium silica fluoride 10 The water resistance of the concrete by adding 1.0 to 3.0% by weight of the cement in an aqueous solution having an effective concentration of 5 to 30% (w / w) in the two-component silicate-based liquid additive combined to contain -50% by weight. It is to provide a two-component silica fluoride-based liquid additive composition that can be improved and 20% or more strength can be improved and a method for producing the same.

도 1은 규불화아연 및 규불화마그네슘을 함유한 2성분 규불화염계 액상 첨가제의 제조방법을 도시한 공정도1 is a process chart showing a method for preparing a two-component silicate fluoride-based liquid additive containing zinc silicate and magnesium silicate

도 2는 2성분 규불화염계 액상 첨가제를 콘크리트에 첨가시 방수성과 강도증진 효과를 발휘하는 반응기구의 도식도Figure 2 is a schematic diagram of a reactor for exerting a waterproof and strength enhancing effect when adding a two-component silicate-based liquid additive to concrete

도 3은 2성분 규불화염계 액상 첨가제의 첨가량 변화에 따른 칼슘실리케이트(C3S)의 수화발열속도 분석결과를 도시한 그래프도Figure 3 is a graph showing the results of the analysis of the hydration exothermic rate of calcium silicate (C 3 S) according to the change in the amount of the two-component silica fluoride-based liquid additive

도 4는 2성분 규불화염계 액상 첨가제의 첨가량에 따른 콘크리트의 유동성 변화에 대한 측정결과를 도시한 그래프도Figure 4 is a graph showing the measurement results for the fluidity change of the concrete according to the addition amount of the two-component silica fluoride-based liquid additive

상기의 목적을 달성하기 위하여, 본 발명에서는 다양한 금속염(metal salt) 형태의 아연 및 마그네슘원을 규불화수소산(H2SiF6)과 반응시켜 규불화염의 성분으로 규불화아연을 50∼90 중량%, 규불화마그네슘을 10∼50 중량% 함유하는 2성분 규불화염계 액상 첨가제의 조성물 및 이를 제조하는 방법이 제공된다.In order to achieve the above object, the present invention reacts zinc and magnesium sources in various metal salt forms with hydrofluoric acid (H 2 SiF 6 ) to form zinc fluoride as a component of the silica fluoride. A composition of a two-component silicate fluoride-based liquid additive containing 10 to 50% by weight of magnesium silicate fluoride, and a method for producing the same are provided.

또한 상기에서 제조된 2성분 규불화염계 액상 첨가제중 규불화염의 유효농도가 5∼30%(w/w)가 되도록 필요한 경우 물로 희석할 수 있고, 수용액 상태로 시멘트 중량대비 1.0∼3.0 중량%로 첨가함으로써 콘크리트의 방수성 및 압축강도가 증진될 수 있는 2성분 규불화염계 액상 첨가제의 조성물이 제공된다.In addition, if necessary to dilute with water so that the effective concentration of the silica fluoride salt in the two-component fluorinated salt-based liquid additive prepared above is 5 to 30% (w / w), 1.0 to 3.0% by weight relative to the weight of the cement in the aqueous state By providing a composition of a two-component siliceous salt-based liquid additive that can enhance the waterproof and compressive strength of the concrete.

이하 본 발명을 상세히 설명하면 하기와 같다.Hereinafter, the present invention will be described in detail.

본 발명에서 제안하는 2성분 규불화염계 액상 첨가제는 아연원으로써 산화아연(ZnO), 탄산아연(ZnCO3), 황산아연(ZnSO4) 및 수산화아연(Zn(OH)2)에서 선택된 1종 및 마그네슘원으로써 산화마그네슘(MgO), 탄산마그네슘(MgCO3), 황산마그네슘(MgSO4)및 수산화마그네슘(Mg(OH)2)에서 선택된 1종을 규불화수소산과 반응시켜 제조되는 것을 특징으로 한다. 이때 사용할 수 있는 규불화수소산의 적절한 농도는 10∼40%(w/w)이고, 인산제조공정 및 불산제조공정에서 발생되는 부산물과 불산(HF)에 SiO2를 용해시켜 제조한 규불화수소산 등을 사용할 수 있다.The two-component silicate-fluoride-based liquid additive proposed in the present invention is one selected from zinc oxide (ZnO), zinc carbonate (ZnCO 3 ), zinc sulfate (ZnSO 4 ), and zinc hydroxide (Zn (OH) 2 ) as a zinc source. Magnesium oxide (MgO), magnesium carbonate (MgCO 3 ), magnesium sulfate (MgSO 4 ) and magnesium hydroxide (Mg (OH) 2 ) as a magnesium source is characterized in that it is prepared by reacting with hydrofluoric acid. At this time, the suitable concentration of hydrofluoric acid that can be used is 10 to 40% (w / w), by-products generated in the phosphoric acid manufacturing process and hydrofluoric acid manufacturing process and hydrofluoric acid produced by dissolving SiO 2 in hydrofluoric acid (HF). Can be used.

상기 원료중 아연원으로 산화아연(공업용, 순도 97%)을, 마그네슘원으로 탄산마그네슘(공업용, 순도 96.5% )을 사용하고, 인산제조시 발생되는 25 중량%의 규불화수소산을 사용하여 2성분 규불화염계 액상 첨가제의 제조방법을 상세히 설명하면 하기와 같다.Two components using zinc oxide (industrial, purity of 97%) as the zinc source, magnesium carbonate (industrial, purity of 96.5%) as the magnesium source, and 25% by weight of hydrofluoric acid produced during the production of phosphoric acid. Hereinafter, a method for preparing a silicic acid-based liquid additive is described in detail.

먼저 규불화수소산을 반응용기에 투입한 후에 impeller가 부착된 교반기로 교반(교반속도 : 100rpm)하면서 탄산마그네슘 적정량을 서서히 첨가한다. 이 때 교반용액으로부터 탄산가스가 발생될 수 있다. 탄산마그네슘을 모두 첨가하고 10여분 지난 후 산화아연 적정량을 연속적으로 교반한 상태(1차 혼합)에서 서서히 반응용기에 투입한다. 산화아연을 모두 투입한 상태에서 약 1시간 가량 교반(2차 혼합)한 혼합용액을 물로 희석하여 원하는 농도로 본 발명에서 제안한 규불화아연 및 규불화마그네슘이 함유된 2성분 규불화염계 액상 첨가제를 제조할 수 있다. 이 때 산화아연, 탄산마그네슘 및 규불화수소산의 투입량을 조절하여 액상 첨가제중 규불화아연 및 규불화마그네슘을 원하는 농도로 조절할 수 있다.First, hydrofluoric acid is added to the reaction vessel, and then an appropriate amount of magnesium carbonate is slowly added while stirring (stirring speed: 100 rpm) with an agitator with an impeller. At this time, carbon dioxide gas may be generated from the stirring solution. After 10 minutes of adding all the magnesium carbonate, the appropriate amount of zinc oxide is gradually added to the reaction vessel under continuous stirring (first mixing). After diluting the mixed solution after stirring (secondary mixing) for about 1 hour with all of the zinc oxide in water, the two-component silicate fluorinated salt-based liquid additive containing zinc silicate and magnesium silicate fluoride proposed in the present invention at a desired concentration is prepared. It can manufacture. At this time, the amount of zinc oxide, magnesium carbonate and hydrofluoric acid can be adjusted to adjust the zinc silicate and magnesium silicate in the liquid additive to a desired concentration.

본 발명에서는 산화아연, 탄산마그네슘 및 규불화수소산의 투입량을 적절하게 조절하여 2성분 규불화염계 액상 첨가제에 함유된 규불화염중 규불화아연의 함량이 50∼90 중량%, 규불화마그네슘의 함량이 10∼50 중량%로 되게 하였다. 상기와 같이 제조된 2성분 규불화염계 조성물은 균일한 액상상태로 제조할 수 있으나 산성상태임을 고려하여 시멘트에 첨가시 중성화를 유발하지 않도록 규불화염의 유효농도를 5∼30%(w/w)의 수용액 상태로 희석하여 사용하는 것이 바람직하다.In the present invention, the amount of zinc fluoride in the silica fluoride salt contained in the two-component silica fluoride-based liquid additive is adjusted by appropriately adjusting the amounts of zinc oxide, magnesium carbonate and hydrofluoric acid, and the content of magnesium fluoride is 10 to 50% by weight. The two-component silicate salt composition prepared as described above may be prepared in a uniform liquid state, but considering the acidic state, the effective concentration of the silicate salt is 5 to 30% (w / w) so as not to cause neutralization when added to cement. It is preferable to dilute in an aqueous solution state of and use.

이 때 제조된 규불화염의 유효농도가 5%(w/w)이하로 되면 방수성 및 강도증진 효과가 미미하여 첨가제를 과량 투입해야 하는 문제점이 있으며, 30%(w/w) 이상으로 하면 액상 첨가제의 산도(acidity)가 너무 강하게 되어 시멘트 수화반응의 저해는 물론 콘크리트의 중성화 등을 초래할 수 있으므로 2성분 규불화염계 액상 첨가제의 농도를 5∼ 30%(w/w)로 조절하는 것이 필요하다At this time, if the effective concentration of the manufactured fluoride salt is less than 5% (w / w), there is a problem in that an excessive amount of additive is added because the waterproofness and strength enhancing effect are insignificant. It is necessary to adjust the concentration of the two-component silicate fluoride-based liquid additive to 5-30% (w / w) because the acidity becomes so strong that it may inhibit the cement hydration reaction and cause concrete neutralization.

또한 본 발명에서와 같이 2성분 규불화염계 첨가제 조성물을 액상으로 제조하면 종래 방수 및 강도증진을 위해 사용된 분말상태의 첨가제와는 달리 분말형태로 제조하기 위한 추가적인 공정의 도입이 없으며, 콘크리트에 첨가시 시멘트 분말과 균일한 혼합이 용이한 장점을 지니고 있다.In addition, when the two-component silicate-based additive composition is prepared in the liquid phase as in the present invention, unlike the additive in a powder state, which is conventionally used for waterproofing and increasing strength, there is no introduction of an additional process for preparing a powder form and added to concrete. It is easy to mix uniformly with cement powder.

액상 첨가제를 pH 12이상의 강알카리인 시멘트-물계 첨가하면 첨가제에 함유된 규불화아연 및 규불화마그네슘은 하기 반응식 1 및 반응식 2와 같이 각각의 금속이온과 규불화 이온(SiF6 -)으로 용이하게 해리된다.When the liquid additive is added to the cement-water system, which is a strong alkali having a pH of 12 or more, the zinc silicate and magnesium silicate contained in the additive can be easily converted into the metal ions and silicide ions (SiF 6 ) as shown in Schemes 1 and 2 below. Be dissociated

[반응식 1]Scheme 1

ZnSiF6(aq.) → Zn2+(aq.) + SiF6 -(aq.) ZnSiF 6 (. Aq) → Zn 2+ + SiF 6 (aq.) - (aq.)

[반응식 2]Scheme 2

MgSiF6(aq.) → Mg2+(aq.) + SiF6 -(aq.) MgSiF 6 (. Aq) → Mg 2+ + SiF 6 (aq.) - (aq.)

이 때 해리된 규불화이온(SiF6 -)은 도 2와 같이 가수분해되어 비정질 실리카를 생성하면서 수용액중에 불소이온이 방출된다. 이와같이 방출된 불소이온은 시멘트 중의 알카리 이온과 반응하여 submicron 이하의 난용성 금속불화물(M'F)를 생성하여 콘크리트중에 존재하는 수∼수십㎛의 미세공극 및 균열에 대한 충전작용으로 치밀한 조직(defect free)을 형성하여, 궁극적으로 콘크리트의 수밀성을 증대시켜 방수성의 향상에 기여하게 된다. 한편 비정질 실리카는 시멘트의 수화(hydration)에 의해 생성된 수산화칼슘과 반응하여 시멘트의 궁극적 강도를 지배하는 칼슘실리케이트 수화겔(C-S-H gel)의 생성을 촉진시키는 포졸란 효과(pozzolanic effect)에 의해 강도증진에 기여한다.At this time, dissociated silicic fluoride (SiF 6 ) is hydrolyzed as in FIG. 2 to generate amorphous silica, thereby fluorine ions are released in the aqueous solution. The fluorine ions released in this way react with alkali ions in cement to form poorly soluble metal fluorides (M'F) of submicron or less, resulting in compact structure due to the filling action against micropores and cracks of several to several tens of micrometers present in concrete. free), which ultimately increases the watertightness of the concrete, thereby contributing to the improvement of waterproofness. Amorphous silica, on the other hand, contributes to strength enhancement by the pozzolanic effect, which reacts with calcium hydroxide produced by the hydration of cement to promote the production of calcium silicate hydrogel (CSH gel), which dominates the ultimate strength of cement. .

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 여기서 실시예는 2성분 규불화염계 액상 첨가제중 함유된 규불화아연 및 규불화마그네슘의 함유량을 각각 90 중량% 및 10 중량%로 하고, 액상 첨가제의 규불화염 유효농도를 15%(w/w)로 고정한 상태에서 시멘트 중량 대비 2성분 규불화염계 액상 첨가제의 첨가량을 변화시켜 콘크리트 압축강도 및 방수성 평가를 위한 시험체를 제작함으로써 각기 구분하였다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들 만으로 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples. In the present embodiment, the content of zinc silicate and magnesium silicate contained in the two-component silicate-based liquid additive is 90% by weight and 10% by weight, respectively, and the effective concentration of the silicate salt in the liquid additive is 15% (w / w). The test specimens for concrete compressive strength and waterproofness were prepared by changing the amount of two-component silicate-based liquid additives added to the cement weight in the fixed state. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

실시예 1Example 1

25 중량%의 규불화수소산(H2SiF6) 수용액과 산화아연과 탄산마그네슘을 이용해 제조된 15%(w/w)의 2성분 규불화염계 액상 첨가제(이하 SWP로 표기함)을 시멘트 중량 대비 1.0 중량%(SWP 첨가량 : 0.219 kg/m3)로 시멘트 21.96 kg/m3에 첨가하고, 모래(잔골재) 및 쇄석(굵은골재)은 각각 50.13 kg/m3, 54.53 kg/m3으로 투입한 후혼합수는 10.98 kg/m3(물시멘트비, W/C = 0.5)으로 배합하였다. 시멘트는 S사의 1종 보통 포틀랜드 시멘트(비중 : 3.14, Blaine : 3350 cm2/g)를, 모래는 5mm 이하의 것을, 쇄석은 25mm 이하의 것을 사용하였다. 재료 배합 후 콘크리트의 비빔은 강제식 팬타입 믹서를 사용하여 먼저 시멘트와 잔골재를 30초간 건비빔 한 후 물을 넣고 60초간 다시 비빈 후 여기에 굵은 골재를 넣고 60초간 비빔하였다. 최종적으로 고유동화제(SP)와 2성분 규불화염계 액상첨가제를 첨가하고 60초간 비빔하여 총 3분 30초간 재료의 비빔을 진행하였다.15% (w / w) bicomponent siliceous fluorinated liquid additive (hereinafter referred to as SWP) prepared using a 25 wt% aqueous hydrofluoric acid (H 2 SiF 6 ) solution and zinc oxide and magnesium carbonate, 1.0 wt% (SWP added: 0.219 kg / m 3 ) added to 21.96 kg / m 3 of cement, and 50.13 kg / m 3 and 54.53 kg / m 3 of sand (grain aggregate) and crushed stone (coarse aggregate) were added respectively. The post-mixed water was blended at 10.98 kg / m 3 (water cement ratio, W / C = 0.5). Cement used S type 1 ordinary portland cement (specific gravity: 3.14, Blaine: 3350 cm 2 / g), sand 5 mm or less, and crushed stone 25 mm or less. After mixing the materials, the concrete was beamed using a forced pan-type mixer, and the cement and fine aggregates were first beamed for 30 seconds, and then water was added and rubbed again for 60 seconds. Finally, the high fluidizing agent (SP) and the two-component siliceous fluorinated liquid additive were added, and the mixture was bibeamed for 60 seconds, and the material was then beamed for a total of 3 minutes and 30 seconds.

실시예 2Example 2

실시예 1에 있어서, SWP를 시멘트 중량 대비 각각 2.0 중량%(SWP 첨가량 : 0.439 kg/m3)를 시멘트에 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법 및 조건에서 실시하여 실시예 2로 구분하였다.In Example 1, except that 2.0% by weight (SWP addition amount: 0.439 kg / m 3 ) of the SWP to the cement, respectively, was added to the cement, Example 2 was carried out in the same manner and conditions as in Example 1 Divided into.

실시예 3Example 3

실시예 1에 있어서, SWP를 시멘트 중량 대비 각각 3.0 중량%(SWP 첨가량 : 0.658 kg/m3)를 시멘트에 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법 및 조건에서 실시하여 실시예 3으로 구분하였다.In Example 1, Example 3 was carried out in the same manner as in Example 1, except that 3.0% by weight (SWP addition amount: 0.658 kg / m 3 ) of the SWP to the cement, respectively, was added to the cement Divided into.

한편 본 실시예에서 콘크리트의 압축강도 시험체 및 방수성 평가를 위한 투수성(permeation) 시험체의 양생(curing)은 상대습도 90%인 습기함에서 실온(20℃)으로 양생온도를 고정하고 재령(curing day)별로 기건양생 하였다.Curing of the compressive strength test specimen and the permeation test specimen for the evaluation of waterproofness in the present embodiment is fixed at room temperature (20 ° C.) in a humidity of 90% relative humidity and curing day. Each patient was cured.

비교예Comparative example

SWP를 첨가하지 않은 콘크리트 배합(공배합)을 상기 실시예 1과 동일한 조건 및 비빔방법으로 배합하여 비교예로 하였으며, 이를 실시예와 구분하였다.Concrete mixture (co-mixing) without the addition of SWP was blended in the same conditions and the bibeam method as in Example 1 to make a comparative example, it was distinguished from the examples.

SWP 첨가량에 따라 구분된 상기 실시예 및 비교예를 재료배합을 기준으로 정리한 결과를 하기표에 나타내었다.The results obtained by arranging the above Examples and Comparative Examples classified according to the amount of SWP added based on the material formulation are shown in the following table.

[표 1] 본 발명의 실시예 1∼3 및 비교예에 따른 콘크리트 재료배합Table 1 Concrete material mix according to Examples 1 to 3 and Comparative Examples of the present invention

시험예 1: 압축강도의 측정Test Example 1 Measurement of Compressive Strength

양생 재령일로 각각 3, 7 및 28일 경과한 각 실시예 1 내지 3 및 비교예의 콘크리트 시험체의 압축강도(kgf/cm2)를 KS F 2405에 따라 측정하였으며, 측정결과를 하기 표 2에 나타내었다.The compressive strength (kg f / cm 2 ) of the concrete specimens of Examples 1 to 3 and Comparative Examples, which were passed for 3, 7 and 28 days, respectively, were measured according to KS F 2405, and the measurement results are shown in Table 2 below. It was.

[표 2] 본 발명의 실시예 1∼3 및 비교예에 따른 콘크리트의 재령별 압축강도 변화[Table 2] Compressive strength change of the concrete age according to Examples 1 to 3 and Comparative Examples of the present invention

상기 표와 같이 SWP를 첨가하면 재령에 관계없이 적게는 적게는 10%에서 많게는 30%까지 압축강도가 증진되었다. 그러나 SWP를 3.0 중량% 첨가한 실시예 3보다는 2.0 중량% 첨가한 실시예 2의 경우 압축강도 증진율이 더욱 높은 것으로 확인되었다. 이로부터 콘크리트의 압축강도 증진을 위해서는 SWP의 첨가율을 1.0∼3.0 중량%로 제시할 수 있으나 압축강도의 증진율을 고려할 경우 바람직하게는 1.0∼2.0 중량% 범위내로 첨가하는 것이 더욱 효과적인 것으로 나타났다.As shown in the table, the addition of SWP increased the compressive strength from as little as 10% to as much as 30% regardless of age. However, it was confirmed that the compressive strength enhancement rate was higher for Example 2 added 2.0 wt% than Example 3 added 3.0 wt%. From this, in order to increase the compressive strength of concrete, the addition ratio of SWP may be presented as 1.0 to 3.0 wt%, but considering the increase in the compressive strength, it is preferable to add it within the range of 1.0 to 2.0 wt%.

시험예 2: 투수성의 측정Test Example 2 Measurement of Permeability

상기 실시예 1∼3에서 쇄석을 배제한 상태로 배합한 모르타르 시험체를 기건양생한 후 재령 21일 이상이 경과된 상태에서 KSF 2451 모르타르 투수시험법에 따라 각 실시예 및 비교예에 따른 시험체의 투수량(g)을 측정한 후 측정된 값을 바탕으로 비교예 대비 투수율(%)을 계산하였으며, 이를 하기 표 3에 나타내었다.Permeability of the test specimens according to the Examples and Comparative Examples according to the KSF 2451 mortar permeability test method after 21 days or more after the curing of the mortar test compound formulated in the state of excluding the crushed stone in the above-described condition ( After measuring g) was calculated permeability (%) compared to the comparative example based on the measured value, which is shown in Table 3 below.

[표 3] 본 발명의 실시예 1∼3 및 비교예에 따른 모르타르 시험체의 투수율 변화[Table 3] Permeability change of mortar test specimens according to Examples 1 to 3 and Comparative Examples of the present invention

상기표 3으로부터, 본 발명에 따른 SWP를 1.0∼2.0 중량%로 첨가하는 경우, 첨가하지 않은 경우에 비해 콘크리트의 투수율이 각각 0.2444(%), 0.1400(%)까지 현저하게 감소하여 방수성이 크게 증가되는 것으로 확인되었으나, 3.0 중량%로 첨가하면 첨가하지 않은 경우보다 0.3456(%)로 투수율이 감소하나 SWP를 1.0∼2.0 중량%로 첨가한 경우에 비해 투수율이 약간 증가되었다.From Table 3, when the SWP according to the present invention is added at 1.0 to 2.0% by weight, the water permeability of the concrete is significantly reduced to 0.2444 (%) and 0.1400 (%), respectively, compared to the case without addition, thereby greatly increasing the water resistance. Although it was confirmed that the addition of 3.0% by weight, the permeability was reduced to 0.3456 (%) than when not added, but the permeability was slightly increased compared to the case of adding 1.0 to 2.0% by weight of SWP.

시험예 3: 수화열의 측정Test Example 3 Measurement of Heat of Hydration

본 발명에서 제안한 2성분 규불화염계 액상 첨가제를 시멘트에 첨가하면 시멘트의 수화열, 특히 시멘트 주요 구성광물인 칼슘실리케이트(3CaO · SiO2, C3S)의 수화발열량을 억제하는 효과가 있다. 이를 확인하기 위해 시멘트 수화발열 피이크중 칼슘 실리케이트의 수화에 해당되는 수화발열량(cal/g)을 분석하였으며, 각각의 분석 결과값을 하기 표 4에 나타내었다.When the two-component silicate-based liquid additive proposed in the present invention is added to cement, the heat of hydration of cement, in particular, the amount of hydration calorific value of calcium silicate (3CaOSiO 2 , C 3 S), which is the main component mineral of cement, is suppressed. In order to confirm this, the hydration calorific value (cal / g) corresponding to the hydration of calcium silicate in the cement hydration pyrogen peak was analyzed, and the respective analysis results are shown in Table 4 below.

[표 4] 본 발명의 실시예 1∼3 및 비교예에 따른 시멘트중 칼슘실리케이트(C3S)의수화발열량 변화[Table 4] Hydration calorific value change of calcium silicate (C 3 S) in cement according to Examples 1 to 3 and Comparative Examples of the present invention

또한 SWP의 첨가는 시멘트 수화발열량의 억제뿐만 아니라 시멘트 주요 구성광물인 칼슘실리케이트의 수화에 해당되는 제 2 피크의 수화발열속도를 지연시키는 효과를 지닌다. 이를 확인하기 위해 SWP가 실시예별로 첨가된 시멘트중 칼슘실리케이트의 수화발열속도를 시멘트 혼련 후 48시간까지 측정하였으며, 측정된 결과를 도식화하여 도 3에 나타내었다.In addition, the addition of SWP has the effect of delaying the hydration exothermic rate of the second peak corresponding to the hydration of the calcium silicate, which is the main constituent mineral of cement, as well as suppressing the cement hydration calorific value. In order to confirm this, the hydration exothermic rate of calcium silicate in the cement added with SWP was measured for 48 hours after cement kneading, and the measured results are shown in FIG. 3.

시험예 4: 유동성의 측정Test Example 4 Measurement of Fluidity

규불화아연 수용액을 콘크리트에 단독으로 첨가하면 무첨가 콘크리트보다 배합 초기에 시간경과에 따라 유동성이 현저히 저하되는 경향을 보이는데, 본 발명과 같이 규불화아연과 규불화마그네슘을 일정비율로 동시에 첨가하면 규불화아연 단독 첨가에 따른 유동성의 저하현상이 개선된다.When the zinc silicate aqueous solution is added to concrete alone, the fluidity tends to be significantly lowered over time than the non-added concrete at the beginning of mixing. The drop in fluidity due to the addition of zinc alone is improved.

이를 확인하기 위해 농도 15 %(w/w)인 규불화아연 수용액을 단독 첨가한 것(대조구)과 무첨가한 콘크리트(비교예) 및 농도 15 %(w/w)인 SWP를 1.0∼3.0 중량% 첨가한 실시예 1∼3을 대상으로 30분 간격으로 90분까지 배합 후 유동성 변화를 측정하였으며, 측정된 결과를 도 4에 나타내었다. 규불화아연 수용액을 단독으로 시멘트 중량 대비 1.0 중량% 첨가할 경우에 비해 시간경과에 따른 콘크리트의 유동성 저하가 SWP를 1.0∼2.0 중량% 첨가하면 약 50% 정도 억제되는 것으로 나타났다. 따라서 규불화아연에 규불화마그네슘이 적정비율로 함유된 상태인 SWP의 첨가는 규불화아연 단독 첨가에 비해 시간경과에 따른 콘크리트의 유동성 저하현상을 억제하는데 효과적이다.To confirm this, 1.0 to 3.0% by weight of zinc silicate aqueous solution having a concentration of 15% (w / w) alone was added (control) and uncontained concrete (comparative) and SWP having a concentration of 15% (w / w). The change in fluidity was measured after mixing for 90 minutes at 30 minute intervals for the added Examples 1 to 3, and the measured results are shown in FIG. 4. Compared to the case of adding 1.0 wt% of the zinc silicate aqueous solution alone to the weight of cement, the fluidity decrease of concrete with time was suppressed by about 50% when 1.0-2.0 wt% of SWP was added. Therefore, the addition of SWP in the state of containing magnesium silicate at an appropriate ratio in zinc silicate is more effective in suppressing the fluidity deterioration of concrete over time than zinc silicate alone.

상기한 바와 같이, 본 발명의 방법에 의해, 규불화아연을 주성분으로 50∼90 중량%, 규불화마그네슘을 부성분으로 10∼50 중량% 함유한 2성분 규불화염계 액상 첨가제를 첨가하면 콘크리트의 방수성이 향상되고 10∼30% 범위로 강도가 증진된 콘크리트를 제조할 수 있다. 상기 효과외에도 2성분 규불화염계 액상 첨가제의 첨가는 시멘트중 칼슘실리케이트의 수화발열량 및 수화발열속도를 억제시키고, 규불화아연의 단독 첨가시 시간경과에 따라 콘크리트의 유동성이 저하되는 현상을 효율적으로 억제하는 효과를 갖는다.As described above, according to the method of the present invention, when the two-component silica fluoride-based liquid additive containing 50 to 90% by weight of zinc silicate as a main component and 10 to 50% by weight of magnesium silicate as a secondary component is added, It is possible to produce concrete with improved and enhanced strength in the range of 10 to 30%. In addition to the above effects, the addition of a two-component silicate-based liquid additive suppresses the hydration calorific value and the hydration exothermic rate of calcium silicate in cement, and effectively suppresses the phenomenon that the fluidity of concrete decreases with time when zinc silicate is added alone. Has the effect.

또한 본 발명에서 제안한 2성분 규불화염계 액상 첨가제의 주요원료인 규불화수소산은 국내에서 발생되는 공정부산물로서 안정적인 수급이 가능하고, 저렴하게 공급받을 수 있으므로 2성분 규불화염계 액상 첨가제의 제조단가가 매우 저렴해질 수 있는 경제적인 효과를 갖는다.In addition, hydrofluoric acid, which is the main raw material of the two-component silicate-based liquid additive proposed in the present invention, is a process by-product generated in Korea and can be supplied in a stable and inexpensive manner. It has an economic effect that can be very cheap.

Claims (6)

규불화수소산과 아연 및 마그네슘을 함유하는 금속염을 사용하는 2성분 규불화염계 액상 첨가제에 있어서, 규불화수소산은 불산 제조공정 혹은 인산 제조공정중 10∼40 중량%의 수용액 상태로 발생되는 공정부산물인 것을 특징으로 하는 2성분 규불화염계 액상 첨가제 조성물In a two-component hydrofluoric acid salt-based liquid additive using hydrofluoric acid and a metal salt containing zinc and magnesium, hydrofluoric acid is a process by-product generated in an aqueous solution of 10 to 40% by weight in hydrofluoric acid or phosphoric acid. Two-component silicate-based liquid additive composition, characterized in that 제 1항에 있어서The method of claim 1 2성분 규불화염계 액상 첨가제중 규불화아연과 규불화마그네슘의 총 유효농도가 5∼30중량%인 것을 특징으로 하는 2성분 규불화염계 액상 첨가제 조성물Two-component silicate-based liquid additive composition, characterized in that the total effective concentration of zinc silicate and magnesium silicate in the two-component silicate-based liquid additive is 5-30% by weight. 제 1 항에 있어서,The method of claim 1, 아연을 함유하는 금속염은 산화아연(ZnO), 탄산아연(ZnCO3), 황산아연(ZnSO4) 또는 수산화아연(Zn(OH)2) 중 어느 하나이며, 마그네슘을 함유한 금속염은 산화마그네슘(MgO), 탄산마그네슘(MgCO3), 황산마그네슘(MgSO4) 또는 수산화마그네슘(Mg(OH)2)중 어느 하나인 것을 특징으로 하는 2성분 규불화염계 액상 첨가제 조성물The metal salt containing zinc is one of zinc oxide (ZnO), zinc carbonate (ZnCO 3 ), zinc sulfate (ZnSO 4 ) or zinc hydroxide (Zn (OH) 2 ), and the metal salt containing magnesium is magnesium oxide (MgO). ), Magnesium carbonate (MgCO 3 ), magnesium sulfate (MgSO 4 ) or magnesium hydroxide (Mg (OH) 2 ), two-component siliceous fluorinated liquid additive composition 제 2항에 있어서The method of claim 2 규불화아연과 규불화마그네슘의 총 유효농도 5∼30중량% 중 규불화아연은 50∼90 중량%, 규불화마그네슘은 10∼50 중량% 함유된 것을 특징으로 하는 2성분 규불화염계 액상 첨가제 조성물Two component silicate fluoride salt-based liquid additive composition comprising 50 to 90% by weight of zinc silicate and 10 to 50% by weight of magnesium silicate in the total effective concentration of zinc silicate and magnesium silicate 5-30% by weight 규불화수소산과 아연 및 마그네슘을 함유하는 금속염을 사용하는 2성분 규불화염계 액상 첨가제에 있어서, 규불화수소산은 불산 제조공정 혹은 인산 제조공정중 10~40 중량%의 수용액 상태로 발생되는 공정부산물이고, 규불화염을 구성하는 규불화아연과 규불화마그네슘의 총 유효농도가 5~30 중량%인 2성분 규불화염계 액상 첨가제를 시멘트에 혼합시 시멘트 중량대비 1.0~3.0 중량%로 첨가되는 것을 특징으로 하는 2성분 규불화염계 액상 첨가제 조성물In two-component hydrofluoric acid salt-based liquid additives using hydrofluoric acid and metal salts containing zinc and magnesium, hydrofluoric acid is a process by-product generated in an aqueous solution of 10 to 40% by weight in hydrofluoric acid or phosphoric acid. , When the two-component silicate-based liquid additive having a total effective concentration of 5-30% by weight of zinc silicate and magnesium silicate constituting the silicate salt is added to the cement, it is added at 1.0-3.0% by weight relative to the weight of the cement. Two-component siliceous salt-based liquid additive composition 규불화수소산과 아연 및 마그네슘을 함유하는 금속염을 사용하여 2성분 규불화염계 액상 첨가제를 제조하는데 있어서, 규불화수소산은 불산 제조공정 또는 인산 제조공정중 10∼40 중량%의 수용액 상태로 발생되는 공정부산물을 원료로 하여 제조하는 것을 특징으로 하는 2성분 규불화염계 액상 첨가제의 제조방법In the preparation of a two-component hydrofluoric acid salt-based liquid additive using hydrofluoric acid and metal salts containing zinc and magnesium, hydrofluoric acid is generated in an aqueous solution of 10 to 40% by weight in hydrofluoric acid or phosphoric acid. Method for producing a two-component siliceous salt-based liquid additive, characterized in that the by-product is prepared as a raw material
KR10-2002-0042799A 2002-07-20 2002-07-20 Liquid-phase admixture components of dual components based on fluosilicate salt for improving waterproofing and strength of concrete and its manufacturing method KR100417528B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0042799A KR100417528B1 (en) 2002-07-20 2002-07-20 Liquid-phase admixture components of dual components based on fluosilicate salt for improving waterproofing and strength of concrete and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0042799A KR100417528B1 (en) 2002-07-20 2002-07-20 Liquid-phase admixture components of dual components based on fluosilicate salt for improving waterproofing and strength of concrete and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20030044767A KR20030044767A (en) 2003-06-09
KR100417528B1 true KR100417528B1 (en) 2004-02-05

Family

ID=29578270

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0042799A KR100417528B1 (en) 2002-07-20 2002-07-20 Liquid-phase admixture components of dual components based on fluosilicate salt for improving waterproofing and strength of concrete and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100417528B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601882B1 (en) * 2005-09-30 2006-07-19 김용석 The concrete surface reinforcement and protect from burning construetion methodthereof
KR100623674B1 (en) * 2006-02-15 2006-09-13 주식회사트라이포드 Concrete penetrating floor hardening agent
KR100796534B1 (en) * 2006-10-12 2008-01-21 대림산업 주식회사 Low heat building concrete composition using 3type combine and 3type latent heat storage composition
KR101286445B1 (en) * 2010-12-15 2013-07-18 김연숙 Manufacturing method of magnesium fluorosilicate using ferro-nickel slag by mechanochemistry
CN112341034A (en) * 2020-10-22 2021-02-09 上海尼索建材科技有限公司 Self-compacting waterproof agent for concrete structure and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150441A (en) * 1978-05-18 1979-11-26 Kubota Ltd Coating compound for cement product
US4258090A (en) * 1979-01-19 1981-03-24 Institutul De Cergetari In Constructii Si Economia Constructilor Incerc Method for the protection of concrete in sea water
JPH02184584A (en) * 1989-01-11 1990-07-19 Ooka Masami Concrete surface hardener
KR19980084656A (en) * 1997-05-24 1998-12-05 손연호 Sound insulation composition
KR100233778B1 (en) * 1997-05-07 2000-01-15 이성식 Filler for concrete using industrial by product
KR20020035713A (en) * 2000-11-08 2002-05-15 김영구 Mixture for cleaning and conditioning of marble surface, and using method of same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150441A (en) * 1978-05-18 1979-11-26 Kubota Ltd Coating compound for cement product
US4258090A (en) * 1979-01-19 1981-03-24 Institutul De Cergetari In Constructii Si Economia Constructilor Incerc Method for the protection of concrete in sea water
JPH02184584A (en) * 1989-01-11 1990-07-19 Ooka Masami Concrete surface hardener
KR100233778B1 (en) * 1997-05-07 2000-01-15 이성식 Filler for concrete using industrial by product
KR19980084656A (en) * 1997-05-24 1998-12-05 손연호 Sound insulation composition
KR20020035713A (en) * 2000-11-08 2002-05-15 김영구 Mixture for cleaning and conditioning of marble surface, and using method of same

Also Published As

Publication number Publication date
KR20030044767A (en) 2003-06-09

Similar Documents

Publication Publication Date Title
KR101333084B1 (en) High early strength cement comprising blast furnace slag and CSA cement
CA2747872A1 (en) Suppression of antagonistic hydration reactions in blended cements
CN114751662B (en) Preparation method of alkaline steel slag activity excitant and steel slag cementing material
JP6030438B2 (en) Spraying material and spraying method using the same
JP6718551B1 (en) Powder quick-setting agent
CA2841109A1 (en) Hydraulic binder
KR100417528B1 (en) Liquid-phase admixture components of dual components based on fluosilicate salt for improving waterproofing and strength of concrete and its manufacturing method
KR100609723B1 (en) The fluosilicate salt composition of reducing agent of hydration heat for improvement of and watertightness control of crack of concreteself-exothermic and hydrauric inorganic compound and the method of making it
JP2002249352A (en) Alkali-free quick-setting admixture and cement composition
JP6983963B1 (en) Cement composition
JP5924435B1 (en) Clinker composition and cement composition
EP3762348B1 (en) A setting and hardening accelerator for a cement, mortar or concrete composition, optionally comprising supplementary cementitious materials, and use of this accelerator
JP3124578B2 (en) Cement admixture and cement composition
JP4225560B2 (en) Soil hardening material
JP5954512B1 (en) Clinker composition and cement composition
JP4707799B2 (en) Cement setting retarder, cement composition using the same, method for producing cement composition, and hardening accelerator
JP2006182568A (en) Hardening accelerator and quick-hardening cement composition
KR100447615B1 (en) Fluorosilicate-based additive composition for a concrete with ready-mixed concrete proportion
JP3192710B2 (en) Cement hardened material
JP2018177599A (en) Cement mortal/concrete composition and production method therefor
KR100476635B1 (en) Method for increasing water-proof property of concrete or ready-mixed concrete using an aqueous zinc silicon fluoride solution
JPH02302352A (en) Rapid hardening type self-leveling composition for floor covering material
JP2001122649A (en) Cement admixture and cement composition
JP3460161B2 (en) Cement admixture and cement composition
WO2023022172A1 (en) Cement admixture, method for producing cement admixture, and cement composition

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
G15R Request for early opening
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120120

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee