KR100390469B1 - Process for Preparing Ultrafine Barium Titanate Dielectric Ceramic Material - Google Patents

Process for Preparing Ultrafine Barium Titanate Dielectric Ceramic Material Download PDF

Info

Publication number
KR100390469B1
KR100390469B1 KR10-2000-0054227A KR20000054227A KR100390469B1 KR 100390469 B1 KR100390469 B1 KR 100390469B1 KR 20000054227 A KR20000054227 A KR 20000054227A KR 100390469 B1 KR100390469 B1 KR 100390469B1
Authority
KR
South Korea
Prior art keywords
batio
dielectric ceramic
ceramic material
powder
ultrafine
Prior art date
Application number
KR10-2000-0054227A
Other languages
Korean (ko)
Other versions
KR20020029446A (en
Inventor
김병국
제해준
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2000-0054227A priority Critical patent/KR100390469B1/en
Priority to JP2000338249A priority patent/JP3421810B2/en
Publication of KR20020029446A publication Critical patent/KR20020029446A/en
Application granted granted Critical
Publication of KR100390469B1 publication Critical patent/KR100390469B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 초미립의 BaTiO3유전체 세라믹스를 저온에서 제조할 수 있는 저온 소성용 초미립 유전체 세라믹 재료의 제조 방법에 관한 것이다.The present invention relates to a method for producing ultrafine dielectric ceramic material for low temperature firing, which can produce ultrafine BaTiO 3 dielectric ceramics at low temperature.

본 발명은 초미립 BaTiO3분말을 Cu- 2에틸헥사노에이트(ethylhexanoate) 금속 유기화합물 용액으로 코팅하는 것을 특징으로 한다.The present invention is characterized by coating the ultrafine BaTiO 3 powder with a solution of Cu-2 ethylhexanoate metal organic compound.

본 발명에 따르면, 결정립 크기가 120 ∼ 130 ㎚이고 1000℃에서 소성하여 280 ∼ 420 nm 크기의 평균 입경과 5.61 ∼ 5.80 g/cm3의 밀도, -55 ∼ 125℃의 온도 영역에서 -14 ∼ 61%의 유전율 변화량을 갖는 고밀도 초미립 BaTiO3유전체 세라믹스를 제조할 수 있는 Cu가 코팅된 BaTiO3분말을 얻을 수 있다.According to the present invention, the grain size is 120 to 130 nm and fired at 1000 ° C., the average particle diameter of 280 to 420 nm, the density of 5.61 to 5.80 g / cm 3 , and the temperature range of -14 to 61 ° C. at -55 to 125 ° C. A Cu-coated BaTiO 3 powder capable of producing high density ultrafine BaTiO 3 dielectric ceramics having a dielectric constant change of% can be obtained.

Description

초미립 티탄산바륨 유전체 세라믹재료의 제조방법{Process for Preparing Ultrafine Barium Titanate Dielectric Ceramic Material}Process for Preparing Ultrafine Barium Titanate Dielectric Ceramic Material

본 발명은 초미립 유전체 세라믹 재료의 제조방법에 관한 것으로, 보다 구체적으로는 초미립 BaTiO3분말을 Cu 금속 유기화합물 용액으로 코팅함으로써 양호한 유전 특성을 가지는 초미립의 유전체 세라믹스를 얻을 수 있는 초미립 BaTiO3유전체 세라믹 재료의 제조방법에 관한 것이다.The present invention relates to a method for producing an ultrafine dielectric ceramic material, and more specifically, to ultrafine BaTiO which can obtain ultrafine dielectric ceramics having good dielectric properties by coating the ultrafine BaTiO 3 powder with a Cu metal organic compound solution. 3 relates to a method for producing a dielectric ceramic material.

적층형 세라믹 콘덴서 (Multi-Layer Ceramic Capacitors, MLCCs)는 작고 가벼운 전자 회로를 구성하는데 있어서 필수적인 수동 부품이다. 최근 각종 전자 기기의 경박단소화 및 전자 회로의 고집적화에 의한 부품의 소형화 추세에 따라 적층형 세라믹 콘덴서 역시 초소형 소자 개발의 필요성이 급격히 대두되고 있다. 초소형의 적층형 세라믹 콘덴서를 제조하기 위해서는 소성 후 유전체 세라믹스 한 층의 두께가 바람직하게는 2 ㎛ 이하이어야 한다. 이 정도의 두께를 갖는 유전체 세라믹스로 이루어진 적층형 세라믹 콘덴서를 신뢰성 있게 제조하기 위해서는 소성 후 유전체 세라믹스의 평균 입경이 바람직하게는 한 층의 두께의 1/4 이하, 즉 0.5 ㎛ 이하이어야 하고 또한 고밀도이어야 한다.Multi-Layer Ceramic Capacitors (MLCCs) are essential passive components for building small, lightweight electronic circuits. Recently, due to the miniaturization of components due to the miniaturization of various electronic devices and the high integration of electronic circuits, multilayer ceramic capacitors also need to develop ultra-small devices. In order to manufacture a micro multilayer ceramic capacitor, the thickness of one layer of the dielectric ceramic after firing should preferably be 2 m or less. In order to reliably manufacture a multilayer ceramic capacitor made of dielectric ceramics having such a thickness, the average particle diameter of the dielectric ceramics after firing should preferably be no more than 1/4 of the thickness of one layer, that is, 0.5 μm or less and high density. .

한편, 적층형 세라믹 콘덴서는 유전체 세라믹스와 내부 전극을 교대로 수백 층까지 쌓은 후 동시 소성함으로써 제조된다. 따라서 내부 전극 물질은 유전체 세라믹스의 소성 온도에서 견딜 수 있어야 한다. 현재까지 적층형 세라믹 콘덴서용 유전체 세라믹스로는 일반적으로 1300℃ 이상의 높은 소성 온도가 요구되는 티탄산바륨(BaTiO3)를 중심으로 한 티탄산(titanate)계가 주로 사용되어 왔다. 이러한 재료들은 Pd, Pt 등과 같은 고가의 고융점 귀금속 내부 전극을 필요로 한다. 이러한 값비싼 전극을 사용하는데 따른 비용을 줄이기 위해서는 Ag, Pd-Ag 등의 값싼 전극을 사용할 수 있는 저온 소성용 유전체 세라믹 조성물 또는 초미립 유전체 세라믹스의 저온 소성 기술이 필요하게 된다.On the other hand, multilayer ceramic capacitors are manufactured by stacking dielectric ceramics and internal electrodes up to several hundred layers alternately and simultaneously firing them. Therefore, the internal electrode material must be able to withstand the firing temperature of the dielectric ceramics. Titanate based on barium titanate (BaTiO 3 ), which requires a high firing temperature of 1300 ° C. or more, has been mainly used as a dielectric ceramic for multilayer ceramic capacitors. These materials require expensive high melting point precious metal internal electrodes such as Pd, Pt and the like. In order to reduce the cost of using such an expensive electrode, a low temperature firing technique of a low-temperature firing dielectric ceramic composition or ultra-fine dielectric ceramics using an inexpensive electrode such as Ag or Pd-Ag is required.

BaTiO3에 Pb계, Cd계, Bi계, B계, Li계 등의 첨가물을 첨가하여 소성 온도를 낮춤으로써 초미립의 유전체 세라믹스를 제조하려는 시도가 이루어져 왔다 (참조: 日本 特開平5-120915, 日本 特開平1-192762). 그러나 이들 첨가물들은 모두 유독성, 비 환경 친화성, 유전체 소지와의 화학적 반응성, 수계에서 용매로 사용되는 물과의 반응성 등과 같은 문제점을 안고 있다. 이와 같은 문제점을 배제하기 위해서는 환경 친화적이며 화학적으로 안정한 저온 소성용 초미립 유전체 세라믹 조성물 또는 초미립 유전체 세라믹스의 저온 소성 기술이 필요하게 된다.Attempts have been made to produce ultrafine dielectric ceramics by adding an additive such as Pb-based, Cd-based, Bi-based, B-based, or Li-based to BaTiO 3 to lower the firing temperature (see Japan Nippon Teki 5-120915,日本 特 開平 1-192762). However, these additives all have problems such as toxicity, non-environmental affinity, chemical reactivity with dielectric materials, water reactivity with water used as a solvent in water. In order to eliminate such a problem, an environmentally friendly and chemically stable ultrafine dielectric ceramic composition for low temperature firing or low temperature baking technology of ultrafine dielectric ceramics is required.

환경 친화적이고 화학적으로 안정하며 값싼 Cu를 첨가하는 저온 소성용 BaTiO3유전체 세라믹 조성물이 제안되었다. (참조: 日本 特開平8-203702, 한국 특허공보 94-3970) 이는 Cu의 첨가에 따라 생성되는 액상으로 인해 저온에서 소성이 촉진되기 때문으로 이해되고 있다. 그러나 위와 같이 Cu가 첨가된 저온 소성용 BaTiO3유전체 세라믹 조성물에서도 1 ㎛ 이하의 평균 입경은 얻을 수 없으며 액상의 불규일한 분포에 의해 종종 비정상 입성장 (abnormal 또는 exaggerated grain growth)이 일어나기 때문에 초소형의 적층형 세라믹 콘덴서의 제조에는 널리 사용되지 못하고 있다. (참조: 조지만 외, "비정상 입성장이 일어난 BaTiO3세라믹스의 유전특성", 한국요업학회지,36[8], 965-973 (1999))An environmentally friendly, chemically stable, low-cost BaTiO 3 dielectric ceramic composition for the addition of cheap Cu has been proposed. (Reference: Japanese Patent No. 8-203702, Korean Patent Publication No. 94-3970) This is understood because calcination is promoted at low temperature due to the liquid phase produced by addition of Cu. However, even in the BaTiO 3 dielectric ceramic composition for low temperature sintering with Cu as described above, an average particle diameter of 1 μm or less cannot be obtained, and because of the irregular distribution of the liquid phase, abnormal grain growth (abnormal or exaggerated grain growth) often occurs. It is not widely used for the manufacture of multilayer ceramic capacitors. (Reference: Jo, Man et al., "Dielectric Properties of BaTiO 3 Ceramics with Abnormal Grain Growth," Journal of the Korean Ceramic Society, 36 [8], 965-973 (1999))

따라서, 본 발명의 목적은 상술한 문제점들을 보완할 수 있도록 초미립 BaTiO3분말을 Cu 금속 유기화합물 용액으로 균일하게 코팅함으로써 양호한 유전 특성을 가지는 초미립의 BaTiO3유전체 세라믹스를 저온에서 제조할 수 있는 저온 소성용 초미립 유전체 세라믹 재료의 제조 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to uniformly coat the ultrafine BaTiO 3 powder with a Cu metal organic compound solution so that the above-mentioned problems can be solved, so that ultrafine BaTiO 3 dielectric ceramics having good dielectric properties can be manufactured at low temperature. The present invention provides a method for producing an ultrafine dielectric ceramic material for low temperature firing.

이러한 목적을 달성하기 위하여, 본 발명에 따르면, 초미립 BaTiO3분말, Cu금속 유기화합물 용액 및 무수용매의 혼합슬러리를 제조하는 단계, 상기 혼합슬러리를 건조하는 단계, 및 건조된 상기 혼합슬러리를 열처리하여 잔류유기물을 분해시켜 Cu가 코팅된 초미립 BaTiO3분말을 얻는 단계를 포함하는 것을 특징으로 하는 초미립 BaTiO3유전체 세라믹 재료의 제조방법이 제공된다.In order to achieve this object, according to the present invention, preparing a mixed slurry of ultra-fine BaTiO 3 powder, Cu metal organic compound solution and anhydrous solvent, drying the mixed slurry, and heat-treated the dried mixed slurry There is provided a method for producing an ultra-fine BaTiO 3 dielectric ceramic material comprising the step of decomposing the residual organic matter to obtain a Cu-coated ultra-fine BaTiO 3 powder.

본 발명에서는 초미립 BaTiO3유전체 세라믹 재료를 제조하기 위한 출발원료로는 순도 약 99.9% 이상인 바람직하기로는 수열합성법으로 제조된 초미립의 BaTiO3분말이다.In the present invention, as a starting material for producing the ultrafine BaTiO 3 dielectric ceramic material, the ultrafine BaTiO 3 powder manufactured by hydrothermal synthesis, which is about 99.9% or more in purity, is preferable.

Cu 금속 유기화합물은 바람직하기로는 Cu-2에틸렉사노에이트(Cu-2 ethylhexanoate)이며 그 첨가량은 BaTiO3원료분말에 대하여 5중량%, 바람직하기로는 2∼5중량%이다. 그 첨가량이 2중량%미만으로 되면 소성온도저하에 기여하는 영향이 미미하고, 한편 5중량%를 초과하는 경우에도 소성후에 얻어지는 소성밀도에 큰 변화가 없다.The Cu metal organic compound is preferably Cu-2 ethylhexanoate, and its amount is 5% by weight, preferably 2-5% by weight, based on the BaTiO 3 raw material powder. If the addition amount is less than 2% by weight, the effect of lowering the firing temperature is insignificant, and even when it exceeds 5% by weight, there is no significant change in the firing density obtained after firing.

본 발명에 따르면, Cu 금속 유기화합물의 첨가에 의해서 BaTiO3분말이 Cu로 균일하게 코팅되는데 이에 따라 Cu가 코팅된 BaTiO3분말은 800∼1100℃에서 0.5~1.5 시간 소성을 하게 되는데 소성온도가 증가함에 따라 비정상적인 입자성장을 수반하지 않고 평균입경이 완만하게 증가하는 형태로 소성이 가능하게 되어 초미립의 BaTiO3유전체 세라믹 재료를 얻을 수 있다.According to the present invention, the BaTiO 3 powder is uniformly coated with Cu by the addition of the Cu metal organic compound, and thus the BaTiO 3 powder coated with Cu is baked at 800 to 1100 ° C. for 0.5 to 1.5 hours, but the firing temperature is increased. As a result, it is possible to bake in a form in which the average particle diameter is gradually increased without accompanying abnormal grain growth, thereby obtaining an ultrafine BaTiO 3 dielectric ceramic material.

BaTiO3분말과 Cu 금속 유기화합물용액을 무수용매와 함께 혼합하여 제조된 슬러리는 바람직하기로는 100℃에서 약 12시간 정도 건조한 다음 약 500℃에서 2시간정도 열처리를 행하여 건조 후 잔류하는 유기물을 완전 분해시킴으로써 Cu가 균일하게 코팅된 초미립 BaTiO3유전체 세라믹 분말이 얻어진다.The slurry prepared by mixing BaTiO 3 powder and Cu metal organic compound solution together with anhydrous solvent is preferably dried at about 100 hours at 100 ° C. and then heat treated at about 500 ° C. for 2 hours to completely decompose the organic matter remaining after drying. This yields an ultrafine BaTiO 3 dielectric ceramic powder uniformly coated with Cu.

상기 본 발명의 방법에 따라 제조된 BaTiO3분말은 평균 입경이 약 120 ∼ 130 nm이며 Cu 코팅량이 2 ∼ 5 wt%인 BaTiO3분말을 1000℃에서 0.5 시간 동안 소성시켰을 때 밀도가 약 5.61 ∼ 5.79 g/cm3이고 평균 입경이 0.31 ∼ 0.47 ㎛이며 -55 ∼ 125℃의 온도 영역에서 유전율 변화량이 -14 ∼ 52% 인 유전체 세라믹스를 얻을 수 있는 초미립 BaTiO3분말이다.Prepared according to the method of the present invention, BaTiO 3 powder having an average particle diameter of about 120 ~ 130 nm and the Cu coating amount of 2 to a density when 5 wt% of BaTiO 3 powder sikyeoteul fired at 1000 ℃ for 0.5 hours from about 5.61 - 5.79 It is an ultrafine BaTiO 3 powder capable of obtaining dielectric ceramics having a g / cm 3 , an average particle diameter of 0.31 to 0.47 μm, and a dielectric constant change of −14 to 52% in a temperature range of −55 to 125 ° C.

이하, 실시예에 의해 본 발명을 더욱 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

<실시예 1∼7><Examples 1-7>

먼저, 수열 합성법으로 제조된 순도 약 99.9% 이상의 초미립 BaTiO3분말 (비표면적 = 8.65 m2/g, BT-8, Cabot, U.S.A.)에 Cu-2ethylhexanoate (STREM, U.S.A.)를 0 ∼ 6 wt% 첨가하여 테프론 자 (Teflon jar) 내에 장입하고 순도 약 99.8% 이상의 무수 (anhydrous) 1-Butanol (Aldrich, U.S.A.)과 지르코니아 볼을 사용하여 약 12 시간 동안 습식 혼합한다. 이 때 혼합물 : 무수 1-Butanol : 지르코니아 볼의 비율은 무게비로 하여 1 : 2 : 2로 한다.First, 0 to 6 wt% of Cu-2ethylhexanoate (STREM, USA) was added to ultrafine BaTiO 3 powder (specific surface area = 8.65 m 2 / g, BT-8, Cabot, USA) of about 99.9% or more purity prepared by hydrothermal synthesis. It is added and charged into a Teflon jar and wet mixed for about 12 hours using anhydrous 1-Butanol (Aldrich, USA) and zirconia balls with a purity of at least about 99.8%. At this time, the ratio of the mixture: anhydrous 1-Butanol: zirconia ball is 1: 2: 2 by weight ratio.

이와 같이 준비된 혼합 슬러리를 약 100℃에서 약 12 시간 건조한 후 약 500℃에서 약 2 시간 열처리하여 잔류 유기물을 분해시킴으로써 Cu가 균일하게 코팅된 초미립 유전체 세라믹 BaTiO3분말을 얻는다.The mixed slurry thus prepared is dried at about 100 ° C. for about 12 hours and then heat-treated at about 500 ° C. for about 2 hours to decompose the residual organic material to obtain a Cu-coated ultrafine dielectric ceramic BaTiO 3 powder.

이와 같이 준비된 BaTiO3분말의 비표면적을 BET 비표면적 분석기(Quantachrome사 제품, 모델명 Autosorb-1)를 사용하여 측정하고 그로부터 밀도 6.0 g/cm3의 이상적인 구형의 입자를 가정하고 결정립(crystallite)크기를 구했다.The specific surface area of the BaTiO 3 powder thus prepared was measured using a BET specific surface area analyzer (Quantachrome, model name Autosorb-1), from which an ideal spherical particle having a density of 6.0 g / cm 3 was assumed and crystallite size was determined. Saved.

그 결과를 하기 표 1에 나타내었다.The results are shown in Table 1 below.

No.No. 코팅량 (wt%)Coating amount (wt%) 비표면적 (m2/g)Specific surface area (m 2 / g) Crystallite 크기 (nm)Crystallite size (nm) 1One 00 8.658.65 116116 22 1One 8.398.39 119119 33 22 8.328.32 120120 44 33 8.048.04 124124 55 44 7.897.89 127127 66 55 7.697.69 130130 77 66 7.647.64 131131

상기 표1의 결과에서 코팅량이 증가함에 따라 crystallite 크기가 다소 증가된 BaTiO3분말을 얻을 수 있었다. 이와 같은 현상은 BaTiO3분말 표면에 Cu가 코팅됨에 따른 것으로 보인다. 즉, 초미립 BaTiO3분말과 0 ∼ 6 wt%의 Cu-2ethylhexanoate를 무수 1-Butanol을 용매로 하여 습식 혼합하고 적절한 후처리를 행함으로써 분말 표면에 Cu가 균일하게 코팅되어 결정립 크기가 116 ∼ 131 ㎚인 초미립 BaTiO3분말을 얻을 수 있었다.In the results of Table 1, as the coating amount was increased, the BaTiO 3 powder with slightly increased crystallite size was obtained. This phenomenon appears to be due to the coating of Cu on the surface of the BaTiO 3 powder. That is, the ultrafine BaTiO 3 powder and 0-6 wt% Cu-2ethylhexanoate were wet mixed with anhydrous 1-Butanol as a solvent and subjected to proper post-treatment, thereby uniformly coating Cu on the surface of the powder so that the grain size was 116-131. Ultrafine BaTiO 3 powders of nm could be obtained.

<실시예 8∼46><Examples 8 to 46>

한편, 소성 특성 및 유전 특성을 조사하기 위하여 얻어진 BaTiO3분말을 지름 10 mm의 주형에서 1 톤/cm2의 압력으로 일축 가압 성형한 후, 다시 3 톤/cm2의 압력으로 정수압 성형하고 상온으로부터 약 360℃/hr로 800 ∼ 1300℃까지 승온시켜 2시간 유지시킴으로써 소성시켰다.On the other hand, BaTiO 3 powder obtained in order to investigate plasticity and dielectric properties was uniaxially press-molded at a pressure of 1 ton / cm 2 in a mold having a diameter of 10 mm, and then hydrostatically molded at a pressure of 3 ton / cm 2 and It baked by heating up to 800-1300 degreeC at about 360 degreeC / hr, and holding for 2 hours.

이 후, 소성 밀도를 측정하고, SiC 연마지 (#2000)와 다이아몬드 페이스트 (9, 3, 1 ㎛)으로 한쪽 면을 연마하여 주사전자현미경 (Hitachi사 제품, S-4200)으로 소성체의 평균 입경을 측정하였다.After that, the firing density was measured, and one surface was polished with an SiC abrasive paper (# 2000) and a diamond paste (9, 3, 1 µm), and the average of the fired bodies was measured by a scanning electron microscope (S-4200, manufactured by Hitachi). The particle diameter was measured.

그 결과를 하기 표 2에 나타내었다.The results are shown in Table 2 below.

코팅된 BaTiO3분말의 소성 특성1.Plasticity of Coated BaTiO 3 Powder 1 . No.No. 코팅량 (wt%)Coating amount (wt%) 소성 온도 (℃)Firing temperature (℃) 소성 밀도 (g/cm3)Plastic density (g / cm 3 ) 평균 입경 (㎛)Average particle size (㎛) 88 00 10001000 3.873.87 0.180.18 99 00 11001100 4.354.35 0.250.25 1010 00 12001200 5.235.23 0.340.34 1111 00 13001300 5.815.81 13.6813.68 1212 1One 900900 4.734.73 0.190.19 1313 1One 10001000 4.974.97 0.270.27 1414 1One 11001100 5.165.16 0.320.32 1515 1One 12001200 5.255.25 0.900.90 1616 1One 13001300 5.385.38 1.681.68 1717 22 800800 4.954.95 0.180.18 1818 22 900900 5.115.11 0.250.25 1919 22 10001000 5.365.36 0.310.31 2020 22 11001100 5.545.54 0.360.36 2121 22 12001200 5.565.56 0.940.94 2222 22 13001300 5.575.57 1.751.75 2323 33 800800 5.235.23 0.180.18 2424 33 900900 5.465.46 0.270.27 2525 33 10001000 5.635.63 0.340.34 2626 33 11001100 5.815.81 0.400.40 2727 33 12001200 5.825.82 1.011.01 2828 33 13001300 5.825.82 2.132.13 2929 44 800800 5.385.38 0.190.19 3030 44 900900 5.545.54 0.290.29 3131 44 10001000 5.705.70 0.370.37 3232 44 11001100 5.895.89 0.440.44 3333 44 12001200 5.895.89 1.051.05 3434 44 13001300 5.905.90 2.582.58 3535 55 800800 5.435.43 0.200.20 3636 55 900900 5.595.59 0.300.30 3737 55 10001000 5.825.82 0.470.47 3838 55 11001100 5.965.96 0.490.49 3939 55 12001200 5.955.95 1.121.12 4040 55 13001300 5.965.96 2.852.85 4141 66 800800 5.485.48 0.250.25 4242 66 900900 5.585.58 0.380.38 4343 66 10001000 5.845.84 0.560.56 4444 66 11001100 5.965.96 0.830.83 4545 66 12001200 5.965.96 1.401.40 4646 66 13001300 5.955.95 3.253.25 1소성 시간 = 2.0 hr 1 Firing time = 2.0 hr

상기 표 2의 결과에서, 구리가 코팅되지 않은 BaTiO3분말의 경우 1200℃에서 소성하여도 5.23 g/cm3의 밀도밖에 얻을 수 없는데 반해 코팅량이 증가함에 따라 소성이 촉진되어 Cu 코팅량이 2 ∼ 5 wt%일 때에는 1000℃에서 소성하여도 5.36 ∼5.94 g/cm3의 고밀도인 BaTiO3유전체 세라믹스가 얻어졌다. Cu 코팅량이 1 wt%일 때에도 소성이 촉진되기는 하지만 그 영향은 상대적으로 미미하며 Cu 코팅량이 5 wt% 이상일 때에는 코팅량이 증가하여도 더 이상의 고밀도화는 달성되지 않았다. 한편, Cu 코팅량이 일정할 때에 소성 온도가 800 ∼ 1100℃에서는 소성 온도가 증가함에 따라 소성 밀도도 증가하였지만 1100℃ 이상에서는 소성 온도가 증가하여도 소성 밀도는 크게 증가하지 않았다.In the results of Table 2, in the case of BaTiO 3 powder that is not coated with copper, only a density of 5.23 g / cm 3 can be obtained even when calcined at 1200 ° C. When it was wt%, BaTiO 3 dielectric ceramics having a high density of 5.36 to 5.94 g / cm 3 were obtained even when fired at 1000 ° C. Firing is promoted even when the amount of Cu coating is 1 wt%, but the effect is relatively insignificant, and when the coating amount is more than 5 wt%, no further densification is achieved. On the other hand, when the amount of Cu coating was constant, the firing density also increased as the firing temperature was increased at 800 to 1100 ° C, but the firing density did not increase significantly even when the firing temperature was increased above 1100 ° C.

Cu가 코팅된 BaTiO3분말의 소성 온도가 800 ∼ 1100℃일 때에는 소성 온도가 증가함에 따라 평균 입경이 완만히 증가하여 Cu 코팅량이 2 ∼ 5 wt%일 때에 평균 입경이 0.5 ㎛ 이하인 초미립의 BaTiO3유전체 세라믹스를 얻을 수 있었다. 하지만 1100℃ 이상에서는 소성 온도가 증가함에 따라 평균 입경이 급격히 증가하였다.When the firing temperature of Cu-coated BaTiO 3 powder is 800 to 1100 ° C, the average particle size gradually increases as the firing temperature increases. When the Cu coating amount is 2 to 5 wt%, ultrafine BaTiO 3 having an average particle diameter of 0.5 μm or less Dielectric ceramics were obtained. However, above 1100 ° C, as the firing temperature increased, the average particle diameter rapidly increased.

이와 같이 BaTiO3분말을 Cu로 코팅함에 따라 BaTiO3유전체 세라믹스의 저온 소성화 및 초미립화가 가능하게 된 것은 BaTiO3분말 표면에 균일하게 코팅된 Cu가 소성 온도에서 물질 전달 경로인 액상을 공간적으로 균일하게 형성하여 소성을 촉진시키는데 기인하는 것으로 보인다. 또 1100℃ 이상의 소성 온도에서 더 이상의 고밀도화는 이루어지지 않고 평균 입경만이 급격히 증가하는 것은, Cu가 코팅된 BaTiO3분말의 소성 과정 중의 치밀화는 1100℃ 이하의 온도에서 일어나고 입자성장은 1100℃ 이상의 온도에서 일어나는데 기인하는 것으로 보인다.As the BaTiO 3 powder is coated with Cu, low-temperature plasticization and ultra-fine atomization of BaTiO 3 dielectric ceramics are possible. The uniformly coated Cu on the surface of the BaTiO 3 powder has a spatial uniformity in the liquid phase, which is a mass transfer path at the firing temperature. It is believed to be due to the formation of metals in order to promote plasticity. In addition, at the firing temperature of 1100 ° C or higher, no increase in density is achieved and only the average particle size is rapidly increased. Densification of the Cu-coated BaTiO 3 powder occurs at a temperature of 1100 ° C or lower, and grain growth is at a temperature of 1100 ° C or higher. It seems to be due to happening in.

<실시예 47∼64><Examples 47-64>

한편, 초미립 BaTiO3분말 표면에 코팅된 Cu가 소성 온도에서 BaTiO3와 core shell 구조를 형성하는 조건을 확인하기 위해 얻어진 BaTiO3분말을 지름 10 mm의 주형에서 1 톤/cm2의 압력으로 일축 가압 성형한 후, 다시 3 톤/cm2의 압력으로 정수압 성형하고 상온으로부터 약 360℃/hr로 800∼1300℃까지 승온시켜 0.5 ∼ 4.0 시간 유지시킴으로써 소성시켰다.Meanwhile, BaTiO 3 powder was uniaxially squeezed at a pressure of 1 ton / cm 2 in a mold having a diameter of 10 mm to confirm the conditions under which the Cu coated on the surface of the ultrafine BaTiO 3 powder forms BaTiO 3 and the core shell structure at the firing temperature. After press molding, hydrostatic pressure molding was carried out again at a pressure of 3 ton / cm 2 , and the resultant was calcined by raising the temperature to 800 to 1300 ° C. at about 360 ° C./hr from normal temperature and maintaining for 0.5 to 4.0 hours.

소성한 후 최종적인 시편의 두께가 1 mm가 되도록 SiC 연마지 (#1000)를 이용하여 연마하였다. 연마 후, 은 페이스트를 시편의 양쪽 면에 바르고 약 600℃에서 약 10 분간 열처리하여 전극을 형성하였다. 이와 같이 준비된 시편을 온도 조절 챔버 (Delta Design, USA) 내에 장착하고 -55 ∼ 125℃의 온도 영역에서 LCR meter (Hewlett Packard사 제품, 모델명 4263B)를 사용하여 유전율을 측정하였다. (1.0 Vrms, 1 KHz)After firing, polishing was performed using SiC abrasive paper (# 1000) so that the final specimen thickness was 1 mm. After polishing, silver paste was applied to both sides of the specimen and heat treated at about 600 ° C. for about 10 minutes to form electrodes. The specimen thus prepared was mounted in a temperature control chamber (Delta Design, USA) and the dielectric constant was measured using an LCR meter (model name 4263B manufactured by Hewlett Packard) in the temperature range of -55 to 125 ° C. (1.0 V rms , 1 KHz)

이 후, 시편 양쪽 면의 전극을 모두 제거한 후 소성 밀도를 측정하고, SiC 연마지 (#2000)와 다이아몬드 페이스트 (9, 3, 1 ㎛)으로 한쪽 면을 연마하여 주사전자현미경 (Hitachi사 제품, S-4200)으로 소성체의 평균 입경을 측정하였다.Subsequently, after removing all the electrodes on both sides of the specimen, the plastic density was measured, and one side was polished with SiC abrasive paper (# 2000) and diamond paste (9, 3, 1 μm), followed by scanning electron microscopy (manufactured by Hitachi, S-4200), the average particle diameter of the fired body was measured.

그 결과를 하기 표 3에 나타내었다.The results are shown in Table 3 below.

코팅된 BaTiO3분말의 소성 특성1및 유전 특성.Plasticity Characteristics 1 and Dielectric Properties of Coated BaTiO 3 Powders. No.No. 코팅량(wt%)Coating amount (wt%) 소성 시간(hr)Firing time (hr) 소성 밀도(g/cm3)Firing Density (g / cm 3 ) 평균 입경(㎛)Average particle size (㎛) 상온 유전율Room temperature dielectric constant 유전율변화량 (%)2 Dielectric constant change (%) 2 4747 33 0.50.5 5.615.61 0.280.28 20542054 -12 ∼ 42-12 to 42 4848 33 1.01.0 5.625.62 0.310.31 20422042 -12 ∼ 45-12 to 45 4949 33 1.51.5 5.625.62 0.310.31 20252025 -13 ∼ 49-13 to 49 5050 33 2.02.0 5.635.63 0.340.34 19881988 -14 ∼ 57-14 to 57 5151 33 3.03.0 5.635.63 0.560.56 19941994 -14 ∼ 60-14 to 60 5252 33 4.04.0 5.635.63 0.800.80 19901990 -15 ∼ 61-15 to 61 5353 44 0.50.5 5.675.67 0.300.30 21052105 -12 ∼ 48-12 to 48 5454 44 1.01.0 5.685.68 0.330.33 20772077 -13 ∼ 50-13 to 50 5555 44 1.51.5 5.695.69 0.340.34 20522052 -14 ∼ 56-14 to 56 5656 44 2.02.0 5.705.70 0.370.37 20372037 -14 ∼ 62-14 to 62 5757 44 3.03.0 5.705.70 0.660.66 20102010 -15 ∼ 64-15 to 64 5858 44 4.04.0 5.705.70 0.990.99 20452045 -15 ∼ 66-15 to 66 5959 55 0.50.5 5.795.79 0.410.41 21432143 -11 ∼ 52-11 to 52 6060 55 1.01.0 5.805.80 0.400.40 21242124 -12 ∼ 55-12 to 55 6161 55 1.51.5 5.805.80 0.420.42 21112111 -13 ∼ 61-13 to 61 6262 55 2.02.0 5.825.82 0.470.47 20762076 -14 ∼ 76-14 to 76 6363 55 3.03.0 5.825.82 0.780.78 20972097 -15 ∼ 78-15 to 78 6464 55 4.04.0 5.825.82 1.131.13 20882088 -15 ∼ 80-15 to 80 1소성 온도 = 1000℃,2상온 유전율 기준, 온도 범위 = -55∼125℃ 1 firing temperature = 1000 ° C, 2 relative to room temperature dielectric constant, temperature range = -55 to 125 ° C

상기 표 3의 결과에서 소성 시간에 관계없이 소성 밀도는 거의 변화하지 않는다. 평균 입경은 소성 시간이 1.5 시간까지는 크게 변화하지 않지만 그 이상의 소성 시간에서는 소성 시간이 증가함에 따라 급격하게 증가한다. 상온 유전율은 소성 시간이 증가함에 따라 소성 시간이 1.5 시간까지는 완만하게 감소하다가 그 이상의 소성 시간에서는 크게 변화하지 않는다. 유전율 변화량은 소성 시간이 증가함에 따라 소성 시간이 1.5 시간까지는 완만하게 증가하다가 소성 시간이 1.5 ∼ 2.0 시간에서 급격히 증가하고 그 이상의 소성 시간에서는 크게 변화하지 않는다.In the results of Table 3, the firing density hardly changes regardless of the firing time. The average particle diameter does not change significantly until the firing time is 1.5 hours, but at higher firing times, it rapidly increases as the firing time increases. As the firing time increases, the room temperature dielectric constant slowly decreases until the firing time is 1.5 hours, but does not change significantly at further firing times. As the firing time increases, the change in dielectric constant gradually increases until the firing time is 1.5 hours, but the firing time rapidly increases from 1.5 to 2.0 hours, and does not change significantly over the firing time.

이와 같은 현상은 초미립 BaTiO3분말 표면에 코팅된 Cu가 소성 시간이 0.5 ∼ 1.5 시간일 때에는 BaTiO3와 core shell 구조를 형성하고 소성 시간이 2.0 ∼ 4.0 시간일 때에는 BaTiO3와 완전한 고용체 (solid solution)을 형성하는데 기인하는 것으로 보인다.This phenomenon is explained by the fact that Cu coated on the surface of ultrafine BaTiO 3 powder forms a core shell structure with BaTiO 3 when the firing time is 0.5 to 1.5 hours, and a solid solution with BaTiO 3 when the firing time is 2.0 to 4.0 hours. Seems to be due to the formation of.

본 발명에 따르면, 초미립 BaTiO3분말을 Cu 금속 유기 화합물 용액으로 균일하게 코팅함으로써 양호한 유전 특성을 가지는 초미립의 BaTiO3유전체 세라믹스를 저온에서 제조할 수 있는 저온 소성용 초미립 유전체 세라믹 분말을 얻을 수 있다.According to the present invention, ultrafine BaTiO 3 powders are uniformly coated with a Cu metal organic compound solution to obtain ultrafine dielectric ceramic powders for low temperature firing capable of producing ultrafine BaTiO 3 dielectric ceramics having good dielectric properties at low temperatures. Can be.

Claims (9)

초미립 BaTiO3분말, Cu금속 유기화합물 용액 및 무수용매의 혼합슬러리를 제조하는 단계,Preparing a mixed slurry of ultra-fine BaTiO 3 powder, Cu metal organic compound solution and anhydrous solvent, 상기 혼합슬러리를 건조하는 단계, 및Drying the mixed slurry, and 건조된 상기 혼합슬러리에 포함된 잔류 유기물을 열처리하여 분해 제거함으로써 Cu가 코팅된 초미립 BaTiO3분말을 얻는 단계를 포함하는 것을 특징으로 하는 초미립 BaTiO3유전체 세라믹 재료의 제조방법.A method of manufacturing an ultrafine BaTiO 3 dielectric ceramic material, comprising the step of obtaining a Cu-coated ultrafine BaTiO 3 powder by thermally decomposing and removing residual organic materials contained in the dried mixed slurry. 제1항에 있어서, 상기 Cu 금속 유기화합물은 Cu-2 에틸헥사노에이트인 것을 특징으로 하는 초미립 BaTiO3유전체 세라믹 재료의 제조방법.The method of claim 1, wherein the ultra fine BaTiO 3 Method for producing a dielectric ceramic material, characterized in that the Cu-metal-organic compound is 2 Cu-ethylhexanoate. 제 1 항에 있어서, 상기 무수용매는 무수 1-부탄올인 것을 특징으로 하는 초미립 BaTiO3유전체 세라믹 재료의 제조방법.The method of claim 1 wherein the anhydrous solvent is ultra fine BaTiO 3 The method for producing a dielectric ceramic material characterized in that the anhydrous 1-butanol. 제 1 항에 있어서, 상기 혼합슬러리의 제조는 볼밀링에 의한 것임을 특징으로 하는 초미립 BaTiO3유전체 세라믹 재료의 제조방법.The method of claim 1, wherein the ultra fine BaTiO 3 The method for producing a dielectric ceramic material, characterized in that the production of the mixed slurry by ball-milling. 제 1 항에 있어서, 상기 열처리 온도는 약 500℃인 것을 특징으로 하는 초미립 BaTiO3유전체 세라믹 재료의 제조방법.The method of claim 1, wherein the ultra fine BaTiO 3 The method for producing a dielectric ceramic material, characterized in that the heat treatment temperature is about 500 ℃. 제 1 항에 있어서, 상기 건조온도는 100℃인 것을 특징으로 하는 초미립 BaTiO3유전체 세라믹 재료의 제조방법.The method of claim 1, wherein the drying temperature is 100 ° C. 3 . 제 1 항 또는 제 2 항에 있어서, 상기 Cu금속 유기화합물의 첨가량은 BaTiO3분말의 중량에 대하여 2∼5%인 것을 특징으로 하는 초미립 BaTiO3유전체 세라믹 재료의 제조방법.The method of producing an ultrafine BaTiO 3 dielectric ceramic material according to claim 1 or 2, wherein the addition amount of the Cu metal organic compound is 2 to 5% by weight of the BaTiO 3 powder. 제 1 항에 있어서, 상기 Cu가 코팅된 초미립 BaTiO3분말을 800∼1100℃에서 소성하는 단계를 더 포함하는 것을 특징으로 하는 초미립 BaTiO3유전체 세라믹 재료의 제조방법.The method of claim 1, wherein the ultra fine BaTiO 3 The method for producing a dielectric ceramic material according to claim 1, further comprising the step of firing the Cu coated ultra fine BaTiO 3 powder in 800~1100 ℃. 제 8 항에 있어서, 상기 소성공정은 0.5∼1.5시간 동안 수행되는 것을 특징으로 하는 초미립 BaTiO3유전체 세라믹 재료의 제조방법.The method of claim 8, wherein the firing step of the method for producing ultra fine BaTiO 3 dielectric ceramic material, characterized in that is carried out during the 0.5~1.5 hours.
KR10-2000-0054227A 2000-09-15 2000-09-15 Process for Preparing Ultrafine Barium Titanate Dielectric Ceramic Material KR100390469B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2000-0054227A KR100390469B1 (en) 2000-09-15 2000-09-15 Process for Preparing Ultrafine Barium Titanate Dielectric Ceramic Material
JP2000338249A JP3421810B2 (en) 2000-09-15 2000-11-06 Method for producing ultrafine barium titanate dielectric ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0054227A KR100390469B1 (en) 2000-09-15 2000-09-15 Process for Preparing Ultrafine Barium Titanate Dielectric Ceramic Material

Publications (2)

Publication Number Publication Date
KR20020029446A KR20020029446A (en) 2002-04-19
KR100390469B1 true KR100390469B1 (en) 2003-07-04

Family

ID=19688786

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0054227A KR100390469B1 (en) 2000-09-15 2000-09-15 Process for Preparing Ultrafine Barium Titanate Dielectric Ceramic Material

Country Status (2)

Country Link
JP (1) JP3421810B2 (en)
KR (1) KR100390469B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528950B1 (en) * 2001-01-29 2005-11-16 제이에스알 가부시끼가이샤 Composite Particle for Dielectrics, Ultramicroparticulate Composite Resin Particle, Composition for Forming Dielectrics and Use Thereof
KR100645629B1 (en) * 2004-10-27 2006-11-15 삼성전기주식회사 Dielectric multi-layered coating powder and composite dielectric material using the same
KR100616473B1 (en) * 2005-01-27 2006-08-29 한국과학기술연구원 Low temperature fired barium titanate dielectric substance and fabrication method thereof, and dielectric substance-electrode assembly using the low temperature fired barium titanate dielectric substance
CN101941838B (en) * 2010-02-22 2012-12-26 华中科技大学 BiFeO3-Bi0.5Na0.5TiO3 base multiferroic solid solution ceramic and preparation method thereof
CN103172366B (en) * 2011-12-22 2015-08-05 深圳市大富科技股份有限公司 A kind of preparation method of microwave dielectric ceramic materials
CN103435341B (en) * 2013-07-26 2015-02-18 同济大学 Method used for low-temperature synthesis of ultrathin micron sheet-shape barium strontium titanate crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940003970A (en) * 1992-08-26 1994-03-14 카렌 엘.존슨 Activity reducing agent for olefin polymerization catalyst
KR970004271A (en) * 1995-06-13 1997-01-29 김회수 Motor Drive and Method
KR19980049120A (en) * 1996-12-19 1998-09-15 박병재 Fixing fixture with adjustable position and fixed direction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940003970A (en) * 1992-08-26 1994-03-14 카렌 엘.존슨 Activity reducing agent for olefin polymerization catalyst
KR970004271A (en) * 1995-06-13 1997-01-29 김회수 Motor Drive and Method
KR19980049120A (en) * 1996-12-19 1998-09-15 박병재 Fixing fixture with adjustable position and fixed direction

Also Published As

Publication number Publication date
JP2002121079A (en) 2002-04-23
JP3421810B2 (en) 2003-06-30
KR20020029446A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
KR100435165B1 (en) Barium titanate powder and method for manufacturing the same
KR20070015445A (en) Electronic part, layered ceramic capacitor, and manufacturing method thereof
JP4522025B2 (en) Dielectric porcelain, multilayer electronic component, and manufacturing method of multilayer electronic component
KR100390469B1 (en) Process for Preparing Ultrafine Barium Titanate Dielectric Ceramic Material
US6169049B1 (en) Solution coated hydrothermal BaTiO3 for low-temperature firing
KR100519423B1 (en) Method for producing dielectric ceramic material powder and dielectric ceramic material powder
JP2003048774A (en) Dielectric porcelain, method of producing the same, and multilayer-type electronic parts
JP4480884B2 (en) Method for producing surface-modified silver powder
KR100546993B1 (en) Method for producing dielectric ceramic material powder, dielectric ceramic and monolithic ceramic capacitor
JP4519342B2 (en) Dielectric porcelain and multilayer electronic components
KR101709814B1 (en) Dielectric composition and manufacturing method thereof
JP2529410B2 (en) Dielectric ceramic composition, laminated ceramic capacitor using the same, and method for producing the same
JP2000348961A (en) Dielectric material, its manufacture, laminated ceramic capacitor formed thereof, and its manufacture
JP4627876B2 (en) Dielectric porcelain and multilayer electronic components
KR100390389B1 (en) Process for Preparing Nanocrystalline Dielectric Ceramics
KR100390468B1 (en) Process for Preparing Nanocrystalline Dielectric Ceramics
JP3085625B2 (en) Dielectric porcelain composition
KR100356642B1 (en) Low Temperature Firable Dielectric Ceramic Compositions Having Ultrafine Grains
KR20060135304A (en) Method for manufacturing dielectric powder for low temperature sintering and method for manufacturing multilayer ceramic condenser using the same
KR100390467B1 (en) Process for Preparing Nanocrystalline Dielectric Ceramics
KR100616473B1 (en) Low temperature fired barium titanate dielectric substance and fabrication method thereof, and dielectric substance-electrode assembly using the low temperature fired barium titanate dielectric substance
JP3576959B2 (en) Method for producing ultrafine barium titanate dielectric ceramics
KR100313324B1 (en) Low temperature firable dielectric ceramic compositions having ultrafine grains
KR100333498B1 (en) Low temperature firable dielectric ceramic compositions having ultrafine grains
KR100356644B1 (en) Process for Preparing BaTiO3-based Dielectric Ceramics with High Density and Ultra-Fine Grains

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080530

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee